
I.J. Information Engineering and Electronic Business, 2013, 2, 8-14
Published Online August 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijieeb.2013.02.02

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

A Non-Parametric Statistical Debugging
Technique with the Aid of Program Slicing

(NPSS)

Farzaneh Zareie, Saeed Parsa
Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Email: farzaneh_zareie@comp.iust.ac.ir, parsa@iust.ac.ir

Abstract—A method is introduced in this paper, which
promotes automated bug localization. It is based on
the combination of two bug localization techniques,
Non-Parametric Statistical Debugging and Backward
Slicing. The proposed method, computes some vectors
(called execution vectors) based on the status of each
basic-block’s execution in running of test-cases.
According to the behavior of each basic-block in failed
test-cases and passed ones, two likelihoods are
computed and regards to them, basic-b locks become
prioritized. At last static slice of p rogram and dynamic
backward slice for one failed test-case are computed.
While seeking for faulty statement in ranked
basic-blocks, the method either returns the
basic-block’s statements in the static backward slice or
the part of it presented in the computed dynamic
backward slice. NPSS has been applied on the
Siemens test suite, space, grep and gzip. Our
experimental study shows the accuracy and
effectiveness of the method in accurate bug
localization.

Index Terms—Bug, Bug Localizat ion, Program
Backward Slicing, Statistical Debugging,
Non-Parametric Statistical Relations.

I. INTRODUCTION

Despite of all progresses in programming languages
and test processes, there are bugs in software that bother
its consumers and developers. Software debugging is
one of the most important software lifecycle phases. It
contains bug localization and bug correction [1]. After
software delivery, costumers’ feedback can help
developers to find out which functionality encountered
problems. They collect a number of positive or negative
feedbacks [2]. Positive feedbacks play “passed
test-cases” role and negative ones called “failed
test-cases” in debugging process. Based on the fact that
manual bug localization in software (especially in large
ones) is a t ime-consuming process, using techniques to
automate it, has become necessary. There are a lot of
researches have been done in this area. Among them,
three categories have been successful. These categories
are Statistical Debugging [3][4][5][6][7], Program Slicing
[2][8][9][10][11][12][13][14][15] and Delta Debugging [16][17][18].

All of them have their advantages and disadvantages.
Statistical Debugging uses a large number of test-cases
to study the behavior of statements. The difference
between execution of a statement in failed test-cases and
its execution in passed ones helps us to decide about its
status of being faulty or non-faulty [3][4][5][6]. These
methods use code instrumentation. Code instrumentation
is the process of adding some extra code to the program
to keep track of program execution. Interested points of
instrumentation are usually predicators. Predicators
contain conditional statements, return statements, loop’s
conditions and so on. After collecting data from
test-cases, some statistical relations will be applied on
them and statements become ranked [3][4][5][6]. It’s
obvious that all executed statements don’t have
influence on the output of program and we can ignore
them while seeking for fau lty statements.

Another techn ique which cont ributes to localize
program bug, is Program Slicing . Program Slicing
introduced by Weiser [8]. The main idea o f p rogram
slicing was finding all possible statements that could
have affect on a statement so it used static dependence
graph. Obviously the statement which doesn’t execute in
a failed run could not have any influence on program
failure. So the idea of Dynamic Program Slicing was
emerged [9] that computes all executed statements that
have in fluence on one statement . It uses dynamic
dependence g raph and results in a s maller set o f
statements. As the wrong output should have been
affected by the faulty statement, for finding the fau lty
statement it’s enough to compute dynamic backward
slice for the wrong output where bug appears. However,
it’s not always true. Sometimes, the fau lty statement
(program bug) changes the path of execut ion so the
wrong output doesn’t have been affected by it. Forward
and Relevant Slicing were introduced to overcome this
prob lem [10][19][20]. Us ing just one failed test -case,
dynamic program slicing generates a relatively large set
of statements. So some methods have developed based
on intersection, union and etc of program slices such as
dicing [11], mult iple point slicing [10], chopping [12][13] and
other techn iques in troduced in [14] [15][21] to reduce
suspicious statements. Delta Debugging is the last
category described in this paper. This method is based
on finding the min imum set of failure inducing inputs.
After finding this set, it computes forward dynamic slice
for th is set and the computed slice contains fau lty

mailto:farzaneh_zareie@comp.iust.ac.ir�

 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS) 9

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

statement [16][17][18]. As this method is irrelevant to our
work, we remain the subject for some who are interested
in it. The technique proposed in this paper is based on
Statistical Debugging and takes advantage of Program
Slicing to reduce the number o f suspicious statements.

In the introduced method, with the aid of some
non-parametric statistical relat ions, the most important
problem with statistical debugging techniques, needing a
large number of failed and passed test-cases, has
dimin ished. The other problem is that these methods
can’t find the origin of failu re because they study
predicates and therefore identify the area near the fault.
So by applying program slicing this defect has
eliminated. As said before, p rogram slicing generates a
large set of statements and there is no ranking method to
prioritize its statements. However, two ranking methods
have introduced on the subject [2][20], but neither of them
can solve the problem efficiently and the problem with
large set of statements still bothers debuggers. These
problems inspired us to develop a new method which
combines these two methods and prioritize the
statements of slices using a statistical relation applied on
them. The proposed method mainly contains four
phases:
1. At first, the source code is instrumented.
2. Then the instrumented program executes with a

limited number of test-cases (both failed and
passed ones). The result of program execution
saved into vectors. Each vector’s element is the
status of a basic-block’s execution.

3. According to non-parametric relations introduced
in our previous work [22], each element will
become prioritized. After that, statements will be
studied in order of their corresponding basic-blocks
rank.

4. Dynamic Backward Slice for the output statement
of a failed execution and Backward Static Slice for
the program will be computed. While seeking the
faulty statement, the method either returns the part
of basic-block’s statements presented in the static
backward slice of output statement or just its
statements presented in dynamic backward slice.

The subjects exp lained in this paper are organized as

follows. In section 2 our mot ivations are ment ioned, in
section 3 and 4 we exp lain NPSS phases and the result
of our experimental results on some midd le and large
size programs. In part 5 the conclusion and future
studies are described.

II. OUR MOTIVATIONS

As described in the previous section, our motivations
are summarized as bellows:
1. As it’s possible that there is not enough large set of

test-cases, we were to find a method to help
localize program bugs, using only few numbers of
test-cases.

2. Using statistical debugging causes to find the area

of the origin of the failure and therefore debugger
had to search statements for find ing the bug
manually. It’s clear that there are lots of statements
irrelevant to program failure that should be
considered. Using program slicing, this problem
could be solved. So, we decided to combine them
into a new method.

3. According to the fact that the slice size is large, we
find it suitable to rank the slice statements
according to their likelihood of being faulty.

4. Program slicing is a relat ively t ime-consuming
process. Therefore, computing backward slices for
even a limited number of test-cases, takes long,
especially for large programs. This method focuses
on statistical debugging more than program slicing
and computing dynamic backward slice fo r just
one failed execution.

5. Focusing on statistical debugging rather than
program slicing, helps to find more relevant bugs,
too.

III. NPSS METHOD

In this section, the steps of NPSS are described in
details. Before describing how NPSS works, it’s
necessary to explain some basic defin itions.

3.1. Basic Definitions

Basic-Block: are maximal sequences of consecutive
instructions with the properties that (1) the flow of
control can only enter the basic block through the first
instruction in the block. That is, there are no jumps into
the middle of the block and (2) Control will leave the
block without halting or branching, except possibly at
the last instruction in the block [23].

Program Dependency Graph: depicts the flow of
informat ion (contains data informat ion and control
informat ion) among the attribute instances in a
particular parse tree; an edge from one attribute instance
to another means that the value of the first is needed for
computing the second [9][23]. Fig. 1 shows a piece of code
and its Dependency Graph. Solid lines show control
dependencies and dotted lines show data dependencies.

Figure 1. Dependency graph for a piece of code

Program Static Back ward Slicing: is the process of

10 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS)

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

finding all the program statements that can affect a
statement directly or indirectly [8]. To do so, Program
Dependency Graph should be traversed backward from
that statement we want to compute its slice.

Program Dynamic Back ward Slicing: is the process
of finding all program statements that certainly affect a
statement direct ly or indirect ly in a certain program
running [9]. The dynamic backward slice for a statement
in a certain run contains all statements in its static slice
that have executed in that running.

3.2. How does NPSS work?

As said in section 1, NPSS has four main phases. In
this section each of these phases are addressed in details.

Code Instrumentation and Computing Execution
Vectors: Regards to the fact that NPSS needs to keep
track of basic-blocks execution in various running
test-cases, we use an integer array with size of the
number of p rogram’s basic-blocks. If the basic-block bi is
executed in an especial test-case’s running, rj, the i-th
element of rj’s execution vector will be assigned to 1.
Having the value equal to 0 for i-th element in a running
execution vector, means that the basic-blocks bi didn’t
execute in that running. Fig. 2 shows an instrumented
version of code has shown in Fig. 1 and computed
execution vectors for three test-cases.

Figure 2. An example of code instrumentation and

computing execution vector

Somet imes the faulty code doesn’t cause failure; rather
it just causes an Error [1]. To make more accurate
measurements, we have eliminated common execution
vectors in failed and passed test-cases from passed set. If
an execution vector is common in two sets, we assume
that in passing run, an error has occurred that didn’t affect
the output. So we eliminate this execution vector from
passed execution vectors’ set.

Ranking Basic-Blocks: In this phase, we use a similar
strategy in Fuzzy-Slice [22]. For the ranking of
basic-blocks, two likelihoods of being fau lty/ correct
should be computed. As described in [22], we introduced
two Likelihood of Being Faulty (LBF) and Likelihood of
Being Correct (LBC) for each basic-block b as bellows:

ibLBF is the amount of the contribution of
basic-block bi to failures and is computed using (1).

1
. []

i

N

j
j

b

Execution Vector bb i
LBF

N
=

−
=
∑

 (1)

Consider N as the number of failed test-cases.
ibLBC in a similar manner, is the amount of the

contribution of basic-block bi to passed executions and is
computed using (2).

1
. []

i

N

j
j

b

Execution Vector bb i
LBC

N
=

−
=
∑

 (2)

Consider N as the number of passed test-cases.
It’s clear that how much a basic-block is executed in
more failed test-cases and less passed test-cases, the
likelihood of containing faulty statement increases. So
(3) for each basic-block bi is hold:

i

i

i

b
b

b

LBF
Score

LBC
∝

 (3)

We can convert (3) to (4) using a constant
multip licat ion:

i

i

i

b
b

b

LBF
Score c

LBC
= × (4)

Where c is a constant. In many test-cases, it has
been seen that an assumed basic-block, bi, is executed
in a few number of failed test-cases and in none of
passed test-cases. In such situations

ibScore is a very
large amount while it shouldn’t be. So we compute c
as the difference between LBF and LBC. Regards to c,
(4) is changed to (5).

() i

i i i

i

b
b b b

b

LBF
Score LBF LBC

LBC
= − × (5)

ibScore for all basic-b locks, is the metric for ranking

them. How much
ibScore is greater, the likelihood of

containing faulty statement is greater. So the output of
this phase is a sorted list of basic-blocks according to
their likelihood of capturing faulty statement.

Program Slicing: The result of previous phase is an
ordered list of basic-blocks. We can study basic-blocks’
statements in a backward manner to find program bug.
But is it necessary? The answer is clearly, “NO”. We can
reduce the number of suspicious statements using
Program Slicing. In order to do so, in this phase, we can

bb[0] = 1;

read(n);

int mean = 0;

for (int i=0; i<n; i++,bb[1]=1)

{

 bb[2]=1;

 mean += read(num);

}

bb[3] = 1;

mean /= n;

write(mean);

input (n) Computed Execution Vector
0 [1,0,0,1]
1 [1,1,1,1]
2 [1,1,1,1]

 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS) 11

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

compute Dynamic Backward Slice for the wrong output
for a failed execution. There are two possible situations:
1. Bug presents in dynamic backward slice of the

wrong output.
2. Bug doesn’t present in the slice because of the fact

that bug causes to a wrong path and probably it
didn’t affect p rogram output (relevant fau lt)
[15][19][20]. In such cases, the whole statements
of basic-block should be considered. Instead of
considering the whole basic-block’s statements, we
use static backward slice of wrong output. So
program’s bug is captured with high probability in
a smaller set.

In NPSS, we compute both of dynamic and static
backward slices of wrong output. If dynamic backward
slice is not empty for a basic-block, bb, NPSS returns
statements of bb which have presented in computed
dynamic slice and otherwise it returns the statements

of bb have presented in computed static slice.

IV. EXPERIMENTAL RESULTS

To measure the accuracy of NPSS in accurate bug
localization, we use several programs and compare its
results with some well-known bug localization
methods in statistical bug localization.

Our selected programs are Siemens Suite programs
taken from Software Repository Infrastructure (SIR)
[23]. This suite has seven middle sized programs: tcas,
print-tokens, print_tokens2, replace, schedule,
schedule2 and tot_info. To evaluate our work more
accurate, we use three large size programs: gzip, grep
and space. These programs are availab le at SIR, too.
Table 1 shows their properties.

Table 1. Siemens suite programs’ propert ies

In the rest of this section we briefly describe

statistical bug localization techniques namely
Cooperative Bug Isolation [6], Tarantula [3], Sober [4],
Fault Localization through Evaluation Sequences [7].
We also describe Fuzzy-Slice [22] and then their
comparisons with NPSS are illustrated. In our
experiment results we d idn’t have excluded versions

with empty fault matrixes and total number of bugs is
considered.

4.1. Cooperative Bug Isolation (CBI)

This method is bas ed on two condit ional
probabilit ies introduced by Liblit [5]. These values are
Context (p) and Failure (p) for each predicate, p, and

Program Name Number of
Faulty Versions

LOC Number of
Test-cases

Program Description

tcas 41 138 1608 altitude separation

print_tokens 7 402 4130 lexical analyzer

print_tokens2 10 483 4115 lexical analyzer

replace 32 516 5542 pattern substituter

schedule 9 299 2650 priority scheduler

schedule2 10 297 2710 priority scheduler

tot_info 23 346 1052 statistic computation

grep-2.2-v1

v3

5

11826

199

pattern matcher
v6
v10
v11
v14

 gzip-1.2-v4

v2

6

5166

214

file compressor
v4
v5
v14
v15
v16

space 38 6199 158 ADL interpreter

12 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS)

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

are computed as bellows:

() ()Context p P program fails p is evaluated=
 (6)

() ()Failure p P program fails p is evaluated as True=
 (7)

Predicates ranking is done according to the
difference between these values. Comparison of NPSS
and Cooperative Bug Isolation has shown in Fig. 3.

4.2. Sober

Cooperative Bug Isolation can’t find program’s bug
when predicate p is evaluated True in all of the
executions. Sober [4] eliminated the problem by taking
to account both of failing and passing executions. In
Sober two d istributions of f (θ|passing executions) and
f (θ|failing executions) for each predicate p, is
computed. In these distributions θ is head probability.
It uses these distributions to evaluate bias of predicate
p. The evaluation b ias for p considered as nf/nt+nf
that nf shows the number of t imes that p is evaluated
as false and nt shows the number of t imes that p is
observed. Two distributions are computed for failing
and passing runs and the difference between them is
considered as predicates’ rank. Fig. 3 shows the
comparison of NPSS with Sober.

4.3. Tarantula

Tarantula is another statistical bug localizat ion
method [3]. It ranks all the statements of program
regards to relation 8.

% ()()
% () % ()

passed sscore s
passed s failed s

∝
+ (8)

Notice to the fact that this time how much this score
is higher, it’s dedicated that the statement s is healthier.
passed(s) shows the percentage of passed executions
and failed(s) shows the percentage of failed executions
that s is executed in. Comparison of our work and
tarantula is presented in Fig. 3, too.

4.4. Fault Localization through Evaluation Sequences
(DES)

This method presented in [7] first converts each
combinational condition to some simple conditions. So
each simple condition is inspected lonely. Ranking
simple conditions is like Sober [4]. It uses Sober’s
biases for each simple condit ion and the difference
between the behaviors of it in failed and passed
executions, reveals program fault. Comparison of
NPSS and this method is presented in Fig. 3.

4.5. Fuzzy-Slice

Fuzzy-Slice, computes the backward dynamic slices
of mult iple failing and passing runs, assuming that few
of them are availab le, and also introduces an execution
vector space where each single run is considered as an
execution point in that. Using Fuzzy C-means
clustering in addition to a novel ranking and pruning

technique, it prioritizes statements to help find the
origin of failure [22]. Since in Fuzzy-Slice we excluded
tot-info, comparison of Fuzzy-Slice and NPSS is
shown in Fig. 4 according to the percentage of located
fault rather than their number.

Table 2 illustrates the result of our experiments on
large programs namely grep, gzip and space. In this
table the percentage of code inspection to localize
program fault (%), presented by CI and the number of
inspected statements presented by IS. As said before,
we didn’t have excluded those versions with empty
fault matrix from our investigation. In space program,
five versions have empty fault matrixes.

In Table 2 we also present maximum, min imum and
average number of inspected statements (ISs) for
localizing program bug. As it is shown in this table, in
the worst case, in space program, we just need to
inspect only about 3 percentage of code to find the
faulty statement. In our best performance, in grep
program, the amount of IS is less than 0.01 percentage
of code (0.0084%). In average, NPSS can localizebug
in about 0.5 percentage of code.

Figure 3. An Comparison of NPSS and Cooperative Bug
Isolation (CBI), Sober, Tarantula and DES on Siemens

Suite

Figure 4. Comparison of NPSS and Fuzzy-Slice on

Siemens Suite

 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS) 13

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

Table 2. Result of NPSS on grep, gzip and space

Program Number of
Faulty

Versions

Max IS
(% of
LOC)

Min IS
(% of LOC)

Mean IS
(% of LOC)

#Located
Faults with

CI<1%

#Located
Faults with

CI<10%

grep-2.2-v1 5 109 (0.9%) 1
(0.0084)

26
(0.21%)

5 5

gzip-1.2-v4 6 141
(2.7%)

7
(0.13%)

30
(0.57%)

5 6

space 38 200
(3.2%)

1
(0.016%)

32
(0.51%)

26 31

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced a new method called
NPSS. It combines statistical debugging and program
slicing to localize program bugs. Considering
basic-blocks, even large programs produce small
execution vectors. NPSS applies non-parametric
statistical relations on each basic-block to compute the
likelihood of containing faulty/correct statements. After
ranking basic-blocks, static backward slice of program
and also dynamic backward slice of one failed test-case
are computed. Statements of higher prio rity basic-blocks,
should be inspected sooner. Instead of inspecting the
whole statements, NPSS returns basic-blocks statements
that are presented in dynamic backward slice if there is
any and otherwise it assumes that bug causes relevant
error and doesn’t appear in dynamic slice and so returns
it’s statements presented in static backward slice.
Applying NPSS on Siemens test suite, space, grep and
gzip shows that it outperforms the other methods. We
want to categorize statements according to their
correlation and prioritize these categories instead of
basic-blocks for future studies and also reduce the
number of categorized statements that should be
inspected using some heuristic methods such as genetic
algorithms.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software
Testing. New York: the United States of America
by Cambridge University Press, 2008.

[2] X. Zhang, N. Gupta, and R. Gupta, "Prun ing
dynamic slices with confidence," in Proceedings of
the 2006 ACM SIGPLAN conference on
Programming language design and implementation
Ottawa, Ontario, Canada: ACM, 2006; 169-180.

[3] A. J. Jones and M. J. Harrold, " Empirical
evaluation of the tarantula automatic
fault-localizat ion technique," in Proceedings of
the 20th IEEE/ACM international Conference on

Automated software engineering Long Beach,
CA, USA: ACM, 2005; 273-282.

[4] C. Liu, X. Yan, L. Fei, J. Han, and P. S. Midkiff,
"SOBER: statistical model-based bug localizat ion,"
in Proceedings of the 10th European software
engineering conference held jointly with 13th
ACM SIGSOFT international symposium on
Foundations of software engineering Lisbon,
Portugal: ACM, 2005; 286-295.

[5] S. Horwitz, B. Liblit, and M. Polishchuk, "Better
Debugging via Output Tracing and
Callstack-Sensitive Slicing," IEEE Trans. Softw.
Eng., 2010; 36 (1): 7-19.

[6] B. Liblit, M. Naik, X. A. Zheng, A. Aiken, and I.
M. Jordan, "Scalable statistical bug isolation,"
SIGPLAN Not., 2005; 40 (6): 15-26.

[7] D. Jeffrey, N. Gupta, and R. Gupta, " Effect ive
and efficient localization of mult iple faults using
value replacement," in ICSM 2009. IEEE
International Conference on Software
Maintenance, 2009; 221-230.

[8] M. Weiser, "Program slicing," IEEE Transactions
on Software Engineering (TSE), 1982; 10 (4):
352–357.

[9] H. Agrawal and J. R. Horgan, "Dynamic program
slicing," in Proceedings of the ACM SIGPLAN
1990 conference on Programming language
design and implementation White Plains, New
York, United States: ACM, 1990; 246-256.

[10] X. Zhang, N. Gupta, and R. Gupta, " Locating
faulty code by mult iple points slicing," Softw.
Pract. Exper., 2007; 37 (9): 935-961.

[11] T. Y. Chen and Y. Y. Cheung, "Dynamic
Program Dicing," in Proceedings of the
Conference on Software Maintenance: IEEE
Computer Society, 1993; 378-385.

[12] N. Gupta, H. He, X. Zhang, and R. Gupta,
"Locating faulty code using failure-inducing
chops," in Proceedings of the 20th IEEE/ACM
international Conference on Automated software
engineering Long Beach, CA, USA: ACM, 2005.

[13] K. Jens, "Slicing, Chopping, and Path Conditions

14 A Non-Parametric Statistical Debugging Technique with the Aid of Program Slicing (NPSS)

Copyright © 2012 MECS I.J. In formation Engineering and Electronic Business, 2013, 2, 8-14

with Barriers," Software Quality Control, 2004;
12 (4): 339-360.

[14] X. Zhang, N. Gupta, and R. Gupta, " Locating
faults through automated predicate switching," in
Proceedings of the 28th international conference
on Software engineering Shanghai, China: ACM,
2006; 272-281.

[15] T. Gyimothy, A. Beszedes, and I. Forgacs, "An
efficient relevant slicing method for debugging,"
in Proceedings of the 7th European software
engineering conference held jointly with the 7th
ACM SIGSOFT international symposium on
Foundations of software engineering Toulouse,
France: Springer-Verlag, 1999; 303-321.

[16] R. Hildebrandt and A. Zeller, "Simplify ing
failure-inducing input," SIGSOFT Softw. Eng.
Notes, 2000; 25 (5): 135-145.

[17] A. Zeller, " Yesterday, my program worked. Today,
it does not. Why?" SIGSOFT Softw. Eng. Notes,
1999; 24 (6): 253-267.

[18] A. Zeller and R. Hildebrandt, "Simplify ing and
Isolating Failure-Inducing Input," IEEE Trans.
Softw. Eng., 2002; 28 (2): 183-200.

[19] X. Zhang, H. He, N. Gupta, and R. Gupta,
"Experimental evaluation of using dynamic slices
for fau lt location," in Proceedings of the sixth
international symposium on automated
analysis-driven debugging Monterey, Califo rnia,
USA: ACM, 2005; 33-42.

[20] X. Zhang, N. Gupta, and R. Gupta, "A study of
effectiveness of dynamic slicing in locating real
faults," Empirical Softw. Eng., 2007; 12 (2):
143-160.

[21] X. Zhang, R. Gupta, and Y. Zhang, "Precise
dynamic slicing algorithms," in Proceedings of
the 25th International Conference on Software
Engineering Port land, Oregon: IEEE Computer
Society, 2003; 319-329.

[22] S. Parsa, F. Zareie, and M. Vahid i-Asl, "Fuzzy
clustering the backward dynamic slices of
programs to identify the orig ins of failure," in
Proceedings of the 10th international conference
on Experimental algorithms, Crete, Greece, 2011;
352-363.

[23] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques, and tools, 2nd ed.:
Addison-Wesley, 1986.

[24] Do Hyunsook, Elbaum Sebastian, and R. Gregg.
“Software-artifact In frastructure Repository”,
http://sir.unl.edu/portal/index.html [June 2012].

Farzaneh Zareie received her MS
degree from Iran University of
Science and Technology (IUST)
under supervision of Prof. Saeed
Parsa in 2011. She was a member of
software testing research group in
Prof. Parsa’s Parallel Processing lab
science 2009 and her research field

is accurate bug localizat ion techniques using program
slicing. To that end, she has developed three
non-parametric bug localization methods.

Prof. Saeed Parsa is one the
academic staffs in Iran University
of Science and Technology (IUST).
He is an associated professor and
received his PHD degree from the
University of Salford in 1993. He
was chairman of software group in
the computer engineering facu lty in

IUST several years. He has supervised several research
projects in Grid Computing, Software Testing and
Parallel Processing and has published some books, many
conference and journal papers in these areas. He has
taught several PHD, MS and BS courses such as Super
Compilers, Software Arch itecture, Formal Methods,
Parallel Algorithms, Advanced Software Engineering
and etc.

	Code Instrumentation and Computing Execution Vectors: Regards to the fact that NPSS needs to keep track of basic-blocks execution in various running test-cases, we use an integer array with size of the number of program’s basic-blocks. If the basic-bl...
	Figure 2. An example of code instrumentation and computing execution vector
	Sometimes the faulty code doesn’t cause failure; rather it just causes an Error [1]. To make more accurate measurements, we have eliminated common execution vectors in failed and passed test-cases from passed set. If an execution vector is common in t...
	Ranking Basic-Blocks: In this phase, we use a similar strategy in Fuzzy-Slice [22]. For the ranking of basic-blocks, two likelihoods of being faulty/ correct should be computed. As described in [22], we introduced two Likelihood of Being Faulty (LBF) ...
	Program Slicing: The result of previous phase is an ordered list of basic-blocks. We can study basic-blocks’ statements in a backward manner to find program bug. But is it necessary? The answer is clearly, “NO”. We can reduce the number of suspicious ...
	compute Dynamic Backward Slice for the wrong output for a failed execution. There are two possible situations:
	altitude separation
	statistic computation
	pattern matcher
	file compressor
	ADL interpreter
	Figure 3. An Comparison of NPSS and Cooperative Bug Isolation (CBI), Sober, Tarantula and DES on Siemens Suite
	Figure 4. Comparison of NPSS and Fuzzy-Slice on Siemens Suite

