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Abstract—A method is introduced in this paper, which 
promotes automated bug localization. It is based on 
the combination of two bug localization techniques, 
Non-Parametric Statistical Debugging and Backward 
Slicing. The proposed method, computes some vectors 
(called execution vectors) based on the status of each 
basic-block’s execution in running of test-cases. 
According to the behavior of each basic-block in failed 
test-cases and passed ones, two likelihoods are 
computed and regards to them, basic-b locks become 
prioritized. At last static slice of p rogram and dynamic 
backward slice for one failed test-case are computed. 
While seeking for faulty statement in ranked 
basic-blocks, the method either returns the 
basic-block’s statements in the static backward slice or 
the part of it  presented in the computed dynamic 
backward slice. NPSS has been applied on the 
Siemens test suite, space, grep and gzip. Our 
experimental study shows the accuracy and 
effectiveness of the method in accurate bug 
localization. 
 
Index Terms—Bug, Bug Localizat ion, Program 
Backward Slicing, Statistical Debugging, 
Non-Parametric Statistical Relations. 
 

I. INTRODUCTION 

Despite of all progresses in programming languages 
and test processes, there are bugs in software that bother 
its consumers and developers. Software debugging is 
one of the most important software lifecycle phases. It 
contains bug localization and bug correction [1]. After 
software delivery, costumers’ feedback can help  
developers to find out which functionality encountered 
problems. They collect a number of positive or negative 
feedbacks [2]. Positive feedbacks play “passed 
test-cases” role and negative ones called “failed  
test-cases” in debugging process. Based on the fact that 
manual bug localization in software (especially in large 
ones) is a  t ime-consuming process, using techniques to 
automate it, has become necessary. There are a lot of 
researches have been done in this area. Among them, 
three categories have been successful. These categories 
are Statistical Debugging [3][4][5][6][7], Program Slicing 
[2][8][9][10][11][12][13][14][15] and Delta Debugging [16][17][18]. 

All of them have their advantages and disadvantages. 
Statistical Debugging uses a large number of test-cases 
to study the behavior of statements. The difference 
between execution of a statement in failed test-cases and 
its execution in passed ones helps us to decide about its 
status of being faulty or non-faulty [3][4][5][6]. These 
methods use code instrumentation. Code instrumentation 
is the process of adding some extra code to the program 
to keep track of program execution. Interested points of 
instrumentation are usually  predicators. Predicators 
contain conditional statements, return statements, loop’s 
conditions and so on. After collecting data from 
test-cases, some statistical relations will be applied  on 
them and statements become ranked [3][4][5][6]. It’s 
obvious that all executed statements don’t have 
influence on the output of program and we can ignore 
them while seeking for fau lty statements. 

Another techn ique which  cont ributes to localize 
program bug, is Program Slicing . Program Slicing  
introduced by Weiser [8]. The main idea o f p rogram 
slicing was finding all possible statements that could 
have affect on a statement so it  used static dependence 
graph. Obviously the statement which doesn’t execute in  
a failed  run could not have any influence on program 
failure. So the idea of Dynamic Program Slicing was 
emerged [9] that computes all executed statements that 
have in fluence on one statement . It uses dynamic 
dependence g raph and results in a s maller set o f 
statements. As the wrong output should have been  
affected by the faulty statement, for finding the fau lty 
statement it’s enough to compute dynamic backward  
slice for the wrong output where bug appears. However, 
it’s not always true. Sometimes, the fau lty statement 
(program bug) changes the path of execut ion so the 
wrong output doesn’t have been affected by it. Forward  
and Relevant Slicing were introduced to overcome this 
prob lem [10][19][20]. Us ing just one failed test -case, 
dynamic program slicing generates a relatively large set 
of statements. So some methods have developed based 
on intersection, union and etc of program slices such as 
dicing [11], mult iple point slicing [10], chopping [12][13] and 
other techn iques in troduced in [14] [15][21] to reduce 
suspicious statements. Delta Debugging is the last 
category described in this paper. This method is based 
on finding the min imum set of failure inducing inputs. 
After finding this set, it computes forward dynamic slice 
for th is set and the computed slice contains fau lty  
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statement [16][17][18]. As this method is irrelevant to our 
work, we remain the subject for some who are interested 
in it. The technique proposed in this paper is based on 
Statistical Debugging and takes advantage of Program 
Slicing to reduce the number o f suspicious statements. 

In the introduced method, with the aid of some 
non-parametric statistical relat ions, the most important 
problem with statistical debugging techniques, needing a 
large number of failed  and passed test-cases, has 
dimin ished. The other problem is that these methods 
can’t find the origin of failu re because they study 
predicates and therefore identify the area near the fault. 
So by applying program slicing this defect has 
eliminated. As said before, p rogram slicing generates a 
large set of statements and there is no ranking method to 
prioritize its statements. However, two ranking methods 
have introduced on the subject [2][20], but neither of them 
can solve the problem efficiently and the problem with 
large set of statements still bothers debuggers. These 
problems inspired us to develop a new method which  
combines these two methods and prioritize the 
statements of slices using a statistical relation applied  on 
them. The proposed method mainly contains four 
phases: 
1. At first, the source code is instrumented. 
2. Then the instrumented program executes with a 

limited number of test-cases (both failed  and 
passed ones). The result of program execution 
saved into vectors. Each vector’s element is the 
status of a basic-block’s execution. 

3. According to non-parametric relations introduced 
in our previous work [22], each element will 
become prioritized. After that, statements will be 
studied in order of their corresponding basic-blocks 
rank. 

4. Dynamic Backward Slice for the output statement 
of a failed  execution  and Backward  Static Slice for 
the program will be computed. While seeking the 
faulty statement, the method either returns the part 
of basic-block’s statements presented in the static 
backward slice of output statement or just its 
statements presented in dynamic backward slice. 

 
The subjects exp lained in this paper are organized as  

follows. In section 2 our mot ivations are ment ioned, in  
section 3 and 4 we exp lain NPSS phases and the result 
of our experimental results on some midd le and large 
size programs. In part 5 the conclusion and future 
studies are described. 
 

II. OUR MOTIVATIONS 

As described in the previous section, our motivations 
are summarized as bellows:  
1. As it’s possible that there is not enough large set of 

test-cases, we were to find a method to help 
localize program bugs, using only few numbers of 
test-cases.  

2. Using statistical debugging causes to find the area 

of the origin of the failure and therefore debugger 
had to search statements for find ing the bug 
manually. It’s clear that there are lots of statements 
irrelevant to program failure that should be 
considered. Using program slicing, this problem 
could be solved. So, we decided to  combine them 
into a new method.  

3. According to the fact that the slice size is large, we 
find it suitable to rank the slice statements 
according to their likelihood of being faulty.  

4. Program slicing is a relat ively t ime-consuming 
process. Therefore, computing backward slices for 
even a limited number of test-cases, takes long, 
especially for large programs. This method focuses 
on statistical debugging more than program slicing 
and computing dynamic backward slice fo r just 
one failed execution.  

5. Focusing on statistical debugging rather than 
program slicing, helps to find more relevant bugs, 
too. 

 

III. NPSS METHOD 

In this section, the steps of NPSS are described in  
details. Before describing how NPSS works, it’s 
necessary to explain some basic defin itions.  

3.1. Basic Definitions  

Basic-Block: are maximal sequences of consecutive 
instructions with the properties that (1) the flow of 
control can only enter the basic block through the first 
instruction in the block. That is, there are no jumps into 
the middle of the block and (2) Control will leave the 
block without halting or branching, except possibly at 
the last instruction in the block [23]. 

Program Dependency Graph: depicts the flow of 
informat ion (contains data informat ion and control 
informat ion) among the attribute instances in a 
particular parse tree; an edge from one attribute instance 
to another means that the value of the first is needed for 
computing the second [9][23]. Fig. 1 shows a piece of code 
and its Dependency Graph. Solid lines show control 
dependencies and dotted lines show data dependencies. 
 

 
Figure 1. Dependency graph for a piece of code 

 
Program Static Back ward Slicing: is the process of 



10 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS)  

Copyright © 2012 MECS                     I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14 

finding all the program statements that can affect a 
statement directly or indirectly [8]. To do so, Program 
Dependency Graph should be traversed backward from 
that statement we want to compute its slice. 

Program Dynamic Back ward Slicing: is the process 
of finding all program statements that certainly affect a  
statement direct ly or indirect ly in a certain program 
running [9]. The dynamic backward slice for a statement 
in a certain run contains all statements in its static slice 
that have executed in that running.  

3.2. How does NPSS work? 

As said in section 1, NPSS has four main  phases. In  
this section each of these phases are addressed in details. 

Code Instrumentation and Computing Execution 
Vectors: Regards to the fact that NPSS needs to keep 
track of basic-blocks execution in various running 
test-cases, we use an integer array with size of the 
number of p rogram’s basic-blocks. If the basic-block bi is 
executed in an especial test-case’s running, rj, the i-th 
element of rj’s execution vector will be assigned to 1. 
Having the value equal to 0 for i-th element in a running 
execution vector, means that the basic-blocks bi didn’t 
execute in that running. Fig. 2 shows an instrumented 
version of code has shown in Fig. 1 and computed 
execution vectors for three test-cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. An example of code instrumentation and 

computing execution vector 
 

Somet imes the faulty code doesn’t cause failure; rather 
it just causes an Error [1]. To  make more accurate 
measurements, we have eliminated common execution 
vectors in failed and passed test-cases from passed set. If 
an execution vector is common in  two sets, we assume 
that in passing run, an error has occurred that didn’t  affect  
the output. So we eliminate this execution vector from 
passed execution vectors’ set.  

Ranking Basic-Blocks: In this phase, we use a similar 
strategy in Fuzzy-Slice [22]. For the ranking of 
basic-blocks, two  likelihoods of being fau lty/ correct 
should be computed. As described in [22], we introduced 
two Likelihood of Being Faulty (LBF) and Likelihood of 
Being Correct (LBC) for each basic-block b as bellows: 

ibLBF is the amount of the contribution of 
basic-block bi to failures and is computed using (1). 
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Consider N as the number of failed test-cases. 
ibLBC in a similar manner, is the amount of the 

contribution of basic-block bi to passed executions and is 
computed using (2). 
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Consider N as the number of passed test-cases. 
It’s clear that how much a basic-block is executed in 
more failed test-cases and less passed test-cases, the 
likelihood of containing faulty statement increases. So 
(3) for each basic-block bi is hold: 
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We can convert (3) to (4) using a constant 
multip licat ion: 
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Where c is a constant. In many test-cases, it has 
been seen that an assumed basic-block, bi, is executed 
in a few number of failed test-cases and in none of 
passed test-cases. In such situations 

ibScore is a very 
large amount while it  shouldn’t be. So we compute c 
as the difference between LBF and LBC. Regards to c, 
(4) is changed to (5). 
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ibScore for all basic-b locks, is the metric for ranking  

them. How much 
ibScore  is greater, the likelihood of 

containing faulty statement is greater. So the output of 
this phase is a sorted list of basic-blocks according to 
their likelihood of capturing faulty statement. 

Program Slicing: The result of previous phase is an 
ordered list of basic-blocks. We can study basic-blocks’ 
statements in a backward manner to find program bug. 
But is it necessary? The answer is clearly, “NO”. We can 
reduce the number of suspicious statements using 
Program Slicing. In order to do so, in this phase, we can 

bb[0] = 1; 

read(n); 

int mean = 0; 

for (int i=0; i<n; i++,bb[1]=1) 

{ 

 bb[2]=1; 

 mean += read(num); 

} 

bb[3] = 1; 

mean /= n; 

write(mean); 

input (n)      Computed Execution Vector 
0                     [1,0,0,1] 
1                     [1,1,1,1] 
2                     [1,1,1,1] 
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compute Dynamic Backward Slice for the wrong output 
for a failed execution. There are two possible situations:  
1. Bug presents in dynamic backward slice of the 

wrong output. 
2. Bug doesn’t present in the slice because of the fact 

that bug causes to a wrong path and probably it 
didn’t affect p rogram output (relevant fau lt) 
[15][19][20]. In such cases, the whole statements 
of basic-block should be considered. Instead of 
considering the whole basic-block’s statements, we 
use static backward slice of wrong output. So 
program’s bug is captured with high probability in  
a smaller set.  

In NPSS, we compute both of dynamic and static 
backward slices of wrong output. If dynamic backward 
slice is not empty for a basic-block, bb, NPSS returns 
statements of bb which have presented in computed 
dynamic slice and otherwise it returns the statements 

of bb have presented in computed static slice. 
 

IV. EXPERIMENTAL RESULTS 

To measure the accuracy of NPSS in accurate bug 
localization, we use several programs and compare its 
results with some well-known bug localization 
methods in statistical bug localization.  

Our selected programs are Siemens Suite programs 
taken from Software Repository Infrastructure (SIR) 
[23]. This suite has seven middle sized programs: tcas, 
print-tokens, print_tokens2, replace, schedule, 
schedule2 and tot_info. To evaluate our work more 
accurate, we use three large size programs: gzip, grep 
and space. These programs are availab le at SIR, too. 
Table 1 shows their properties. 

 

Table 1. Siemens suite programs’ propert ies 

 
In the rest of this section we briefly describe 

statistical bug localization techniques namely 
Cooperative Bug Isolation [6], Tarantula [3], Sober [4], 
Fault Localization through Evaluation Sequences [7]. 
We also describe Fuzzy-Slice [22] and then their 
comparisons with NPSS are illustrated. In our 
experiment results we d idn’t have excluded versions 

with empty fault matrixes and total number of bugs is 
considered. 

4.1. Cooperative Bug Isolation (CBI) 

This  method  is  bas ed  on  two  condit ional 
probabilit ies introduced by Liblit [5]. These values are 
Context (p) and Failure (p) for each predicate, p, and 

Program Name Number of 
Faulty Versions 

LOC Number of 
Test-cases 

Program Description 

tcas 41 138 1608 altitude separation 

print_tokens 7 402 4130 lexical analyzer 

print_tokens2 10 483 4115 lexical analyzer 

replace 32 516 5542 pattern substituter 

schedule 9 299 2650 priority scheduler 

schedule2 10 297 2710 priority scheduler 

tot_info 23 346 1052 statistic computation 

 
 

grep-2.2-v1 

v3  
 

5 

 
 

11826 

 
 

199 

 
 

pattern matcher 
v6 
v10 
v11 
v14 

 
 

  gzip-1.2-v4 

v2  
 

6 

 
 

5166 

 
 

214 

 
 

file compressor 
v4 
v5 
v14 
v15 
v16 

space 38 6199 158 ADL interpreter 
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are computed as bellows: 

( ) ( )Context p P program fails p is evaluated=
      (6) 

( ) ( )Failure p P program fails p is evaluated as True=
     (7) 

Predicates ranking is done according to the 
difference between these values. Comparison of NPSS 
and Cooperative Bug Isolation has shown in Fig. 3. 

4.2. Sober 

Cooperative Bug Isolation can’t find program’s bug 
when predicate p is evaluated True in all of the 
executions. Sober [4] eliminated the problem by taking 
to account both of failing and passing executions. In 
Sober two d istributions of f (θ|passing executions) and 
f (θ|failing executions) for each predicate p, is 
computed. In these distributions θ is head probability. 
It uses these distributions to evaluate bias of predicate 
p. The evaluation b ias for p considered as nf/nt+nf  
that nf  shows the number of t imes that p is evaluated 
as false and nt shows the number of t imes that p is 
observed. Two distributions are computed for failing 
and passing runs and the difference between them is 
considered as predicates’ rank. Fig. 3 shows the 
comparison of NPSS with Sober. 

4.3. Tarantula 

Tarantula is another statistical bug localizat ion 
method [3]. It  ranks all the statements of program 
regards to relation 8. 

% ( )( )
% ( ) % ( )

passed sscore s
passed s failed s

∝
+            (8) 

Notice to the fact that this time how much this score 
is higher, it’s dedicated that the statement s is healthier. 
passed(s) shows the percentage of passed executions 
and failed(s) shows the percentage of failed executions 
that s is executed in. Comparison of our work and 
tarantula is presented in Fig. 3, too. 

4.4. Fault Localization through Evaluation Sequences 
(DES) 

This method presented in [7] first converts each 
combinational condition to some simple conditions. So 
each simple condition is inspected lonely. Ranking 
simple conditions is like Sober [4]. It uses Sober’s 
biases for each simple condit ion and the difference 
between the behaviors of it in failed and passed 
executions, reveals program fault. Comparison of 
NPSS and this method is presented in Fig. 3. 

4.5. Fuzzy-Slice 

Fuzzy-Slice, computes the backward  dynamic slices 
of mult iple failing and passing runs, assuming that few 
of them are availab le, and also introduces an execution 
vector space where each single run is considered as an 
execution point in that. Using Fuzzy C-means 
clustering in addition to a novel ranking and pruning 

technique, it prioritizes statements to help find the 
origin of failure [22]. Since in Fuzzy-Slice we excluded 
tot-info, comparison of Fuzzy-Slice and NPSS is 
shown in Fig. 4 according to the percentage of located 
fault rather than their number. 

Table 2 illustrates the result of our experiments on 
large programs namely grep, gzip  and space. In this 
table the percentage of code inspection to localize 
program fault (%), presented by CI and the number of 
inspected statements presented by IS. As said before, 
we didn’t have excluded those versions with empty 
fault matrix from our investigation. In space program, 
five versions have empty fault matrixes. 

In Table 2 we also present maximum, min imum and 
average number of inspected statements (ISs) for 
localizing program bug. As it is shown in  this table, in 
the worst case, in space program, we just need to 
inspect only about 3 percentage of code to find the 
faulty statement. In  our best performance, in  grep 
program, the amount of IS is less than 0.01 percentage 
of code (0.0084%). In average, NPSS can localizebug 
in about 0.5 percentage of code. 
 

 
Figure 3. An Comparison of NPSS and Cooperative Bug 
Isolation (CBI), Sober, Tarantula and DES on Siemens 

Suite 
 

 
Figure 4. Comparison of NPSS and Fuzzy-Slice on 

Siemens Suite  
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Table 2. Result of NPSS on grep, gzip and space 

Program Number of 
Faulty 

Versions 

Max IS  
(% of 
LOC) 

Min IS 
(% of LOC) 

Mean IS 
(% of LOC)  

#Located 
Faults with 

CI<1% 
 

#Located 
Faults with 

CI<10% 

grep-2.2-v1 5 109 (0.9%) 1 
(0.0084) 

26 
(0.21%) 

5 5 

gzip-1.2-v4 6 141 
(2.7%) 

7 
(0.13%) 

30 
(0.57%) 

5 6 

space 38 200  
(3.2% ) 

1 
(0.016%) 

32 
(0.51%) 

26 31 

 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we introduced a new method called  
NPSS. It combines statistical debugging and program 
slicing to localize program bugs. Considering 
basic-blocks, even large programs produce small 
execution vectors. NPSS applies non-parametric  
statistical relations on each basic-block to compute the 
likelihood of containing faulty/correct statements. After 
ranking basic-blocks, static backward slice of program 
and also dynamic backward slice of one failed test-case 
are computed. Statements of higher prio rity basic-blocks, 
should be inspected sooner. Instead of inspecting the 
whole statements, NPSS returns basic-blocks statements 
that are presented in dynamic backward slice if there is 
any and otherwise it assumes that bug causes relevant 
error and doesn’t appear in dynamic slice and so returns 
it’s statements presented in static backward slice. 
Applying NPSS on Siemens test suite, space, grep and 
gzip shows that it outperforms the other methods. We 
want to categorize statements according to their 
correlation and prioritize these categories instead of 
basic-blocks for future studies and also reduce the 
number of categorized statements that should be 
inspected using some heuristic methods such as genetic 
algorithms. 
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