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Abstract — The aim of this paper is to investigate the 

performance of time delay neural networks (TDNNs) and 

the probabilistic neural networks (PNNs) trained with 

nonlinear features (Lyapunov exponents and Entropy) on 

electroencephalogram signals (EEG) in a specific 

pathological state. For this purpose, two types of EEG 

signals (normal and partial epilepsy) are analyzed. To 

evaluate the performance of the classifiers, mean square 

error (MSE) and elapsed time of each classifier are 

examined. The results show that TDNN with 12 neurons 

in hidden layer result in a lower MSE with the training 

time of about 19.69 second. According to the results, 

when the sigma values are lower than 0.56, the best 

performance in the proposed probabilistic neural network 

structure is achieved. The results of present study show 

that applying the nonlinear features to train these 

networks can serve as useful tool in classifying of the 

EEG signals. 

 

Index Terms — Classification, Epileptic, EEG signals, 

Nonlinear Features, Time-Delay Neural Networks 

 

I. INTRODUCTION 

The idea of the association of epileptic attacks with 

abnormal electrical discharges was expressed by 

Kaufman 
[1]

. Often the onset of a clinical seizure is 

characterized by a sudden change of frequency in the 

EEG measurement. It is normally within the alpha wave 

frequency band with a slow decrease in frequency (but 

increase in amplitude) during the seizure period. It may 

or may not be spiky in shape. Sudden desynchronization 

of electrical activity is found in electrodecremental 

seizures. The transition from the preictal to the ictal state, 

for a focal epileptic seizure, consists of a gradual change 

from chaotic to ordered waveforms 
[2]

. It has shown that 

the amplitude of the spikes does not necessarily represent 

the severity of the seizure.  

It is now known, however, that seizures are the result 

of sudden, usually brief, excessive electrical discharges in 

a group of brain cells (neurons) and those different parts 

of the brain can be the site of such discharges 
[2]

.  

A large number of studies aimed at classification, 

detection, and prediction of epileptic signals. The idea of 

applying neural networks for medical pattern 

classification has met the favour of many researchers
 [3] [4]

. 

It has been noticed that the accuracy of classification 

entirely depends on the selected features to be applied on 

the EEG time series 
[5-12]

. 

Researchers have tried to highlight different signal 

characteristics within various domains and classify the 

signal segments based on the measured features. For 

example, in one study 
[13]

, the implementation of 

recurrent neural network (RNN) employing eigenvector 

methods is presented for classification of 

electroencephalogram (EEG) signals.  
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Since the dynamics of the brain system are chaotic, 

nonlinear methods have been applied to the analysis of 

EEG signals 
[14] [15]

. Nigam and Graupe 
[7]

, described a 

method for automated detection of epileptic seizures from 

EEG signals using a multistage nonlinear pre-processing 

filter in combination with a diagnostic ANN. Kannathal 

et al. 
[5]

, have shown the importance of various entropies 

for detection of epilepsy. Ocak 
[16]

 introduced detection of 

the epileptic seizures using discrete wavelet transform 

and approximation entropy. Ubeyli and Guleri 
[12]

, 

evaluate the classification capabilities of the Elman 

RNNs, combined with Lyapunov exponents, on the 

epileptic EEG signals. 

In the present article, the performance of time delay 

neural network (TDNN) and probabilistic neural 

networks (PNN) on electroencephalogram signals in 

normal subjects and epileptic patients are investigated by 

using Lyapunov exponents and entropy.  

The outline of this study is as follows. In the next 

section, the set of EEG signals used in this study is 

briefly described. Then, the proposed algorithm is 

presented in order to classify epileptic and normal EEG 

waveforms. In this algorithm, Lyapunov exponents and 

Entropy are extracted from EEG signals and are input 

into the TDNN and PNN. Finally, the results of the 

present study are shown and the paper is concluded. Fig. 

1 demonstrates the framework of the proposed method. 

These steps are discussed in more detail in the following 

sections.  

 
Figure1.The flow chart of the proposed algorithm 

II. METHODS 

2.1 Data selection 

Five sets (denoted A–E) each containing 100 single 

channel EEG segments of 23.6-sec duration, were 

collected by Andrzejak et. al. 
[17] [18]

. These segments 

were selected and cut out from continuous multichannel 

EEG recordings after visual inspection for artifacts, e.g., 

due to muscle activity or eye movements. 

Sets A and B consisted of segments taken from surface 

EEG recordings that were carried out on healthy 

volunteers using a standardized electrode placement. 

Volunteers were relaxed in an awake state with eyes open 

(A) and eyes closed (B), respectively. Sets C, D, and E 

originated from EEG archive of presurgical diagnosis 
[17] 

[18]
. 

Segments in set D were recorded from within the 

epileptogenic zone, and those in set C from the 

hippocampal formation of the opposite hemisphere of the 

brain. While sets C and D contained only activity 

measured during seizure free intervals, set E only 

contained seizure activity. Here segments were selected 

from all recording sites exhibiting ictal activity. 

All EEG signals were recorded with the same 128- 

channel amplifier system, using an average common 
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reference [omitting electrodes containing pathological 

activity (C, D, and E) or strong eye movement artifacts 

(A and B)]. After 12 bit analog-to-digital conversion, the 

data were written continuously onto the disk of a data 

acquisition computer system at a sampling rate of 173.61 

Hz. Band-pass filter settings were 0.53–40 Hz (12 dB/oct) 

[17] [18]
. 

In this study, EEG signals from sets A and E were used 

in order to classify normal EEG and seizure activity. 

These two types of signals are shown in Fig. 2. 

 

 
Figure2. Electroencephalographic signals. (top) Healthy 

volunteer with open eyes. (bottom) Epileptic patients during 

seizure activity. 

2.2 Feature extraction 

2.2.1 Lyapunov exponents 

Consider two (usually the nearest) neighboring points 

in phase space at time 0 and at a time t, distances of the 

points in the ith direction being  0x i and  tx i , 

respectively. The Lyapunov exponent is then defined by 

the average growth rate λi of the initial distance 
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An exponential divergence of initially nearby 

trajectories in phase space coupled with folding of 

trajectories, ensures that the solutions will remain finite, 

and is the general mechanism for generating deterministic 

randomness and unpredictability. Therefore, the existence 

of a positive λ for almost all initial conditions in a 

bounded dynamical system is widely used. To 

discriminate between chaotic dynamics and periodic 

signals Lyapunov exponent (λ) is often used. It is a 

measure of the rate in which the trajectories separate one 

from other. The trajectories of chaotic signals in phase 

space follow typical patterns. Closely spaced trajectories 

converge and diverge exponentially, relative to each other. 

For dynamical systems, sensitivity to initial conditions is 

quantified by the Lyapunov exponent (λ). They 

characterize the average rate of divergence of these 

neighboring trajectories. A negative exponent implies that 

the orbits approach a common fixed point. A zero 

exponent means the orbits maintain their relative 

positions; they are on a stable attractor. Finally, a positive 

exponent implies the orbits are on a chaotic attractor 
[19] 

[20]
. 

The reason why chaotic systems, such as brain, show 

aperiodic dynamics is that phase space trajectories that 

have nearly identical initial states will separate from each 

other at an exponentially increasing rate captured by the 

so-called Lyapunov exponent. 

2.2.2 Entropy 

There are a number of concepts and analytical 

techniques directed to quantifying the irregularity of 

stochastic signals. One such concept is Entropy. Entropy, 

when is considered as a physical concept, is proportional 

to the logarithm of the number of microstates available to 

a thermodynamic system, and is thus related to the 

amount of disorder in the system. For information theory, 

Entropy is first defined by Shannon and Weaver in 1949 

[21]
. In this context, Entropy describes the irregularity, 

unpredictability, or complexity characteristics of a signal. 

Shannon 
[22]

 developed a measure to quantity the 

degree of uncertainty of a probability distribution. 

Denoting ShEn as Shannon's Entropy measure, its formal 

expression in the case of discrete probability distributions 

is 

 (2) i

i

i ppShEn  log  
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where p
T
 = [p1, ... , pN] is a probability distribution 

(superscript T represents vector/matrix transposition). 

2.3 Classification 

In order to compare the performance of the different 

classifiers, the TDNN and PNN are implemented for the 

same classification problem. 

PNN is simpler than TDNN to implement 
[23]

. All its 

connections are in the forward direction 
[24]

. No 

derivatives are calculated. The training stage is 

accomplished in only one forward pass. Therefore it is 

faster in training. In addition, in probabilistic neural 

network the weights between the input and pattern layers 

are calculated directly from the training samples. 

Therefore, the training time of the network is generally a 

few seconds.  

The TDNN training consists of an iterative process 

where each cycle consist of one or more forward 

propagations through the network, and one 

backpropagation to obtain derivatives of the cost function 

with respect to the network weights. In this network, the 

training is an iterative process. The number of iterations 

varies from tens to several thousands. Every iteration 

includes one backpropagation and one or more forward 

propagations for the line minimization required by the 

conjugate gradient algorithm 
[23]

. When training in the 

batch mode, it is required to repeat the above iterations 

for all the training patterns in every cycle. In this network, 

the training speed depends on the number of training 

patterns and on the network's size.  

2.3.1 Time delay neural networks (TDNN) 

TDNN typically has three layers: an input layer, a 

hidden layer, and an output layer. A TDNN embeds time 

delays on the inputs in a parallel fashion 
[25]

. 

TDNNs rely mainly on special kind of memory known 

as tap delay line where the most recent inputs are 

buffered at different time steps. Such delay lines between 

hidden and output layers are necessary to supply the 

network with additional memory. In other words, by 

using delay lines the inputs arrive hidden layers at 

different points in time, so they stored long enough to 

support subsequent inputs.  

A typical tap delay line is illustrated in Fig. 3. The 

response of this kind of networks in time t is based on the 

inputs in times (t-1), (t-2), …, (t-D). A mapping 

performed by the TDNN produces a y (t) output at time t 

as: 

      dtxtxtxfty  ,,1,)(   
(3) 

where x(t) is the input at time t and D is the maximum 

adopted time-delay. TDNN is well suited in the 

applications of time series classification. 

Although all the connections in the TDNN are feed-

forward 
[24]

, which is similar to multilayer perceptron 

(MLP), the inputs to any unit in the network have the 

output of the previous stage. The activation of the unit f at 

any time step is calculated as follows: 
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where t

iy is the output of node i at time t and 
ijk  is the 

weight to the node i from the output of node j at time t-k 

[26]
. 

 

 
Figure3. Tapped delay line memory model. 

Focused Time Delay Neural Networks 

Focused Time Delay Network is a MLP with a tapped 

delay line (also called memory layer) as input layer. A 

typical diagram of focused time delay neural network is 

illustrated in Fig. 4. This network belongs to a class of 



 Classification of Epileptic EEG Signals using Time-Delay Neural Networks and Probabilistic  63 

Neural Networks 

Copyright © 2013 MECS                                         I.J. Information Engineering and Electronic Business, 2013, 1, 59-67 

dynamic networks. Delay time line is used to store the 

historical samples of the inputs. The number of historical 

samples determines the size of the memory layer to 

express the features of the input in time. The memory is 

always at the input of multilayer feed-forward networks; 

hence the name focused comes. 

Training in focused time delay network is much faster 

than other dynamical network for two reasons: firstly, as 

mentioned before, tapped delay appears only at the input 

layer and secondly, the loop does not contain feedback 

connections or adjustable parameters. For that reasons, no 

dynamic back propagation are needed to compute the 

network gradient. It can still be trained with static back 

propagation 
[27] [28]

. 

A TDNN can be used for either function estimation or 

function prediction in addition to classification or 

classification prediction 
[25]

. 

2.3.2 Probablistic Neural Networks Classifier 

A probabilistic neural network is also good for 

classification problems 
[29]

. When an input is feed into the 

classifier, the first layer will be able to compute the 

distance between the input vector and the training input 

vectors, and produce a vector whose elements show the 

closeness between the input data points and the training 

vector points 
[30]

. 

The second layer will sum up “contributions for each 

class of inputs to produce as its net output a vector of 

probabilities.” As the last step, a transfer function called 

“compete” will pick the maximum of the probabilities on 

the second layer, and it will also provide a one for that 

class and a zero for the other  

 
Figure4. Focused time delay neural network with two layers. 

classes 
[30]

. The probabilistic neural network architecture 

is shown in Fig. 5. 

The training process of a PNN is essentially the act of 

determining the value of the smoothing parameter, 

sigma. An optimum sigma is derived by trial and error. 

Like the other neural networks, the usage of this 

network has some advantages and disadvantages. 

Probabilistic neural networks (PNN) can be used for  

 

 
Figure5.Probabilistic Neural Network architecture [31]. 

 

classification problems. Their design is straight-forward 

and does not depend on training. A PNN is guaranteed to 

converge to a Bayesian classifier providing it is given 

enough training data. These networks generalize well. 

The PNN have many advantages, but it suffers from 

one major disadvantage. They are slower to operate 

because they use more computation than other kinds of 

networks to do their function approximation or 

classification. 

III. EXPRIMENTAL RESULTS 

The values of the maximum Lyapunov exponents are 

given in Fig. 6. According to the results, all the Lyapunov 

exponents are positive, which confirm the chaotic nature 

of the EEG signals in both groups. Fig. 7 depicts the 

Entropy values of EEG signals in normal and epileptic 

subjects.  

In the next stage, Lyapunov exponents and Entropy are 

used as inputs of the TDNN and PNN classifiers. In order 

to classify EEG signals with TDNN, different network 

architectures are tested. The number of output is 2 with 

target outputs of normal and partial epilepsy. 
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Figure6. Lyapunov exponent of EEG signals: (top) normal, 

(bottom) partial epilepsy. 

 

 
Figure7. Entropy of EEG signals: (top) normal, (bottom) 

partial epilepsy. 

In this application, in the hidden layer, hyperbolic 

tangent sigmoid transfer function is used as activation 

function and in the output layer, linear transfer function is 

applied. Delay vectors are adjusted to be 0-5 and 0-3 in 

the first and second layers, respectively.  

The extracted features are randomly divided into two 

sets: a training set and a testing set. 2/3 of the samples are 

used to train the classifiers while 1/3 is used to test the 

performance of each classifier. The values of the central 

processing unit (CPU) times of training and the 

classification error (mean square error) of TDNN are 

presented in Table I. 

TABLE I. THE VALUES OF MEAN SQUARE ERROR AND THE CPU 

TIMES OF TRAINING OF THE TDNN CLASSIFIER. 

Classifier Neurons in  

hidden layer 

MSE Elapsed time 

(s) 

 

TDNN 

3 8.43×10 -15 14.57 

5 6.86×10 -15 14.78 

8 5.22×10 -15 16.09 

12 2.25×10 -15 19.69 

 14 1.01×10 -14 36.03 

According to Table I, the best classification result of 

TDNN is achieved by 12 neurons in the hidden layer, 

with the training time of about 19.69 seconds. 

Classification result for the test data is shown in Fig. 8.  

 

 
Figure8. TDNN out put with 12 neurons in the hidden 

layer (black and green curves show the desired 

outpout and sysyem output, respectively). 

As mentioned before, in order to study the performance 

of probabilistic neural network, the same features are 

used as an input.  

In the study of probabilistic neural network, an 

optimum sigma is derived by trial and error. Systemic 

testing of values for sigma over some range can result in 

bounding the optimal value to some interval. 

The effect of sigma on classification rate is evaluated. 

Fig. 9 shows the effects of different sigma on the 

classification accuracy rate. 

 
Figure9. The effect of different sigma on correct 

classification rates. 

As shown in Fig. 9, the best result of classification is 

achieved by sigma < 0.56. Classification result (with 

sigma=0.56) for test data is shown in Fig. 10. As this 

figure shows, by choosing sigma=0.56, 65 samples from  

66 test samples are recognized as true class and only one 

sample is recognized as false class.  
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Figure10. PNN output with parameter sigma=0.56 (black 

and green curves show the desired outpout and sysyem 

output, respectively). 

IV. CONCLUSIONS 

In order to reduce the time and physicians’ mistakes, 

automatic computer based algorithm have been proposed 

to support the diagnosis and analysis performed by 

physician 
[32]

. 

Various methodologies of automated diagnosis have 

been adopted; however, the entire process can generally 

be subdivided into a number of disjoint processing 

modules: data collection/ selection, feature extraction/ 

selection, and classification. 

The main goal of this study is to evaluate the 

diagnostic performance of TDNNs and PNNs with 

Lyapunov exponents and Entropy on EEG signals in 

epileptic patients. Decision making was performed in two 

stages: Feature extraction and classification using 

classification on the extracted features.  

In order to classify EEG signals (EEG recordings that 

were carried out on healthy volunteers and epileptic 

patients during seizure activity), an application of TDNN 

and PNN employing nonlinear features was presented.  

Nigam and Graupe 
[7]

, proposed a method for 

automated detection of epileptic seizures from EEG 

signals and the total classification accuracy of their model 

was 97.2%. Guler et al. 
[33]

 evaluated the diagnostic 

accuracy of the recurrent neural networks (RNNs) 

employing Lyapunov exponents trained with Levenberg-

Marquardt algorithm on the same EEG data set (sets A, D, 

and E) 
[17] [18]

 and the total classification accuracy of that 

model was 96.79%. In another study 
[34]

, it is found that 

among the different entropies applied, the wavelet 

entropy features with recurrent Elman networks yields 

99.75% and 94.5% accuracy for detecting normal 

compare to epileptic seizures and interictal focal seizures, 

respectively. Ocak 
[16]

 reported that by using approximate 

entropy (ApEn) and discrete wavelet transform (DWT) 

analysis of EEG signals seizures could be detected with 

over 96% accuracy. 

To evaluate the performance of the classifiers, mean 

square error and the CPU times of training were 

examined. The results of the present study demonstrate 

that the best classification result for TDNN is achieved 

with 12 neurons in hidden layer. Training time of the 

experimentation is about 19.69 second with 12 neurons in 

hidden layer.  

In the study of probabilistic neural network, it has been 

shown that the sigma values which are lower than 0.56 

have better performance in the proposed network 

structure. Previously, it has been shown that the training 

time of the network is generally a few seconds 
[23]

. The 

results of this study also confirmed it as the CPU times of 

training for PNN with sigma=0.56 is about 0.87 s.  

The results of present study showed that applying 

nonlinear features to train these networks can serve as 

useful tool in classifying the EEG signals. 
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