
I.J. Information Engineering and Electronic Business, 2012, 3, 1-8
Published Online July 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2012.03.01

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

Failures in Cloud Computing Data Centers in

3-tier Cloud Architecture

Dilbag Singh, Jaswinder Singh, Amit Chhabra

Department of Computer Science & Engineering, Guru Nanak Dev University Amritsar, Punjab，143001, India

dggill2@gmail.com, chhabra.amit78@gmail.com, jaswindersingh@yahoo.com

Abstract— This paper presents an methodology for

providing high availability to the demands of cloud‟s

clients. To succeed this objective, failover approaches for

cloud computing using combined checkpointing

procedures with load balancing algorithms are purposed

in this paper. Purposed methodology assimilate

checkpointing feature with load balancing algorithms

and also make multilevel barrier to diminution

checkpointing overheads. For execution of purposed
failover approaches, a cloud simulation environment is

established, which the ability to provide high availability

to clients in case of disaster/recovery of service nodes.

Also in this paper comparison of developed simulator is

made with existing approaches. The purposed failover

strategy will work on application layer and provide

highly availability for Platform as a Service (PaaS)

feature of cloud computing.

Index Terms— Failover, Load balancing, Node-recovery,

Multilevel checkpointing, Restartation

I. INTRODUCTION

Cloud computing
[1]

 is currently emerging as a powerful

way to transform the IT industry to build and deploy

custom applications. In cloud environment jobs keep on

arriving to the data centers for execution and nodes
1
will

be allocated to the jobs for their execution as per their

requirements and successfully executed jobs will leave
the nodes. In this scenario it may possible that some nodes

will become inactive while executing threads due to some

failure. So there is need of efficient failover strategy for

handling failures as it may cause restartation of entire

work, whether some threads of the job has been

successfully done on other nodes. In case of node failure,

that means, the node is no longer accessible to service any

demand of clients, the cloud must migrate jobs to the other

node. Service node failure can happen in the following

situations:

1) Node loses connectivity: This may happen due to

interconnectivity problems of nodes. The possible causes

are communication media failure, port crashes etc.

2) Node is ceased: Hardware failure or any unexpected

reason makes node be inactive.

To achieve failover one solution is to implement the

concept of redundancy
[2]

. High availability is achieved
by having multiple secondary nodes that are exact

replicas of a primary node. Constantly, they monitor the

work of the primary node waiting to take over if it fails.

In this basic form, only a single primary node is in active

use while the remaining secondary nodes are in stand-by

mode.But this solution is only feasible for servers or if

the nodes are few. As this research work focus on

providing the high availability for service nodes, having

replica of all service nodes will not be feasible as it will

increase complexity, cost etc, thus to have stand-by

secondary nodes solution proved to be inefficient. In this
paper, checkpoints are integrated with load balancing

algorithms for data centers (cloud computing

infrastructure) has been considered, taking into account

the several constraints such as handling infrastructure

sharing, availability, failover and prominence on

customer service. These issues are addressed by

proposing a smart failover strategy which will provide

high availability to the requests of the clients. New cloud

simulation environment has been purposed in this paper,

which has the ability to keep all the nodes busy for

achieving load balancing and also execute checkpoints

for achieving failover successfully.

A checkpoint is a local state of a job saved on stable

storage. By periodically executing the checkpointing,

one can save the status of a process at consistent

intervals
[3], [4]

. If there is a failure, one may resume

computation from the earlier checkpoints, thereby,

avoiding restating execution from the beginning. The
process of restarting computation by rolling back to a

consistent state is called rollback recovery. In cloud

computing environment, since the nodes in the data

centers do not share memory
[5], [6]

 therefore it is required

to migrate the load of failed node to other node in case of

failure, In this paper, checkpoints are integrated with

load balancing algorithms for data centers (cloud

computing infrastructure) has been considered, taking

into account the several constraints such as handling

infrastructure sharing, availability, failover and

prominence on customer service. These issues are

addressed by proposing a smart failover strategy which

will provide high availability to the requests of the

clients. New cloud simulation environment has been

purposed in this paper, which has the ability to keep all

the nodes busy for achieving load balancing and also

execute checkpoints for achieving failover successfully.
An integrated checkpointing algorithm implements in

parallel with the essential computation. Therefore, the

overheads presented due to checkpointing should need to

be reduced. Checkpointing should enable a CSP to

mailto:chhabra.amit78@gmail.com,%20jaswindersingh@yahoo.com

2 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

provide high availability to the requests of the clients in

case of failure, which demands frequent checkpointing

and therefore significant overheads will be introduced.

So it become more critical to set checkpointing rerun

time. Multilevel checkpoints
[9], [10], [11], [12], [13], [14], [15]

 are

used in this research work for decreasing the overheads

of checkpoints.

II. PROBLEM DEFINITION

Checkpointing is a technique to reduce the loss of

computation in the manifestation of failures. Main

emphasis of this research is to use the approaches which

attain high availability by using amalgamation of

checkpointing and load balancing algorithms. However

to decrease checkpointing overheads multilevel

checkpointing
[6], [7], [8], [9], [10], [11], [12]

is also used.

Checkpointing has been used by many researchers but it

may result, delay in execution time as node sharing is

achieved by using random decisions. In random

decisions, the load balancing is not taken into

consideration which might result into transfer of the load

of crashed node to already heavy loaded nodes than
lightly loaded nodes. To overcome this problem, in this

research work checkpointing has been assimilated with

load balancing algorithms.

III. LITERATURE REVIEW

Availability
[13]

 is a reoccurring and a growing concern

in software intensive systems. Cloud systems services

can be turned offline due to conservation, power outages

or possible denial of service invasions. Fundamentally,
its role is to deter-mine the time that the system is up and

running correctly; the length of time between failures

and the length of time needed to resume operation after a

failure. Availability needs to be analyzed through the use

of presence information, forecasting usage patterns and

dynamic resource scaling.

Checkpoint
[14], [15]

 is defined as a designated place in a

program at which normal processing is interrupted

specifically to preserve the status information necessary

to allow resumption of processing at a later time. By

periodically invoking the check pointing process, one

can save the status of a program at regular intervals. If

there is a failure one may restart computation from the

last checkpoint thereby avoiding repeating the

computation from the beginning.

There exist many models to describe checkpoint

systems implementation. Some of the models use
multilevel check-pointing approach

[6], [7], [8]
. Many

researchers have worked to lower the overheads of

writing checkpoints. Cooperative checkpoints reduce

overheads by only writing checkpoints that are predicted

to be useful, e.g., when a failure in the near future is

likely
[9]

. Incremental checkpoints reduce the number of

full checkpoints taken by periodically saving changes in

the application data
[10], [11], [12]

. These approaches are

orthog-onal to multilevel checkpoints and can be used in

combination with our work. The checkpoint and rollback

technique
[16]

has been widely used in distributed

systems. High availability can be offered by using it and

suitable failover algorithms.

The ZEUS
[17]

 Company develops software that can let

the cloud provider easily and cost-effectively offer every

customer a dedicated application delivery solution. The

ZXTM
[16], [17]

 software is much more than a shared load

balancing service and it offers a low-cost starting point in

hardware development, with a smooth and cost-effective

upgrade path to scale as your service grows. The Apache

Hadoop
[18]

 software library is a framework that allows

for the distributed processing of large data sets across
clusters of computers using a simple programming

model. It is designed to scale up from single servers to

thousands of machines, each offering local computation

and storage. Rather than rely on hardware to deliver high

availability, the library itself is designed to detect and

handle failures at the application layer, so delivering a

highly available service(s) on top of a cluster of

computers, each of which may be prone to failures. JPPF
[19]

is a general-purpose Grid toolkit. Federate computing

resources working together and handle large

computational applications. JPPF uses divide and

conquer algorithms to achieve its work successfully.

ZXTM
[16], [17]

, Apache Hadoop
[18]

 and JPPF
[19]

 not

provide feature of checkpoints.

A Checkpointing overhead
[20], [21], [22], [23]

 has been

discussed by many researchers. An integrated

checkpointing algorithm implements in parallel with the

essential computation. Therefore, the overheads
presented due to checkpointing should need to be

reduced. Much of the previous work
[20], [21], [22], [23], [24],

[25], [26]
 present measurements of checkpoint latency and

overhead for a few applications.

Several models
[27], [28], [29], [30], [31]

that define the

optimal checkpoint interval have been proposed by

different researchers. Young proposed a first-order model

that describes the optimal checkpointing interval in terms

of checkpoint overhead and mean time to interruption

(MTTI). Youngs model does not consider failures during

checkpointing and recovery
[29]

, while Dalys extension

lead of Youngs model, a higher-order approximation,

does
[30]

. In addition to consider-ing checkpointing

overheads and MTTI, the model discussed in
[28]

 includes

sustainable I/O bandwidth as a parameter and uses

Markov processes to model the optimal checkpoint

interval. The model described in
[31]

 uses useful work,
i.e., computation that contributes to job completion, to

measure system performance.

IV. LIFE CYCLE OF PARALLEL JOBS.

Fig. 1 is showing the life cycle of parallel jobs in

distributed environment. Firstly clients submits their jobs

for execution, if no subcloud is free then jobs are queued

after this phase node filtering will be done that will
detect the currently active nodes by checking the status

of all nodes. After node filtering load balancing

algorithm will come into action to balance the load of the

 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture 3

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

given jobs among active nodes. It also shows that the

main source of parallelism is provided by the load

balancer, whose role is to split each job into multiple

subsets that can be executed on multiple nodes in

parallel. After successful execution of threads, each node

send its final results back to the sub cloud, then subcloud

conquer the results of threads and the output will be

passed to the client.

Fig. 1. Life cycle of Parallel jobs (adapted from [19])

V. PURPOSED FAILOVER STRATEGIES

In order to achieve high availability for cloud

computing using checkpoints based load balancing

algorithms, two algorithms has purposed in this research

work. Checkpoints based load balancing is defined as the

feasible allocation or distribution of the work to highly

suitable nodes so that execution time of the job could be

minimized. This section discusses the procedure that how

checkpoints based load balancing algorithms works and

later on how proposed integrated checkpointing
algorithms will provide high availability to the requests

of the clients. Fig. 2 is showing the three tier architecture

for cloud environment. Fig. 2 has shown that there is a

request manager (central cloud), clients send their

requests to it all other nodes and their connectivity not

deal directly with the clients. Thus request manager

allow clients to submit their jobs. Then request manager

first divide the given job into threads and also allocate

Fig. 2. 3 Tier Architecture

one of the subcloud (service manager) to the threads and

global checkpoint is also updated. Each subcloud first

selects threads in First in First Out (FIFO) fashion and

allocate lightly loaded service node to it. The service

nodes then start execution of that thread or it may add

this thread in its waiting queue if it is already doing

execution of any other thread. N1 to N12 are service

nodes which will provide services to the clients.

Proposed load balancing algorithms
Proposed load balancing algorithms are developed

considering main characteristics like reliability, high
availability, performance, throughput, and resource

utilization. However to fulfill these requirements of

failover strategies, in Fig. 3 and Fig. 4 two different

flowcharts named as global flowchart and local flowchart

are shown. To decrease checkpointing overheads by

using multilevel checkpointing
[6], [7], [8], [9], [10], [11], [12]

, two

different algorithms are used in this research work.

The flowchart of global checkpointing algorithm is

shown in Fig. 3 that shows how global algorithm will

work? It will take the following steps to assign the

subcloud to the requests of the clients:

Step 1: Firstly clients submits their jobs to the CSP that is

at central cloud

Step 2: CSP divide the jobs into threads and then allocate

a minimum loaded subcloud to the jobs.

Step 3: After allocation of the sub cloud, global

checkpoint will be updated.

Step 4: Global checkpoint will run periodically.

Step 5: By reading checkpoint CSP will check whether

any subcloud has failed or no failure occur. If no failure

occur then a new save-point will be created and global

checkpoint will be updated.

Step 6: If failure is found then work will be migrated

from failed node to failed node‟s secondary node and

global checkpoint will be updated.

Fig. 4 is showing the flowchart of local checkpointing

algorithm, which will work on sub cloud. This algorithm

will applied on sub clouds and also nodes attached to it.

It will take the following steps to allocate the nodes to

the threads:

Step 1: Firstly threads will arrive on the subcloud.

4 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

Step 2: Then subcloud will check that whether any node

is active or not? If no node is active then CSP will be

notified by a message that “Subcloud is not responding”.

Step 3: Then subcloud allocates minimum loaded nodes

to the threads in such a way that load remains balance on

the nodes.

Step 4: Local checkpoint will be updated.

Step 5: Global checkpoint will run periodically and a

new save-point will be created every time.

Step 6: By reading checkpoint CSP will check whether

any node has found to be failed or any node has

recovered from failure.

Step 7: If any node found to be failed then subcloud will

shift that node‟s load to the currently active nodes in

such a way that load remain balance on active nodes and

local checkpoint will be updated.

Step 8: If any node has been recovered then it will take

load of some of other nodes which are heavy loaded and

local checkpoint will be updated.

Fig. 3. Global Checkpointing Algorithm‟s Flowchart

VI. EXPERIMENTAL SETUP

In order to implement the purposed failover strategy a

suitable experimental set-up has been made as shown in

Fig. 5. It takes following steps to execute the jobs of the

clients:

Step 1: Firstly clients submit their requests to the CSP

via internet.

Step 2: CSP then allocate one of the subclouds to the

Step 3: After Step 2 local algorithm come in action. Each

subcloud paramount chooses threads in FIFO fashion and

allocate lightly loaded node to it.

Fig. 4. Local Checkpointing Algorithm‟s Flowchart

Fig. 5. Simulator Environment

Step 4: Then node start execution of the inputed thread or

it may add this thread into its waiting queue, if it is

already doing execution of any other thread and local

checkpoint will be updated.

 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture 5

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

VII. SIMULATION RESULTS

Table I give the inputs that are given to the simulator. In

Table I various Jobs are given with their serial execution

time and also if jobs will execute in parallel then how

many numbers of threads can be made from it or how

many nodes are required to run given job in parallel
fashion.

Job Name Threads Serial Time

1 2 20

2 3 45

3 3 30

4 2 40

...

100 3 10

7.1 Global Checkpoint

 Designed simulator first divides job into threads and

allocate sub clouds to them in FIFO fashion and global

checkpoint will be updated as shown in Fig. 6. Fig. 6

giving detail of the global checkpoint, which is showing

that which job is going to be run on which subcloud and

also other relevant information like entered time of job,

number of processors required, serial time, thread time

etc.

Fig. 6. Global Checkpoint

7.2 Local checkpoint

Fig. 7. Local checkpoint

Fig. 7 is showing the local checkpoint in it node has

been allocated to threads. For all node whether it belong to

sub cloud1 or sub cloud2, only one local checkpoint is

used in this simulator. Local checkpoint contains

information like server status(active or deactive), job

status(executing, wait-ing or finished), server name and

also remaining time of threads(execution time + waiting

time) etc.

7.3 Failure of Nodes

To successfully implement failover strategy, node A

and E set to be failed, after 5 seconds local checkpoint

detect it and transfer load of failed nodes to other nodes.

In Fig. 8 it has shown that node A and E has failed and

also the parameters server status and job status has also

changed. Note that if any node get failed and recovered

before checkpoints will rerun then the execution at that
nodes remains continue without any problem.

Fig. 8. Local checkpoint showing Failed nodes

7.4 Load rebalancing after Node Failure

GUI will work in such a way that if any node get failed

then CSP detect it with the help of checkpoints. Then CSP

share the load of failed nodes among the active nodes. In

Fig. 9 it has shown that the load of node A and E has been
shared with currently active nodes. Only the threads

which are executing or waiting on node A and E will be

shared no other thread need not to be restart or to be

transfer from one active node to other active node.

Fig. 9. Local checkpoint showing rebalancing of load

7.5 Node Recovery and Load Rebalancing

If any node get recovered then sub cloud(s) detect it by

checking their flag bits, then CSP share the load of heavy

loaded nodes with recovered nodes. In Fig. 10 it has been

shown that the node A and E has recovered and they have

taken some load from other heavy loaded nodes.

6 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

Fig. 10. Rebalancing of load among recovered nodes

7.6 Completed

Each completed job transferred to history table and

acknowledgement send to its sender, and it will be deleted

from both local and global checkpoints, so that in future if

failure occur then checkpoint will not make any changes

with completed jobs.

VIII. PERFORMANCE ANALYSIS

In order to do performance analysis, two comparisons

table has been made in this research work. This section

first give the performance comparison of developed

simulator with existing methods and later on comparison

of different approaches is made using different

performance metrics.

8.1 Comparison with existing methods

Table II is showing the comparison of JPPF/Hadoop,

Checkpointing and developed simulator. Table II has

shown that developed simulator will give better results
than existing methods. As JPPF/Hadoop do not provide

feature of checkpointing, therefore node failure result in

restartation of entire job, whether some threads of that

job has been successfully completed on other nodes. The

Feature

JPPF/

Hadoop Checkpoint Integrated

Checkpoints No Yes Yes

Failover No Yes Yes

Load Balancing Yes No Yes

Multilevel Checkpoint No No Yes

Job Restartation Yes No No

Architecture 2 Tier 2 Tier 3 Tier

Resources Utilization Low Medium Maximum

Table II. Feature‟s comparison with existing method

problem of checkpointing technique
[15], [16]

without load

balancing algorithms also proved to be inefficient as

migration of threads is done using random decisions and

also not use multilevel checkpointing which may result in

overheads.

8.2 Comparison with no checkpoint, checkpoint without

load balancing and purposed method Chp. Means

Checkpointing

Type of Metric No Chp. Chp. Integrated

Average Execution time 14.73 13.46 10.94

Minimum Execution

time 15 10 10

Average Waiting Time 14.73 9.46 5.2

Minimum Waiting Time 5 0 0

THP(after 200 seconds) 61 73 102

Table III. Metric‟s comparison of different approaches

Table III is showing the performance comparison of

different approaches. These approaches are without

checkpoints, checkpoints without load balancing

algorithms and integration of checkpointing with load

balancing algorithms (Purposed technique). It has been

clearly shown in Table III that purposed method gives

better results than other methods. As in no checkpoint

method it not possible to achieve failover without

restartation of the jobs, and without integration of

checkpoint-ing with load balancing algorithms may cause

the problem of random allocation of nodes to the threads,

which may migrate load of failed nodes to heavy loaded

nodes than lightly loaded nodes.

Fig. 11 illustrates the graph of Average Waiting (AWT).

In Fig. 11 it has been shown that whether time increases,

but failure and recovery of nodes do not effect too much
as compared to other approaches. Therefore it is clearly

shown that the purposed method gives better results than

existing methods as AWT of integrated approach always

stay lower than the other existing methods lines.

 Fig. 11. Average Waiting Time comparison with existing

methods

 Fig. 12. Average Execution Time comparison with existing

methods

 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture 7

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

Fig. 12 demonstrates the diagram of Average

Execution Time (AET) metric. In Fig. 12 it has been

shown that whether time intensifications, but disaster and

repossession of nodes do not influence too much as

equated to other methodologies. Consequently it is

undoubtedly revealed that the purposed technique

contributes improved fallouts than prevailing approaches

as AET in incorporated checkpointing methodologies line

continuously vacation subordinate than the

supplementary techniques lines.

Fig. 13 exhibits the diagram of Throughput (THP)

metric. In Fig. 13 it has remained publicised that whether

time augmentations, but disaster and recouping of nodes

Fig. 13. Throughput comparison with existing methods

do not encouragement too much as associated to other

approaches. Accordingly it is unquestionably exposed

that the purposed technique donates better-quality fallouts

than predominant methodologies as THP in incorporated

checkpointing methodologys line continuously vacation

subordinate than the supplementary techniques lines.

IX. CONCLUSION AND FUTURE DIRECTIONS

This paper proposes a smart failover strategy for cloud

computing using integrated checkpointing algorithms,

which include the support of load balancing algorithms

and multilevel checkpointing. A simulator environment

has been developed that implement the purposed method.

Performance comparison of existing methods has been

made with the purposed method. It has been concluded

with the help of performance metric‟s comparison that the

proposed failover strategy gives good results than existing

methods.

In this paper homogeneous nodes has been considered

for simulation environment, in future work heterogeneous

nodes will be used for better results.

REFERENCES

[1] Reese, G., “Cloud Application Architectures:

Building Applications and Infrastructure in the cloud

(Theory in Practice)”, O„Reilly Media, 1st Ed., 2009 pp

30-46.
[2] J. D. Sloan, High Performance Linux Clusters With

Oscar, Rocks, OpenMosix and Mpi, O‟Reilly, Nov.2004,

ISBN 10: 0-596-00570-9 / ISBN 13: 9780596005702, pp.

2-3, [Online]. Available:

gec.di.uminho.pt/discip/minf/cpd0910/PAC/livro-hpl-clu

ster.pdf.
[3] Alvisi, Lorenzo and Marzullo, Keith,“ Message

Logging: Pessimistic, Optimistic, Causal, and Optimal,”

IEEE Transactions on Software En-gineering, Vol. 24, No.

2, February 1998, pp. 149-159.

[4] L. Alvisi, B. Hoppe, K. Marzullo, “Nonblocking and

Orphan-Free mes-sage Logging Protocol,” Proc. of 23rd

Fault Tolerant Computing Symp., pp. 145-154, June

1993.

[5] A. Agbaria, W. H Sanders, “Distributed Snapshots
for Mobile Computing Systems,” IEEE Intl. Conf.

PERCOM04, pp. 1-10, 2004.

[6] J. W. Young, “A First Order Approximation to the

Optimum Checkpoint Interval,” Communications of the

ACM, vol. 17, no. 9, pp. 530-531, 1974.

[7] A. Duda, “The Effects of Checkpointing on Program

Execution Time,” Information Processing Letters, vol. 16,

no. 5, pp. 221-229, 1983.

[8] J. S. Plank and M. G. Thomason, “Processor

Allocation and Checkpoint Interval Selection in Cluster

Computing Systems,” Journal of Parallel Distributed

Computing, vol. 61, no. 11, pp. 1570-1590, 2001.

[9] A. J. Oliner, L. Rudolph, and R. K. Sahoo,

“Cooperative Checkpointing: A Robust Approach to

Large-Scale Systems Reliability,” in ICS 06:

Pro-ceedings of the 20th Annual International Conference

on Supercomputing, 2006, pp. 14-23.

[10] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira,
“Adaptive Incre-mental Checkpointing for Massively

Parallel Systems,” in Proceedings of the 18th Annual

International Conference on Supercomputing (ICS), 2004,

pp. 277-286.

[11] S. I. Feldman and C. B. Brown, “IGOR: A System

for Program Debugging via Reversible Execution,” in

Proceedings of the 1988 ACM SIGPLAN and SIGOPS

Workshop on Parallel and Distributed Debugging

(PADD), 1988, pp. 112-123.

[12] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R.

Nassar, M. Paun, and S. L. Scott, “Reliability-Aware

Approach: An Incremental Checkpoint/ Restart Model in

HPC Environments,” in Proceedings of the 2008 Eighth

IEEE International Symposium on Cluster Computing

and the Grid (CCGRID), 2008, pp. 783-788.

[13] K. Stanoevska Slabeva, T. W. S. Ristol, “Grid and

cloud Computing and Applications, A Business
Perspective on Technology,” 1st Ed., pp. 23-97, 2004.

[14] Y. J. Wen, S. D. Wang, “Minimizing Migration on

Grid Environments: An Experience on Sun Grid Engine,”

National Taiwan University, Taipei, Taiwan Journal of

Information Technology and Applications, March, 2007,

pp. 297-230.

[15] S. Kalaiselvi, “A Survey of Check-Pointing

Algorithms for Parallel and Distributed Computers,”

Supercomputer Education and Research Centre (SERC),

Indian Institute of Science, Bangalore V Rajaraman

Jawaharlal Nehru Centre for Advanced Scientific

Research, Indian Institute of Science Campus, Bangalore

8 Failures in Cloud Computing Data Centers in 3-tier Cloud Architecture

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 3, 1-8

Oct. 2000,pp. 489-510, [Online]. Available:

www.ias.ac.in/sadhana/Pdf2000Oct/Pe838.pdf.

[16] R. Koo and S. Toueg, “Checkpointing and

rollback-recovery for dis-tributed systems,” IEEE

Transactions on Software Engineering, vol. 13, no. 1, pp.

23-31, 1987.

[17] “ZXTM for cloud Hosting Providers,” Jan. 2010,

[Online]. Available:

http://www.zeus.com/cloud-computing/for-cloud-provid

ers.html.

[18] “What Is Apache Hadoop?,”[Last Published:]

12/28/2011 02:56:30, [Online]. Available:

http://hadoop.apache.org.
[19] “JPPF Work distribution,”[Last Released]

1/31/2012, [Online]. Avail-able: http://www.jppf.org.

[20] P. Kumar, L. Kumar, R. K. Chauhan, “A

Nonintrusive Hybrid Synchronous Checkpointing

Protocol for Mobile Systems,” IETE Journal of Research,

Vol. 52 No. 2&3, 2006.

[21] P. Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed systems,”

Mobile Information Systems. pp 13-32, Vol. 4, No. 1,

2007.

[22] L. Kumar, P. Kumar, “A Synchronous

Checkpointing Protocol for Mo-bile Distributed Systems:

Probabilistic Approach,” International Journal of

Information and Computer Security, Vol.1, No.3 pp

298-314.

[23] S. Kumar, R. K. Chauhan, P. Kumar, “A

Minimum-process Coordinated Checkpointing Protocol

for Mobile Computing Systems,” International Journal of
Foundations of Computer science,Vol 19, No. 4, pp

1015-1038 (2008).

[24] G. Cao , M. Singhal , “On coordinated checkpointing

in Distributed Systems,” IEEE Transactions on Parallel

and Distributed Systems, vol. 9, no.12, pp. 1213-1225,

Dec 1998.

[25] G. Cao , M. Singhal, “On the Impossibility of

Minprocess Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing

Systems,” Proceedings of International Conference on

Parallel Processing, pp. 37-44, August 1998.

[26] G. Cao , M. Singhal, “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[27] Nitin H. Vaidya, “On Checkpoint Latency,”

Department of Com-puter Science, Texas A& M
University College Station, TX 77843-3112, Technical

Report 95-015, March 1995, [Online]. Available:

cite-seerx.ist.psu.edu.

[28] R. Subramaniyan, R. Scott Studham, and E.

Grobelny, “Optimization of checkpointingrelated I/O for

high-performance parallel and distributed computing,” In

Proceedings of The International Conference on Parallel

and Distributed Processing Techniques and Applications,

pp 937943, 2006.

[29] John W. Young, “A first order approximation to the

optimum checkpoint interval,” Communications of the

ACM, 17(9):530531, 1974.

[30] J. Daly, “A higher order estimate of the optimum

checkpoint interval for restart dumps,” Future Generation

Computer Systems, pp 303312, 2006.

[31] K. Pattabiraman, C. Vick, and AlanWood,

“Modeling coordinated check-pointing for large-scale

supercomputers,” In Proceedings of the 2005

International Conference on Dependable Systems and

Networks (DSN05), pp 812821, Washington, DC, 2005.

IEEE Computer Society.

Dilbag Singh is a student of

Department in Computer Science

and Engineering, Guru Nanak

Dev University, Amritsar Punjab

India. He completed his master

degrees in computerl science in

2010 at Guru Nanak Dev

University, Amritsar Punjab.

Now he is M.tech student and going to complete his M.

tech in June 2012. His research interests include Parallel

computing, software structure, embedded system, object

detection, identification, location sensing and tracking.

Amit Chhabra is a associate

professor in the Department of

Computer Science and

Engineering, Guru Nanak Dev

University, Amritsar Punjab India.

He has done M.tech in IT and

now perusing PHD in Cloud

Computing from Guru Nanak Dev

University, Amritsar Punjab. His research interests

include Parallel and Distributed computing.

Jaswinder Singh is a associate

professor in the Department of

Computer Science and

Engineering, Guru Nanak Dev

University, Amritsar Punjab

India. He has done MCA and

now perusing PHD from Guru

Nanak Dev University, Amritsar Punjab. His research

interests include Theory of Computer Science and

Software engineering.

