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Abstract— Cuckoo Search (CS) is one of the most 
recent population-based metaheuristics. CS algorithm is 
based on the cuckoo’s behavior and the mechanism of 
Lévy flights. The Binary Cuckoo Search algorithm 
(BCS) is new discrete version used to solve binary 
optimization problem based on sigmoid function. In this 
paper, we propose a new cuckoo search for binary 
multiobjective optimization. Pareto dominance is used to 
find optimal pareto solutions. Computational results on 
some bi-criteria knapsack instances show the 
effectiveness of the proposed algorithm and its ability to 
achieve good quality solutions. 
 
Index Terms— Combinatorial optimization, 
Evolutionary computation, Cuckoo Search, Binary 
Cuckoo Search, knapsack problem, multi-objective 
optimization. 
 

I. INTRODUCTION 

The combinatorial optimization plays a very 
important role in operational research, discrete 
mathematics and computer science. The aim of this field 
is to solve several combinatorial optimization problems 
that are difficult to solve. Generally there is one 
objective to optimize, but often several objectives are 
considered to be optimized, which makes the problem 
hard to resolve, this kind of problem is called multi-
objective optimization problem. Several techniques were 
developed to solve such problems that can be classified 
into three classes; aggregate methods, non Pareto 
methods, and Pareto methods [1]. The Pareto methods 
are widely used, because they give generally good 
solutions. The Pareto methods are based on the notion of 
Pareto dominance, a solution dominates another solution 
if there is a partial order between the objectives of the 
two solutions, given a set of objectives, a solution Pareto 
dominates another if the first is not inferior to the second 
in all objectives, and, moreover, there is at least one 
objective where it is strictly better [1]. 

On the other hand, evolutionary computation has been 

proven to be well appropriate to solve complex 
multiobjective problems. It presents many interesting 
features such as adaptation, emergence, learning and 
parallelism [2]. Evolutionary algorithms are capable to 
explore the Pareto optimal front of multi objective 
optimization problems. They are able to find several 
Pareto-optimal solutions in a single run. Recently, 
solving multiobjective optimization problems and its 
applications using evolutionary algorithms have been 
investigated by many authors [2-3]. 

In recent years, optimizing by swarm intelligence has 
become a research interest to many research scientists of 
evolutionary computation fields. The main algorithm for 
swarm intelligence is Particle Swarm Optimization (PSO) 
[3, 4], which is inspired by the paradigm of birds 
grouping. PSO was used successfully in various hard 
optimization problems. One of the most recent variant of 
PSO algorithm is Cuckoo Search algorithm (CS). CS is 
an optimization algorithm developed by Xin-She Yang 
and Suash Deb in 2009 [5]. It was inspired by the 
obligate brood parasitism of some cuckoo species by 
laying their eggs in the nests of other host birds (of other 
species). Some bird’s host can involve direct conflicts 
with the intruding cuckoos. For example, if a bird’s host 
discovers that the eggs are strange eggs, it will either 
throw these alien eggs away or simply abandon its nest 
and build a new nest elsewhere [6]. The cuckoo’s 
behavior and the mechanism of Lévy flights [7, 8] have 
leading to design an efficient inspired algorithm 
performing optimization search. The recent applications 
of Cuckoo Search for optimization problems have 
shown its promising effectiveness.  

Binary Cuckoo Search (BCS) is new binary 
optimization based on the core of the CS algorithm used 
to cope with binary optimization problems. The main 
difference between the original version of CS algorithm 
and the proposed discrete binary version is that, in the 
original Cuckoo Search, the solution is composed of a 
set of real numbers, while in the proposed discrete 
binary version; the solution is composed of a set of bits. 
The main feature of our approach consists in using a 
sigmoid function and probability model in order to 
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generate binary values. The second aim of this paper is 
to prove that the Cuckoo Search algorithm is effective in 
dealing with binary combinatorial optimization 
problems [9]. 

The aim of this paper is to present an extension of 
BCS to solve multiobjective problems and formulate a 
multiobjective binary cuckoo search (MOBCS) 
algorithm. To validate and prove the performance and 
the effectiveness of our Binary multi-objective Cuckoo 
Search algorithm, we have tested it on some bi-objective 
knapsack problem instances. Experimental results show 
the effectiveness of the proposed algorithm and its 
ability to achieve good quality solutions. 

The remainder of this paper is organized as follows. 
Section 2 presents the knapsack problems formulation. 
An overview of the cuckoo search algorithm is presented 
in section 3. In section 4, the proposed algorithm is 
described. Experimental results are discussed in section 
5, and a conclusion is provided in the sixth section of 
this paper. 
 

II. KNAPSACK PROBLEMS 

The knapsack problem (KP) is an NP-hard problem 
[10]. Numerous practical application of the KP can be 
found in many areas involving investment decision 
making, budget controlling, project selection and so on. 
The knapsack problem can be defined as follows: 
Assuming that we have a knapsack with maximum 
capacity C and a set of N objects. Each object i has a 
profit pi and a weight wi. The problem consists to select a 
subset of objects that maximize the knapsack profit 
without exceeding the maximum capacity of the 
knapsack. The problem can be formulated as: 

∑
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Many variants of the knapsack problem were 
proposed in the literature including the Multiobjective 
Knapsack Problem (MOKP). MOKP is an important 
issue in the class of knapsack problem. It is an NP-hard 
problem [11]. In the MOKP, each item xi has two or 
many profits k

i
p  where k is the number of profit. In 

MOKP, we can have a single knapsack to fill or M 
knapsacks of capacity Cj (j = 1 ... M). Each xi has a 
weight wij that depends of the knapsack j (example: an 
object can have a weight 3 in knapsack 1, 5 in knapsack 
2, etc.). A selected object must be in all knapsacks. The 
objective in MOKP is to find a subset of objects that 
maximize the different profit function without exceeding 
the capacity of all dimensions of the knapsack. In our 
case, we have not only one solution, but a set of Pareto 

optimal solutions; bi-criteriaMOKP can be stated as 
follows: 
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Clearly, there are 2N potential solutions for these 
problems. It is obviously that multi-objective knapsack 
problem is a hard combinatorial optimization problem. 
Consequently, several techniques have been proposed to 
deal with knapsack problems. However, it appears to be 
impossible to obtain exact solutions in polynomial time. 
The main reason is that the required computation grows 
exponentially with the size of the problem. Therefore, it 
is often desirable to find near optimal solutions to these 
problems. In this paper, we are interested by applying 
Binary Cuckoo Search algorithm to solve these 
problems. 
 

III. CUCKOO SEARCH AND BINARY CUCKOO 
SEARCH ALGORITHMS 

In order to solve complex problems, ideas gleaned 
from natural mechanisms have been exploited to 
develop heuristics. Nature inspired optimization 
algorithms has been extensively investigated during the 
last decade paving the way for new computing 
paradigms such as neural networks, evolutionary 
computing, swarm optimization, etc. The ultimate goal 
is to develop systems that have ability to learn 
incrementally, to be adaptable to their environment and 
to be tolerant to noise. One of the recent developed 
bioinspired algorithms is the Cuckoo Search (CS) [5] 
which is based on life style of Cuckoo bird. Cuckoos use 
an aggressive strategy of reproduction that involves the 
female hack nests of other birds to lay their eggs 
fertilized. Sometimes, the egg of cuckoo in the nest is 
discovered and the hacked birds discard or abandon the 
nest and start their own brood elsewhere. The Cuckoo 
Search proposed by Yang and Deb in 2009 [5] is based 
on the following three idealized rules: 

• Each cuckoo lays one egg at a time, and dumps 
it in a randomly chosen nest; 

• The best nests with high quality of eggs 
(solutions) will carry over to the next 
generations; 

• The number of available host nests is fixed, and 
a host can discover an alien egg with a 
probability pa ∈ [0, 1]. In this case, the host bird 
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can either throw the egg away or abandon the 
nest so as to build a completely new nest in a 
new location. 

The last assumption can be approximated by a 
fraction pa of the n nests being replaced by new nests 
(with new random solutions at new locations). 

The generation of new solutions 1+t
ix  is done by 

using Lévy flights (equation.6). Lévy flights essentially 
provide a random walk while their random steps are 
drawn from a Lévy distribution for large steps which has 
an infinite variance with an infinite mean (equation.7). 
Here the consecutive jumps/steps of a cuckoo essentially 
form a random walk process which obeys a power-law 
step-length distribution with a heavy tail [5]. 

                                     (6) 

   31 ≤< λ                                         (7) 

Where
1+t

ix and 
t
ix  represent the solution i at times 

t+1 and t, respectively.α > 0 is the step size which 
should be related to the scales of the problem of interest, 
generally we take α  = 1. The product⊕means entry-
wise multiplications. This entry-wise product is similar 
to those used in PSO, but here the random walk via Lévy 
flights is more e fficient in exploring the search space as 
its step length is much longer in the long run. The 
generation of Levy step size is often tricky, and a good 
algorithm is Mantegna's algorithm [5]. The main 
characteristic of CS algorithm is its simplicity. In fact, 
comparing with other population or agent-based 
metaheuristic algorithms such as particle swarm 
optimization and harmony search, there are few 
parameters to set.  The applications of CS into 
engineering optimization problems have shown its 
encouraging efficiency. For example, a promising 
quantum inspired cuckoo search algorithm is recently 
proposed to solve knapsack problems [12]. An efficient 
computation approach based on cuckoo search has been 
proposed for data fusion in wireless sensor networks 
[13]. The basic steps of cuckoo search algorithm are 
presented in a pseudo code shown in Figure 1. 

Objective function f(x),x =(x1,.., 
xd)

T ; 
Initial a population of n host nests xi 
(i = 1, 2, ..., n); 

while (t < MaxGeneration) or (stop 
criterion); 

• Get a cuckoo (say i) randomly by 
Lévy flights; 

• Evaluate its quality/fitness Fi; 
• Choose a nest among n (say j) 
randomly; 

• if (Fi > Fj), 
Replace j by the new solution; 
end 

• Abandon a fraction (pa) of worse 
nests 

• build new ones at new locations via 
Lévy flights; 

• Keep the best solutions (or nests 
with quality solutions); 

• Rank the solutions and find the 
current best; 

end while 

 
Figure. 1. Cuckoo Search algorithm. 

 
Recently, a binary version of CS is proposed in [9] 

called BCS. BCS uses the sigmoid function in order to 
generate binary solutions. The BCS architecture contains 
two essential modules. The first module contains the 
main binary cuckoo dynamics. This module is composed 
of two main operations: Lévy flights and binary solution 
representation operations. These two operations combine 
the Cuckoo Search algorithm and the Sigmoid function 
to obtain a Binary Cuckoo Search. In the first operation, 
Lévy flight is used to get a new cuckoo. In the second 
operation, the Sigmoid function is used to calculate the 
flipping chances of each cuckoo. Then, the binary value 
of each cuckoo is computed using their flipping chances. 
The second module contains the objective function and 
the selection operator. The selection operator is similar 
to the elitism strategy used in genetic algorithms. 
 

IV. THE PROPOSED MULTIOBJECTIVE BINARY 
CUCKOO SEARCH ALGORITHM (MOBCS) 

In order to deal with the multiobjective 
optimization problems with K different objectives 
function, we have modified the standard BCS algorithm; 
we have added the notion of the dominance in order to 
select the best solutions. The main steps of the proposed 
algorithm are described in figure 2. 

Like any other population-based metaheuristics, the 
first step in the MOBCS algorithm involves setting the 
parameters for the algorithm. The main advantage of the 
MOBCS algorithm is that there are fewer parameters to 
be set in this algorithm than in PSO. In MOBCS, there 
are essentially two main parameters to initialize, 
population size N and a fraction pa of the worst nests to 
be rejected and replaced. In the second step, a swarm of 
N host nests is created to represent some possible 
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solutions. However, it should be noted that in order to 
reduce the convergence time, it is recommended to start 
with a diverse population containing both good and bad 
solutions. For this purpose, we can use some heuristics 
to build good initial solutions. A Pareto archive is 
created containing non-dominated solutions. The Pareto 
frontier is the set of points from feasible region F that 
are not strictly dominated by any other point in F. The 
dominance relation is defined as follow: 

Let Fxx ∈21 , , and F is a feasible region of 
solutions.  We say that x1 dominates x2 if )( 1xf  is said 
to be partially greater than )( 2xf , i.e.  

nixfxf ii ,...,2,1),()( 21 =∀≥  

And              nixfxf ii ,...,2,1),()( 21 =∃> , 

If there is no Fx∈  that dominates 1x , then 1x  is 
called Pareto optimal solution. 

The algorithm progresses through a number of 
generations according to the MOBCS dynamics. During 
each iteration, the following main tasks are performed. 
A new cuckoo is built using the Lévy flights operator. 
The Lévy flight provides a random walk that consists of 
taking successive random steps in which the step lengths 
are distributed according to a heavy tailed probability 
distribution. The next step is to evaluate the current 
cuckoo. For that, we apply the sigmoid function to get a 
binary solution which represents a potential solution for 
the binary optimization problems. After this step, we 
update the Pareto archive containing the non-dominated 
solutions. In our algorithm, in order to generate the next 
population, we have used an aggregate function of the 
objective function in order to rank the solutions of the 
current population. The process is repeated until the 
final condition is met.  
 
Input: N and pa  
Output: the last best solution 

Objective function f(x), x =(x1,.., 
xd)

T ; 
Initial a population of N host nests xi 
(i = 1, 2, ..., N); 
Construct the Pareto archive 

while (t < MaxGeneration) or (stop 
criterion){ 

• Get a cuckoo (say i) randomly by 
Lévy flights; 

• Evaluate its quality/fitness Fi; 
• Update the Pareto archive 
• Abandon a fraction (pa) of worse 
nests according to aggregate 
function; 

• Build new ones at new locations via 
Lévy flights; 

• Evaluate the new population; 
• Update the Pareto archive 
} 

 
Figure. 2. Multiobjective Binary Cuckoo Search. 

V. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The proposed MOBCS algorithm was implemented 
in Matlab 7. To assess the efficiency and performance of 
our algorithm (MOBCS), several experiments were 
performed. The used instances are dived into three 
classes: small tests, medium tests, and large instances 
and containing two objectives and one constraint. The 
instances are created randomly with different problem 
sizes, in which the weights and profits are selected 
randomly. Each instance is called BoknapN_x where N 
is the number of items taken in the range 50 to 3000, and 
x is the test number. In these instances, the knapsack 
capacity is calculated by using the following formula: 

   ∑
=

=
N

i
iwC

04
3

                                                                                             (8) 

In all experiments, the parameters of cuckoo search 
algorithm are set as follows: The size of initial 
population N= 40; the maximum iteration number is 
chosen in the range [2000, 50000], 2000 iterations for 
small instances and 50000 iterations for hard instances; 
the discovery rate Pa=0.25. 

The results are summarized in the following tables (1, 
2, and 3), the first column is the test name, and the 
second is the non-dominated optimal solutions, where 
the last column is the mean of the non-dominated 
solutions. As we have noted, the proposed approach is 
able to find good non-dominated solutions compared to 
the initial solutions. The figures 3, 4, 5, 6 and 7 show an 
example of Pareto optimal solutions, the red points are 
the non-dominated solutions and the green ones are the 
dominated solutions.  
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Figure 3.Optimal front pareto for instance Boknap100_01. 
 
 
 
 

 
 

Figure 4. Optimal front pareto for instance Boknap500_01  
 
 
 

 
TABLE 1. Results for small instances 

 

Instance Pareto final Pareto Front mean 

Boknap50_1 {(1060,1121) (1116,1092) (1097,1099) (1087,1100)} (1090,1103) 

Boknap50_2 {(1233,1058) (1256,1011)} (1244.5, 1034.5) 

Boknap50_3 {(1042,1022) (974,1056) (994,1040) (989,1042)} (999.7, 1040) 

Boknap50_4 {(1083,1141) (1025,1142) (995,1155)} (1034.3, 1146) 

Boknap100_1 {(2178,2158)(2205,2087)(2209,2079) (2210,2003)} (2081.8, 2200.5) 

Boknap100_2 {(2081,2000) (1981,2004) (2132,1888) (2119,1962)} (2078.3, 1963,5) 

Boknap100_3 {(2227,1986) (2234,1960) (2126,1987) (2038,1991)} (21563, 1981) 

Boknap100_4 {(2133,2306) (2182,2145) (2178,2165) (2148,2235)} (2160.3, 2212.8) 

Boknap200_1 {(3994,4165) (4074,4011) (3995,4050) (4056,4024)} (4029.8, 4062.5) 

Boknap200_2 {(4158,4191) (4041,4199) (4017,4211) (4167,4130) (4168,4092)} (4110.2, 4164.6) 

Boknap200_3 {(4109,4209) (4125,4183) (3971,4219) (4126,4129) (3919,4231)} (4050,4194.2) 

Boknap200_4 {(4112,3936) (4176,3715) (4144,3799) (4034,3965) (3991,3982)} (4091.4, 3879.4) 
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TABLE 2. Results for medium instances 
 

Instance Pareto final Pareto Front 
mean 

Boknap500_1 {(10152,9810)(10210,9719)(10246,9431)    
(10133,9818)(10215,9570)(10081,9872)} (10173,9703.3) 

Boknap500_2 {(10054,10064)(10147,9829)(9808,10114)} (10003,10002) 

Boknap500_3 {(10048,9665)(9936,9668)(10145,9423)} (10043,9585.3) 

Boknap500_4 {(101399,10240)} (10139.9 ,10240) 

Boknap700_1 {(14400,13740)(13795,13834) (13891,13788)} (14029,13787) 

Boknap700_2 {(14049,13857)} (14049,13857) 

Boknap700_2 {(13878,14190)(13560,14198)(14028,13486) 
(13960,13697)(13915,13973)} (13868,13909) 

Boknap700_4 {(14231,13867)(13284,13870)} (13758,13869) 

Boknap1000_1 
{(19878,19497)(19672,19779)(19718,19626) 
(20052,19307)(19418,19783)(19692,19659) 

(19775,19520)(19954,19330)} 
(19770,19563) 

Boknap1000_2 {(19239,19336)(19283,18929)(19318,18923) 
(18762,19354)(18669,19606)} (19054,19230) 

Boknap1000_3 {(19905,19247) (19920,18955)(19092,19340) (19355,19323)} (19568,19216) 

Boknap1000_4 {(19364,19907)(18902,10018)(18914,19933)} (19060,19953) 

Boknap1200_1 {(24302,23963)(23914,23980) (24303,23488)} (24173,23810) 

Boknap1200_2 {(23044,24015)(22703,24398)} (22874,24207) 

Boknap1200_3 {(23293,23405)(23085,23500) 
(23051,23644) (23470,23235)} (23225,23446) 

Boknap1200_4 {(23807,23400)(23843,22950) (22950,22912)(23559,23465)} (23790,23182) 
 
 

Table 3. Results for large instances 
 

Instance Pareto final Pareto Front 
mean 

Boknap1500_1 {(29285,29761)} (29285,29761) 

Boknap1500_2 {(28748,29769) (29089,29506) (29086,29515)} (28974,29597) 

Boknap1500_3 {(30548,28853)(30006,28890)} (30277,28872) 

Boknap1500_4 {(28792,19344) (28902,28091) (28878,29213) (28216,29454) 
(28177,29649) (28477,29452)} (28574.4, 29367) 

Boknap2000_1 {(39618,38126)(39455,38351)} (39537,38239) 

Boknap2000_2 {(39317,39330)} (39317,39330) 

Boknap2000_3 {(38961,39615) (38912,39636) (39050,39005) (39120,38876) 
(38967,39207)} (39002,39268) 

Boknap2000_4 {(38964,39322) (38069,39650) (39165,38753) (38683,39411)} (38720,39284) 

Boknap3000_1 {(59147,58171)(58136,58497)} (58462,58334) 

Boknap3000_2 {(58938,57794) (58462,57838) (58009,58167) (58039,57849)} (58362,57912) 

Boknap3000_3 {(57881,58839)} (57881,58839) 

Boknap3000_4 {(58581,59576) (58314,60255)} (58448,59916) 
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Figure 5. Optimal front pareto for instance Boknap1000_01 
 
 

 
 

Figure 6. Optimal front pareto for instance Boknap2000_01  
 
 

 
 

Figure 7. Optimal front pareto for instance Boknap3000_01.  
 

VI. CONCLUSION 

In this work, we have presented a new Multi-
objective binary Cuckoo Search algorithm called 
(MOBCS). The main feature of our approach consists in 

using of sigmoid function and probability model in order 
to generate binary solutions. Moreover, the Pareto 
dominance is integrated in the standard algorithm BCS 
in order to find the non-dominated optimal solutions. To 
evaluate and prove the performance and the 
effectiveness of the proposed algorithm MOBCS, we 
have applied and tested it on some MOKP instances. 
The experimental studies prove the feasibility and the 
effectiveness of our approach. Indeed, in the all the 
cases MOBCS is able to find the Pareto optimal 
solutions. However, there are several issues to improve 
our algorithm. For example, in order to improve the 
performance of our algorithm, it is better to integrate 
other selection based Pareto operations. 
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