
I.J. Information Engineering and Electronic Business, 2013, 4, 58-64
Published Online October 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijieeb.2013.04.08

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

Assessment of Effective Risk in Software
Projects based on Wallace’s Classification Using

Fuzzy Logic

Ali Yavari
Mazandaran University of Sciences and Technology, Iran

Email: yavari@ustmb.ac.ir

Maede Golbaghi
Mazandaran University of Sciences and Technology, Iran

Email: maede.golbaghi@gmail.com

Hossein Momeni
Agricultural Sciences and Natural Resources University of Gorgan, Iran

Email: momeni@gau.ac.ir

Abstract— Software development always faces
unexpected events such as technology changes,
environmental changes, changing user needs. These
changes will increase the risk in software projects. We
need to risk management to deal with software risks.
Risk assessment is one of the most important factors in
risk and pro ject management of software projects. In
this paper, we use Wallace’s work and five factors to
present an efficient method to measure software risk
using fuzzy logic. Team, Planning, Complexity,
Requirements and User are factors that we use in this
paper. Results of experiments shows that our framework
is more efficient than other frameworks and approaches
for risk assessment in software projects.

Index Terms— Software Risk, Assessment, Wallace’s
Classification, Fuzzy Logic.

I. INTRODUCTION

Software development projects face a number of
software risks. The most important factors that may
cause failure of project are related to poor performance,
team pressure, low quality and high cost [1]. So
software project risk management p lays an important
role in completing software projects successfully. It
consists of the following four phases: identification,
assessment, plan and control. Risk assessment is the
base of software project risk management. According to
[2] definit ion, risk exposure is expressed as the
relationship RE=P(uo)*L(uo), where RE is the risk
exposure, P(uo) is the probability of an unsatisfactory
outcome and L(uo) is the loss to the parties affected if
the outcome is unsatisfied[3].

The major problem associated with the estimat ion of
risks is that the input data are imprecise by nature and it
is difficu lt to represent them with crisp numbers.
Usually the risk analyst prefers to estimate in linguistic
terms such as high or low rather than in exact

probabilistic terminology. To this end, the application of
Fuzzy Set Theory (FST) to risk analysis seems
appropriate; as such analysis can handle subjectivity as
well as inexact and vague information [1].

The solution that is suggested here to overcome
previously mentioned problems is to use fuzzy logic
linguistic variables for the complexity metrics and
model. Fuzzy logic is a mathematical tool for dealing
with uncertainties and also it provides a technique to
deal with imprecision and informat ion granularity.
Fuzzy logic is seen as a means of approximate reasoning.
The fuzzy logic has been successfully applied in many
segments such as engineering, psychology, artificial
intelligence, medicine and sociology. In this paper we
propose a fuzzy logic approach for risk estimation in
software projects. We use five factors that are important
in risk management. Those factors are Team, Planning,
Complexity, Requirements and User.

Our fuzzy model has five input and we use 3
linguistic variables for each input. This membership
functions are Low, Medium and High. Fuzzificat ion
module maps the non-fuzzy values in fuzzy space and
defuzzificat ion module convert the fuzzy numbers into
crisp space. In our framework, after fuzzificait ion of
each input, the Mamdani inference system that includes
a rule base can evaluate the risk of software project.
This is a fuzzy number, so it should convert to a crisp
number by a defuzzificaion algorithm. Number of rules
in this ru le base that use in this system is 243 and “And
Method “ is min also “Or Method” is max, th is mean
that and operator between two numbers select min imum
of numbers and or operator between two number select
maximum of this numbers. Fuzzy inference is the actual
process of mapping from a given input to an output
using fuzzy logic. The process involves all the pieces:
membership functions, fuzzy logic operators, and if-
then rules. Results of experiments shows that our
framework is more efficient than other frameworks and
approaches for risk assessment in software pro jects.

 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using 59
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

The rest of this paper is organized as follows: Section
2 describes the related works. Section 3 describes the
concepts and definit ions. Section 4 exp lains the
Wallace’s Work. Section 5 describes proposed approach
and finally section 6 concludes the paper with some
discussion.

II. RELATED WORK

This section presents works that related to risk and
risk management. Boehm [2] proposed a software risk
management framework. He identified a list of the top-
ten software risks based on his experience at TRW.
There were some problems in his survey. The list of top-
ten software risks lacked a theoretical foundation.
Secondly, these risks are set according to software
development environment in 1991 but scale and
diversity of software have increased and thus, the list
has become inadequate.

Barki et al. [4] conducted a survey in Quebec. They
identified a list which included 23 software risks. They
classified them into five groups. The list provided a
comprehensible instrument but Wallace et al.[13]
explained that the assessment scale of each risk was
complex.

Schmidt et al. conducted a Delphi survey to reduce
the bias of a single-culture viewpoint. They integrated
the options of many experts from some countries. They
identified 53 risk items and grouped them into 14 types.
They declared that cultural difference could affect the
list. Only 11 software risks were applicable from a
cross-cultural perspective [14]. Recently, Wallace et al.
collected the opinions of 507 members in the Project
Management Institute (PMI) and identified 27 software
risks, which were classified into six dimensions: User,
Requirement, Project Complexity, Planning & Control,
Team and Organizational Environment using structural
Equation Model. A summary of related studies on
software risks is given in table 1[4]. Th is table has seven
rows, Pro ject Type, Scope, Participant, Participant
numbers, Research Method, Dimensions, Dimensions
and finally risk.

TABLE 1: summary of related studies on software risks

Boehm Barki et al. Wallace

et al.

Project Type General General General

Scope TRW Quebec Across
Countries

Participant Project
Manager

Project Leader
and User

representative

PMI
members

Participant
numbers Unknown 120 507

Research
Method Unknown CFA SEM

Dimensions 0 5 6
Risks 10 23 27

In our study, five of six risk dimensions of Wallace’s
work were adopted. Firstly, her work was conducted in
2004, and thus it was relatively up-to-date and reflected
the consensus of 507 PMI members from various
countries. Secondly, SEM was used in her work to
examine and prove the composite reliability, convergent
validity and adequacy of the proposed framework of
software risks. Therefore, the six risk d imensions and
their associated software risks, as shown in table 2, were
considered appropriate for our study.

This table has two columns, factors and sub factors.
Factors are: user, requirement, project complexity,
planning and control, team and organizational
environment. For example sub factors of planning and
control are: lack of an effect ive pro ject management
methodology, project progress not monitored closely
enough, inadequate estimat ion of required resources,
poor project planning, project milestones not clearly
defined, inexperienced project manager and ineffective
communicat ion. Also sub factors of user are: Users
resistant to change, Conflict between users, Users with
negative attitudes toward the project, Users not
committed to the project and Lack of cooperation from
users.

60 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

TABLE 2: Software risks adopted in this study

Risk factor Sub factors of risk

User

• Users resistant to change
• Conflict between users
• Users with negative attitudes

toward the project
• Users not committed to the

project
• Lack of cooperation from users

Requirement

• Continually changing system
requirements

• System requirements not
adequately identified

• Unclear system requirements
• Incorrect system requirements

Project complexity

• Project involved the use of new
technology

• High level of technical
complexity

• Immature technology
• Project involves the use of

technology that has not been used
in prior projects

Planning and
control

• Lack of an effective project
management methodology

• Project progress not monitored
closely enough

• Inadequate estimation of required
resources

• Poor project planning
• Project milestones not clearly

defined
• Inexperienced project manager
• Ineffective communication

Team

• Inexperienced team members
• Inadequately trained development

team members
• Team members lack specialized

skills required by the project

Organizational
environment

• Change in organizational
management during the project

• Corporate politics with negative
effect on the project

• Unstable organizational
environment

• Organization undergoing
restructuring during the project

III. CONCEPTS AND DEFINITIONS

In this section we have review on some concepts
and definition.

3.1 Risk

Risk arises when organizations pursue opportunities
in the face of uncertainty, constrained by capability and
cost. The most common definition of risk in software
projects is in terms of exposure to specific factors that
present a threat to achieving the expected outcomes of a
project [7]. A software risk (an uncertain event or
condition with negative consequences on a software
project) can increase the failure rate of a project if it is
ignored [8]. Thus, the main purpose of software risk
management is to identify managerial and technical
problems before they occur so that actions can be taken
to eliminate or mit igate their impact [6].

Currently, measuring the grade of risk mainly
depends on the value of risk exposure. According to
Boehm’s definit ion, risk exposure is expressed as the
relationship RE=P(uo)*L(uo),where RE is the risk
exposure, P(uo) is the probability of an unsatisfactory
outcome and L(uo) is the loss to the parties affected if
the outcome is Unsatisfied[3].

Risk in software pro jects is usually defined as the
probability-weighted impact of an event on a project. In
classical decision theory, risk was viewed as reflect ing
variation in the probability distribution of possible
outcomes, negative or positive, associated with a
particular decision [7].

There are two classes of software project risk: generic
risks common to all pro jects, and project-specific risks.
Some of these risks are easy to identify and manage.
Others are less obvious or it is more difficult to predict
their likelihood and/or impact. This is complicated by
multip le project dimensions including size, structure,
complexity, composition, context, novelty, long
planning and execution horizons, and volatile change.
Therefore, risk management in software pro jects is
important to: help avoid disasters; avoid rework; focus
and balance effort; and stimulate win–win situations [7].

3.2 Risk Management

As foreshadowed above, software project risk
management is usually defined as a set of principles and
practices aimed at identify ing, analyzing and handling
risk factors to improve the chances of achieving a
successful project outcome and/or avoid project failure.
Any variation in approach is usually in the ‘p rinciples
and practices’ employed within this conceptual
understanding of risk management.

Most commonly, one or more of four inter-related
approaches to risk management are found in the
literature and practice. These are checklists, analytical
frameworks, process models, and risk response
strategies [7].

Risk management can lead to a range of project and
organizational benefits including:

• Identification of favourable alternative courses
of action;

• Increased confidence in ach ieving project
objectives;

• improved chances of success;
• Reduced surprises;
• More precise estimates (through reduced

uncertainty);
• Reduced duplication of effort (through team

awareness of risk control actions) [7].

IV. WALLACE’S W ORK

In our study, the six risk d imensions of Wallace’s
work were adopted. Firstly, her work was conducted in
2004, and thus it was relatively up-to-date and reflected
the consensus o f 507 PMI members from various

 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using 61
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

countries. Secondly, SEM was used in her work to
examine and prove the composite reliability, convergent
validity and adequacy of the proposed framework of
software risks. In her work 27 software risks, which
were classified into six d imensions: User, Requirement,
Project Complexity, Planning & Control, Team and
Organizational Environment using structural Equation
Model [6].

V. PROPOSED APPROACH

Before presenting the proposed method, let’s review
some basic definit ions related to fuzzy logic.

Definition 1 :

If our universe is X, then fuzzy set A would be as
follows:

𝐴𝐴 = {< 𝑥𝑥,𝜇𝜇𝐴𝐴 (𝑥𝑥) >⋮ 𝑥𝑥 ∈ 𝑋𝑋} (1)

Membership function μA (x) when x is a member and
μA ∶ X → [0,1] : specifies degree o f membership x to set
A [8, 9]

Definition 2 :

𝐴𝐴 = {< 𝑥𝑥,𝜇𝜇𝐴𝐴 (𝑥𝑥),𝑉𝑉𝐴𝐴(𝑥𝑥) > |𝑥𝑥 ∈ 𝑋𝑋} (2)�
Here μA ∶ X → [0,1] and VA ∶ X → [0,1] with the

following condition 0 ≤ μA (x) + VA (x) ≤ 1 ,∀ x ∈
X
μA (x) Specifies degree of membership and VA (x)

specifies degree of non-membership.in this example we
use triangular membership function and exp lain it below
[9, 10].

Definition 3 :

A triangular fuzzy number can be sorted with a trio (1,
m, u) that 1 and u are upper and lower limits, m is
middle and x is an element between 1 and 0 as shown in
Figure 1.

Figure 1: Triangular fuzzy number

And also:

𝜇𝜇(𝑥𝑥)

=

⎩
⎪
⎨

⎪
⎧

𝑥𝑥 − 1
𝑚𝑚− 1 , 1 ≤ 𝑥𝑥 < 𝑚𝑚;

1 , 𝑥𝑥 = 𝑚𝑚;
𝑢𝑢 − 𝑥𝑥
𝑢𝑢 − 𝑚𝑚𝜇𝜇𝑎𝑎 � , 𝑚𝑚 < 𝑥𝑥 < 𝑢𝑢

0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒;

� (3)

For defuzzificat ion of risk final amount we can use

center of gravity technique. This technique developed
by Sugeno in 1985. This technique is most commonly
used method and is very accurate. Center of grav ity
technique is described as follows [11-13].

𝑥𝑥∗ =
∫𝜇𝜇𝑖𝑖(𝑥𝑥) 𝑥𝑥 𝑑𝑑𝑥𝑥
∫𝜇𝜇𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥 (4)

x∗ Defuzzy output, x∗ total membership function and
x is output variable.

In this paper we use five factors that described in
Wallace’s work. These factors are user, requirements,
complexity, p lanning and Team. Figure 1 shows the
model. In this model, the final output of the projects
software risks are due to five factors.

Figure 2: Software risk assessment model

1

m

u

𝜇𝜇

fuzzification

Fuzzy
Inference
System

Risk

R
ul

e
B

as
e

U
se

r

R
eq

ui
re

m
en

t

C
om

pl
ex

ity

Pl
an

ni
ng

Te
am

defuzzificat ion

62 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

Output categorize in five category that are very low
risk pro ject (Very Low), Low-risk pro ject (Low),
Medium-risk pro ject (Medium), High-risk project
(High) and very high risk Project (Very High). We
use 3 linguistic variables for each input. Number of
rules generated is equal to 243. We can see some of
generated rules below. According to input data for each
input, one of the rules is activated.

Number of generated rules is equal to 243.
Corresponding Membership functions cut and after
defuzzificat ion, final output calculates.

5.1 Rules description

We have five input and we use 3 linguistic variab les
for each input. Therefore numbers of rules are 243. The
following block of code shows some rules:

Rule 1: If (User is Low) and (Requirement is Low) and

(Complexity is Low) and (Planning is
Low) and (team is Low) then (Risk is Very Low)

Rule 2: If (User is Low) and (Requirement is Low) and
(Complexity is Low) and (Planning is Low) and
(team is Medium) then (Risk is Low)

Rule3: If (User is Low) and (Requirement is Low) and
(Complexity is Low) and (Planning is Low) and
(team is High) then (Risk is Low)

 Rule4: If (User is Low) and (Requirement is Low) and
(Complexity is Low) and (Planning is Medium)
and (team is High) then (Risk is Low)

Rule5: If (User is Low) and (Requirement is Low) and
(Complexity is Low) and (Planning is High) and
(team is High) then (Risk is Low)

Rule6: If (User is Low) and (Requirement is Low) and
(Complexity is Medium) and (Planning is Low)
and (team is High) then (Risk is Low)

Rule7: If (User is Low) and (Requirement is Low) and
(Complexity is High) and (Planning is Low) and
(team is High) then (Risk is Low)

Rule8: If (User is Low) and (Requirement is Medium)
and (Complexity is Low) and (Planning is Low)
and (team is High) then (Risk is Low)

Rule9: If (User is Low) and (Requirement is High) and
(Complexity is Low) and (Planning is Low) and
(team is High) then (Risk is Low)

Rule241: If (User is High) and (Requirement is High)
and (Complexity is High) and (Planning is High)
and (Team is Low) then (Risk is High)

Rule242: If (User is High) and (Requirement is High)
and (Complexity is High) and (Planning is High)
and (Team is Medium) then (Risk is Very High)

Rule243: If (User is High) and (Requirement is High)
and (Complexity is High) and (Planning is High)
and (Team is High) then (Risk is Very High)

Mamdani inference used to implement the fuzzy

inference system. System information is presented in
Table 3. According to table 3 this system has 5 inputs
and 1 output. Inputs are: User Requirement, Project
complexity, Planning and Team. Number of fuzzy
rules that use in this system is 243 and “AndMethod “ is
min also “OrMethod” is max, this mean that and
operator between two numbers select minimum of
numbers and or operator between two number select
maximum of this numbers. Range of each inputs, output
and fuzzy linguistic variable is shown in table 3. For
example: input 2 has 3 membership function named:
Low, Medium and High. Range of Low is 0.0 - 0.33,
Medium is 0.30 – 0.62 and High is 0.57 – 1.0 and type
of membership function is trimf. Also for output
variable that is value of software project risk, there are
five membership function that name and range of them
are: VeryLow [0.0 0.12 0.23], Low [0.20 0.32 0.42],
Medium [0.40 .51 0.62], High [0.60 0.75 0.82] and Very
High [0.80 .91 1.0], type of those membership functions
are trimf and name of this output variable is risk
evaluation in Mamdani inference.

5.2 Membership Function Assignment

The following example illustrates how the
membership grade is assigned to output. The inputs are
fed to the fuzzification module and after fuzzification of
given values we find that user=0.90 belongs to High
membership function, requirement = 0.87 belongs to

TABLE 3: Implementation of fuzzy inference system

Name='RiskEvaluation', Type='mamdani', Version=2.0, NumInputs=5, NumOutputs=1,
NumRules=243, AndMethod='min', OrMethod='max', ImpMethod='min',

AggMethod='max', DefuzzMethod='centroid'
System

Name='User', Range=[0 1], NumMFs=3, MF1='Low':'trimf',[0 0.16 0.33],
MF2='medium':'trimf',[0.30 0.45 0.62], MF3='high':'trimf',[0.57 0.85 1] Input1

Name=’ Requirement ', Range=[0 1], NumMFs=3, MF1='low':'trimf',[0 0.16 0.34],
MF2='medium':'trimf',[0.30 0.45 0.62], MF3='high':'trimf',[0.56 0.85 1] Input2

Name='Complexity', Range=[0 1], NumMFs=3, MF1='low':'trimf',[0 0.16 0.35],
MF2='medium':'trimf',[0.30 0.45 0.62], MF3='high':'trimf',[0.56 0.80 1] Input3

Name='Planning', Range=[0 1], NumMFs=3, MF1='low':'trimf',[0 0.16 0.34],
MF2='medium':'trimf',[0.30 0.40 0.65], MF3='high':'trimf',[0.60 0.85 1.0] Input4

Name='Team', Range=[0 1], NumMFs=3, MF1='low':'trimf',[0 0.16 0.33],
MF2='medium':'trimf',[0.30 0.45 0.62], MF3='high':'trimf',[0.58 0.85 1.0] Input5

Name=' RiskEvaluation ', Range=[0 1], NumMFs=5, MF1='Very_Low':'trimf',[0.0 0.12 0.23],
MF2='Low':'trimf',[0.20 0.32 0.42], MF3='Medium':'trimf',[0.40 .51 0.62],

MF4='High':'trimf',[0.60 0.75 0.82], MF5='Very_High':'trimf',[0.80 .91 1.0]
Output

 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using 63
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

High membership function, complexity=0.64 belongs to
High membership function, p lanning=0.76 belongs to
High membership function and team=0.18 belongs to
Low membership function, so:
Rule#: if (user=0.90) and (requirement = 0.87) and
(complexity=0.64) and (planning=0.76) and (team=0.18)
then (?)

With these input values the following ru le gets fired :
Rule241: If (User is High) and (Requirement is High)

and (Complexity is High) and (Planning is
High) and (Team is Low) then (Risk is High)

The rule gives the output value as High which
indicates the high risk for software project.

Another example of how the membership grade is
assigned to output:

User =0.11 belongs to Low membership function,
requirement = 0.18 belongs to Low membership
function, complexity=0.31 belongs to Low membership
function, planning=0.06 belongs to Low membership
function and team=0.25 belongs to Low membership
function, so:
Rule#: if (user=0.11) and (requirement = 0.18) and
(complexity=0.31) and (planning=0.06) and (team=0.25)
then (?)
With these input values the following ru le gets fired.
Rule1: If (User is Low) and (Requirement is Low) and

(Complexity is Low) and (Planning is Low) and
(Team is Low) then (Risk is VeryLow)

The rule gives the output value as VeryLow which
indicates the VeryLow risk for software pro ject.

5.3 Assessment

The proposed model was implemented for four
projects. Details of these projects are described in table
4.

Table 4: System results for some projects

 Project
1

Project
2

Project
3

Project
4

Team 0.198 0.752 0.988 0.380

Planning 0.134 0.907 0.875 0.537

Complexity 0.089 0.085 0.798 0.434

Requirement 0.165 0.077 0.909 0.614

User 0.251 0.124 0.034 0.555

Risk
Evaluation 0.182 0.798 0.819 0.592

For example in pro ject p1, after fuzzification of

inputs, user factor equals 0.251, requirement factor
equal to 0.165, the complexity factor equals 0.089, the
planning factor is equal to 0.134 and team factor is

equal to 0.198. According to these characteristics, rule 1
gets fired and by defuzzification of fuzzy value with
center of grav ity method, output was equaled to 0.182.
Another example of this table is p3, after fuzzificat ion
of inputs, user factor equals 0.034, requirement factor
equal to 0.909, the complexity factor equals 0.798, the
planning factor is equal to 0.875, and team factor is
equal to 0.988.

After firing the rule and defuzzification of fuzzy
value with center of gravity method, output was equaled
to 0.819

VI. CONCLUSION

In this paper we made short review of risk
management, classificat ion of it and factors that
affecting it and presented an efficient method to
measure software risk using fuzzy logic. This fuzzy
system has 5 inputs and one output. Number of fuzzy
rules in th is system is 243 and each input has 3
membership functions. The presented system is based
on 5 factors: Team, Planning, Complexity,
Requirements and User. Those factors are very
important for managers of software projects. Very
important decisions in software projects are made on
these factors. The presented system was tested on four
projects and risk of the projects was calculated.
Software p roject team can use this information to make
appropriate decisions in order to deal with the project.

ACKNOW LEDGMENTS

This research was partially supported by the
Agricultural Sciences and Natural Resources University
of Gorgan and Mazandaran University o f Sciences and
Technology.

REFERENCES

[1] Lazzerini, Beatrice, and Lusine Mkrtchyan.
"Analyzing risk impact factors using extended
fuzzy cognitive maps." Systems Journal, IEEE 5.2
(2011): 288-297.

[2] Boehm, Barry W. "Software risk management:
principles and practices." Software, IEEE 8.1
(1991): 32-41.

[3] Li, Yang, and Nan Li. "Software project risk
assessment based on fuzzy linguistic multip le
attribute decision making." Grey Systems and
Intelligent Serv ices, 2009. GSIS 2009. IEEE
International Conference on. IEEE, 2009.

[4] H. Barki, S. Rivard, J. Talbot, Toward an
assessment of software development risk, Journal
of Management Information Systems 10 (2), 1993,
pp. 203–225.

[5] R. Schmidt, et al., Identify ing software project
risks: an international Delphi study, Journal o f
Management Informat ion Systems 17 (4), 2001, pp.
5–36.

64 Assessment of Effective Risk in Software Projects based on Wallace’s Classification Using
Fuzzy Logic

Copyright © 2013 MECS I.J . In formation Engineering and Electronic Business, 2013, 4, 58-64

[6] Huang, Sun-Jen, and Wen-Ming Han. "Exploring
the relationship between software p roject duration
and risk exposure: A cluster analysis." Information
& Management 45.3 (2008): 175-182

[7] Bannerman, Paul L. "Risk and risk management in
software projects: A reassessment." Journal of
Systems and Software 81.12 (2008): 2118-2133.

[8] T. DeMarco, T. Lister, Waltzing With Bears:
Managing Risk on Software Projects, Dorset
House Publishing Company, 2003.

[9] Atanassov, Krassimir T. "Intuitionistic fuzzy sets."
Fuzzy sets and Systems 20.1 (1986): 87-96.

[10] Grzegorzewski, Przemysław. "Distances between
intuitionistic fuzzy sets and/or interval-valued
fuzzy sets based on the Hausdorff metric." Fuzzy
Sets and Systems 148.2 (2004): 319-328.

[11] Wang, Zhoujing, Linfeng Wang, and Kevin W. Li.
"A linear programming method for interval-valued
intuitionistic fuzzy mult iattribute group decision
making." Control and Decision Conference
(CCDC), 2011 Chinese. IEEE, 2011.

[12] Wei, Guiwu. "Some arithmet ic aggregation
operators with intuitionistic trapezoidal fuzzy
numbers and their application to g roup decision
making." Journal of Computers 5.3 (2010): 345-
351.

Ali Yavari received his Master of
Science degree in Informat ion
Technology from Mazandaran
University of Science and
Technology (MUST) and works on
Software Complexity in agent-
oriented Software development.
His research interests include fuzzy

sets and systems, neural networks, fuzzy neural
networks, clustering and classification algorithms in
data mining, software risk and also complexity in aspect
and agent-oriented methodologies.

Maedeh Golbaghi received her
M.Sc. in In formation Technology
Engineering form Mazandaran
University of Science and
Technology (MUST), Mazandaran,
Iran. Her research interests are in
the areas of optimization, software
engineering, data preprocessing,

risk management and fuzzy logic and data mining.

Hossein Momeni is an Assistant
Professor of Software Engineering
in Agricultural Sciences and
Natural Resources University of
Gorgan. He received the B.Sc.
degree in software engineering
from The Ferdowsi University of
Mashhad, Mashhad, Iran and the

M.Sc. and Ph.D. in software engineering from Iran
University of Science and Technology (IUST), Tehran,
Iran. His research interests include distributed system,
real-t ime scheduling, wireless sensor actor networks and
software engineering.

	INTRODUCTION
	RELATED WORK
	CONCEPTS AND DEFINITIONS
	WALLACE’S WORK
	PROPOSED APPROACH
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

