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Abstract— Nonlinear dynamics has been introduced to 
the analysis of biological data and increasingly 
recognized to be functionally relevant. The aim of this 
study is to evaluate nonlinear and chaotic dynamics of 
gait signals. For this purpose, we analyzed gait data in 
ten healthy subjects who walked for an hour at their 
usual, slow and fast paces. Poincare plots, Hurst 
Exponents and the Lyapunov Exponents of gait signals 
were calculated. The results show that the Hurst 
Exponents are significantly increased during slow and 
fast paces. For all subjects, the Lyapunov Exponents are 
increased during normal gait, which indicates that 
signals are more chaotic. This can be due to decreased 
nonlinear interaction of variables in slow and fast paces. 
The finite values of Hurst Exponents and positive values 
of Lyapunov Exponents suggest that all of gait signals 
have low dimensional chaos. In addition, the complexity 
of signals is decreased during slow and fast gait. Results 
are useful for the early diagnosis of common gait 
pathologies. 
 
Index Terms— Gait cycles, Hurst Exponent, Lyapunov 
Exponent, Nonlinear Dynamics, Poincare Plots 

 

I. INTRODUCTION  

Gait analysis is the systematic measurement, 
description, and assessment of quantities that 
characterize human locomotion; more simply put, it is 
the evaluation of a subject's walking pattern. A standard 
physical examination cannot provide a complete 
description of the complex pathology of abnormal 
human gait. Gait analysis can. In the treatment of 
neuromuscular disorders such as cerebral palsy, precise 
assessment enables the surgeon to assess all the 
pathological components of gait and to carry out all the 
operations required for their correction during the same 
anesthesia session. This saves money, avoids 
unnecessary pain and inconvenience, and eliminates the 
need for more than one postoperative period of 
rehabilitation [1]. 

The walking pattern is studied as a gait cycle, 

which is defined as the movement of a single limb from 
a heel-strike to heel-strike again [2] (Fig. 1).  

The stance phase is initiated when a foot strikes the 
ground and ends when it is lifted. The swing phase is 
initiated when the foot is lifted and ends when it strikes 
the ground again. The stride interval is the time to 
complete each cycle. Step length indicates the distance 
from a specific stance-phase event of one foot to the 
same event of the other foot. It is named after the lead 
foot. In abnormal gait, the step lengths of the two sides 
may be unequal. Stride length is the distance from the 
initial contact of one foot to the following initial contact 
of the same foot; this sometimes is called cycle length. 
Still, it appears that in the short term, relatively 
increased stride-to-stride variability of gait is generally a 
sign of diminished control and poor locomotor health. 
Velocity refers to the average horizontal speed of the 
body along the plane of progression, measured over one 
stride or more. 

 

Figure 1.  The gait cycle extended from heel strike to heel strike of 
one leg. It consists of stance phase and swing phase.  

 
In healthy adults, gait appears to be relatively 

unvarying. That is, during steady-state walking, each 
stride looks like an identical copy of the one before. To 
a large degree, this is correct. However, closer 
examination reveals small and subtle stride-to-stride 
changes in the gait pattern, even in healthy young adults 
[3]. 

Walking is a complex process which we have only 
recently begun to understand through the application of 
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nonlinear data processing techniques [2-7] to study 
interval data. 

Human locomotion is known to be a voluntary 
process, but it is also regulated through a network of 
neurons called a central pattern generator (CPG) [8], 
capable of producing a syncopated output. 

The assessment of gait cycles can provide valuable 
information about locomotion systems and control 
systems involved in their complex regulation.  

Time series analysis of physiological parameters is 
usually performed in time and frequency domains by so 
called linear methods. In these methods, the non-
periodic oscillations are ignored and usually regarded as 
a noise [9].  

Biological system components interact in a 
complex manner [10-12]. These interactions are not 
linear. Therefore, there is an effort to apply nonlinear 
analysis. In the work by Campbell and Bobick [13], 
phase space is employed to characterize body 
movements using a matching criterion to identify the 
motion. Van Emmerik et al. [14] in a tutorial overview, 
discuss how various seemingly simple human actions 
are the result of the interaction of complex systems. 
West and Scafetta [15] analyze the stride length of 
humans, which have been shown to be slightly multi-
fractal, which can be modeled using nonlinear 
oscillators. Dingwell and Cusumano attempt to quantify 
local dynamic stability of human walking to identify 
subjects who were prone to falling [16]. This was done 
using chaotic measures.  

Labini et al. [17] developed a new method for 
walking balance assessment measuring the complexity 
of head, trunk and pelvis three-dimensional 
accelerations and angular velocities during normal over 
ground locomotion by means of recurrence 
quantification analysis (RQA) in normal subjects and 
unilateral vestibular hypofunction (UVH) patients. 
Chang et al. [18] tested the hypothesis that treadmill 
walking without handrails would diminish the statistical 
persistence in an individual’s stride interval time series. 
The scaling exponent was employed in their study as a 
measure of the statistical persistence of the stride 
interval time series. Scafetta et al. [19] showed that the 
CPG of human locomotion can be modeled as a system 
of coupled nonlinear oscillators by estimating the local 
Holder exponents of the stride interval. 

Nonlinear analysis such as Hurst Exponents, 
Lyapunov Exponents and phase space are able to 
provide information about a normal dynamical system 
and its clinically important applications (diagnosis, 
prognosis).  

Basically, the largest Lyapunov exponent estimates 
the mean exponential divergence or convergence of 
nearby trajectories in phase space, expressing the well-
known sensitive dependence to initial conditions in a 
nonlinear phenomenon [20-21]. Hurst Exponent is 
pointed to the self similar property of a system. Hence, 

they may serve as a good estimate of the chaoticity of a 
dynamical system. Therefore, in this study, we 
attempted to use important nonlinear quantities, phase 
space, the largest Lyapunov exponent and Hurst 
Exponent, to quantify gait signals. 

In this study, the effects of several experimental 
conditions (normal, slow and fast paces) on gait 
properties are examined in order to probe common and 
feature-specific responses to these different gait 
properties. 

The outline of this study is as follows. At first, we 
briefly describe the sets of data, which are used for this 
study. Then, we explain the phase space, Hurst 
Exponent and Lyapunov Exponents. Finally, we present 
the results of analysis of these features on data set, and 
we conclude the study. 

 

II. BACKGROUND  

 

A.  Data collection 

To study the nonlinear properties, we analyzed gait 
data in ten subjects who walked for an hour at their 
usual, slow and fast paces [22]. Stride interval 
fluctuations were studied in ten young, healthy men. 
Participants had no history of any neuromuscular, 
respiratory or cardiovascular disorders, and were taking 
no medications.  

Mean age was 21.7 years (range: 18-29 years). 
Height was 1.77 ± 0.08 meters (mean ± S.D.) and 
weight was 71.8 ± 10.7 kg. All subjects provided 
informed written consent.  

Subjects walked continuously on level ground 
around an obstacle free, long (either 225 or 400 meters), 
approximately oval path and the stride interval was 
measured using ultra-thin, force sensitive switches taped 
inside one shoe. 

 

B. Poincare Plot 

A Poincare plot, named after Henri Poincare, is 
used to quantify a self-similarity in processes. Poincare 
plot is a geometrical representation of a time series in a 
Cartesian plane. A two dimensional plot constructed by 
plotting consecutive points is a representation of time 
series on phase space or Cartesian plane [23].  

It shows variability of data and describes 
performance of the loco-motors system in controlling the 
foot at a critical event. Poincare plot with high 
correlation coefficients is attributed to a high level of 
control between strides; where as a low correlation 
shows less control since one stride is loosely affected by 
the previous stride. These plots were used to extract 
indexes such as length and width of the long and short 
axes of Poincare plots. The length of this plot 
corresponds to the level of long term variability, while 
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the width of the plot indicates the level of short term 
variability [10,24]. A standard Poincare plot is shown in 
Fig. 2. 

Two basic descriptors of the plot are SD1 and SD2. 
The line of identity is the 45° imaginary diagonal line on 
the Poincare plot and the points falling on the imaginary 
line has the property Xn = Xn+1. SD1 measures the 
dispersion of points perpendicular to the line of identity, 
whereas SD2 measures the dispersion along the line of 
identity. 

Fundamentally, SD1 and SD2 of Poincare plot is 
directly related to the basic statistical measures, standard 
deviation of time series (SDX), and standard deviation 
of the successive difference of time series (SDSD), 
which is given by the relation shown in equation (1) and 
equation (2). 
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Where γX(0) and γX(1) is the autocorrelation 

function for lag 0 and lag 1 data interval and X is the 
mean of time series intervals. From equations (1) and (2), 
it is clear that the measures SD1 and SD2 are actually 
derived from the correlation and mean of the time series 
with lag 0 and lag 1. 

 

Figure 2.  A standard Poincare plot (lag-1) SD1 and SD2 represent the 
dispersion along minor and major axis of the fitted ellipse [24]. 

 

The above equation sets are derived for unit time 
delay Poincare plot. Researchers have shown interest in 
plots with different time delays to get a better insight in 
the time-series signal. Usually the time delay is multiple 
of the cycle length or the sampling time of the signal [25]. 
The dependency among the variables is controlled by the 
choice of time delay, and the most conventional analysis 

is performed with higher order linear correlation between 
points. 

In case of plotting the 2D phase space with lag m 
the equations for SD1 and SD2 can be represented as: 
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where γX (m) is the autocorrelation function for lag 
m time series. This implies that the standard descriptors 
for any arbitrary m lag Poincare plot is a function of 
autocorrelation of the signal at lag 0 and lag m. 

 

C.  Hurst exponent 

The Hurst exponent is used as a measure of the 
long term memory of time series. It relates to the 
autocorrelations of the time series and the rate at which 
these decrease as the lag between pairs of values 
increases. Studies involving the Hurst exponent were 
originally developed in hydrology for the practical 
matter of determining optimum dam sizing for the Nile 
River's volatile rain and drought conditions that had 
been observed over a long period of time [26]. The 
name "Hurst exponent" or Hurst coefficient derives 
from Harold Edwin Hurst (1880–1978), who was the 
lead researcher in these studies, and the use of the 
standard notation H for the coefficient relates to this 
name also. 

The Hurst exponent is a measure that has been 
widely used to evaluate the self-similarity and 
correlation properties of fractional Brownian noise and 
the time series produced by a fractional (fractal) 
Gaussian process.  

Hurst exponent is used to evaluate the presence or 
absence of long-range dependence and its degree in a 
time series. However, local trends (nonstationarities) are 
often present in physiological data and may compromise 
the ability of some methods to measure self-similarity. 
Hurst exponent is the measure of the smoothness of a 
fractal time series based on the asymptotic behavior of 
the rescaled range of the process. 

The autocorrelation function of a fractal noise {ξi} 
is related to the Hurst exponent (H) via the equation (5): 
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Or, equivalently, in the power spectrum 
representation: 
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1/f corresponds to chaotic behavior, and it is 
characterized by Fractal properties not by Euclidean 
properties. The harmonics of chaotic signals are 
fractions of the main frequency of signal. The 
corresponding spectral density of 1/f is continued and 
described by power law. It suggests that the process is 
self similar.  

Hurst exponent of 0.5 represents a signal with the 
characteristics of ordinary random walk or Brownian 
motion. Values for H<0.5, reflect the negative 
correlation between the increments or anti persistent 
time series, and H>0.5, show the positive correlation 
between the increments or persistent natural series. 

In this study, we use Kaiser Window to calculate 
the Hurst Exponent. The window size is 100, and its 
beta parameter is 0.5. 

 

D. Lyapunov exponent 

Consider two (usually the nearest) neighboring 
points in phase space at time 0 and at time t, distances of 
the points in the ith direction being  0ix and  txi , 

respectively. The Lyapunov Exponent is then defined by 
the average growth rate λi of the initial distance 
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The existence of a positive Lyapunov Exponent 

indicates chaos. This shows that any neighboring points 
with infinitesimal differences at the initial state abruptly 
separate from each other in the ith direction [27].  

An exponential divergence of initially nearby 
trajectories in phase space coupled with folding of 
trajectories, ensures that the solutions will remain finite, 
and is the general mechanism for generating 
deterministic randomness and unpredictability. 
Therefore, the existence of a positive λ for almost all 
initial conditions in a bounded dynamical system is 
widely used.  

To discriminate between chaotic dynamics and 
periodic signals Lyapunov exponent (λ) is often used. It 
is a measure of the rate at which the trajectories separate 
one from other. The trajectories of chaotic signals in 
phase space follow typical patterns. Closely spaced 
trajectories converge and diverge exponentially, relative 
to each other. For dynamical systems, sensitivity to 
initial conditions is quantified by the Lyapunov 
exponent (λ). They characterize the average rate of 
divergence of these neighboring trajectories. 

 A negative exponent implies that the orbits 
approach a common fixed point. These systems are 
non conservative (dissipative). The absolute value 
of the exponent indicates the degree of stability.  

 A zero exponent means the orbits maintain their 
relative positions on a stable attractor. Such systems 
are conservative and in a steady state mode.  

 Finally, a positive exponent implies the orbits are 
on a chaotic attractor [28-29]. The magnitude of the 
Lyapunov exponent is a measure of the sensitivity 
to initial conditions, the primary characteristic of a 
chaotic system. 

 

E.  Statistical Analysis 

In this study, the t-test of the null hypothesis that 
data in the vector x are a random sample from a normal 
distribution with mean 0 and unknown variance, against 
the alternative that the mean is not 0 is performed. The 
result of the test is returned in p-value. P-value→0 
indicates a rejection of the null hypothesis at the 5% 
significance level (p<0.05). P-value→1 indicates a 
failure to reject the null hypothesis at the 5% 
significance level. 

 
 
 

III. RESULTS 

Poincare plots, Hurst Exponent and Lyapunov 
Exponents of human gait were calculated. Then the 
results of analysis of signals in normal walking were 
compared to slow and fast gaits. 

In order to compare the gait patterns of slow, 
normal and fast stride intervals, representative example 
of time series is shown in Fig. 3.  

As shown in Fig. 3, different paces of walking 
(normal, slow and fast paces) affect the pattern of gait 
time series. The mean stride intervals are about 1.35, 
1.25 and 1.07 for, respectively, unconstrained slow, 
normal, and fast paces. 

The period of time over which measurements were 
done is approximately one hour. The concept of phase-
space analysis of chaotic systems is extended here for 
gait signals. 

Fig. 4 shows the width of the Poincare plots of gait 
signals for all records in three states: Fast, normal and 
slow gait.  
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Figure 3.  Typical stride interval time series (second) of human gait. 
top: normal gait, middle: fast gait, bottom: slow gait. 

According to Fig. 4, the width of Poincare plots of 
gait signals is increased significantly during slow gait. 

The Lyapunov Exponents of signals were analyzed. 
All the Lyapunov Exponents are positive, which 
confirm the chaotic nature of the signals recorded in 
slow, fast and normal gait. Maximum values of the 
Lyapunov Exponents are given in Fig. 5.  

Fig. 5 demonstrates that the average value of the 
Lyapunov Exponents is about 0.945 during normal gait, 
while it is about 0.907 during fast gait, and about 0.9 
during slow gait. In addition, the results indicate that the 
maximum Lyapunov Exponents are decreased during 

slow and fast gaits (p<0.05). It shows that gait signals 
in normal walking are more chaotic than that two other 
stages. 

 

Figure 4.  he width of the Poincare plots of human gait signals:  
Fast gait (-  -), normal gait (-● ) and slow gait (· ·●· ·). 

Figure 5.  Box plot of Lyapunov Exponents of human gait signals: 
Fast gait, normal gait and slow gait. 

 
Fig. 6 depicts values of the Hurst Exponents of 

signals for all subjects.  

According to Fig. 6, the average value of the Hurst 
Exponent is about -1.12 during normal gait, but it is 
increased during fast gait (-1.06) and slow gait (-0.92). 
Therefore, the average value of Hurst Exponents is 
increased significantly during slow gait (p<0.05). 

 

Figure 6.  Box plot of Hurst Exponents of human gait signals:  
Fast gait, normal gait and slow gait. 

 
 

IV. DISCUSSION 

The assessment of gait cycles can provide valuable 
information about locomotion systems and control 
systems involved in their complex regulation.  
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In this study, we examined the dynamic effects of 
slow, fast and normal gait in ten healthy men. The main 
goal of this study was to investigate the nonlinear 
dynamics of gait signals in the three specific states. 

Features play an important role in study dynamics 
of biological signals. Some measures may be more 
attuned than others. The framework of the theory of 
nonlinear dynamics provides new concepts and 
powerful algorithms to analyze such time series. By 
applying nonlinear data processing techniques to stride 
interval sequences, we can begin to disclose the intrinsic 
complexity of the process of walking, which is not just a 
simple cyclical periodic phenomenon.  

The discovery that locomotion is a complex 
cyclical phenomenon involving both order and 
randomness in different degrees has suggested the 
development of nonlinear analysis for the purpose of 
capturing the dynamical properties of the inter stride 
interval sequences.   

Stride time interval sequences are characterized by 
different features. These features can be used as a 
measure of the degree of maturation or degeneration of 
the network that regulates human movement. In addition, 
a different kind of stress, for example, walking faster or 
slower than normal, or following a given frequency of a 
metronome, alters the characteristics of stride intervals. 
The dynamics of the spontaneous stride interval are 
normally quite robust and intrinsic to the locomotor 
system. Furthermore, this property of neural output may 
be related to the higher nervous centers responsible for 
control of walking rhythm. 

The results of present study demonstrate that 
different paces of walking (normal, slow and fast paces) 
affect the pattern of gait time series (Fig. 3). In addition, 
it is evident from Fig. 3 that the stride interval of 
humans fluctuates in time. Movement behavior often 
appears irregular and without any structure. 

It is found that human gaits are chaotic in all three 
states, as suggested by the positive Lyapunov Exponents 
in either state. In addition, it suggests that gait signals 
have low dimensional chaos, and the complexity of 
signals is decreased during fast and slow gaits. Decrease 
in Lyapunov Exponents (p<0.05) during slow and fast 
gait indicates that signals are less chaotic than that in 
normal gait. This can be due to decreased nonlinear 
interaction of variables in fast and slow gaits. 

For all subjects, the Hurst Exponents is 
significantly increased during slow and fast gaits 
(p<0.05). Analysis of Hurst Exponents shows that the 
chaotic behavior of signal is decreased during slow and 
fast gait. 

In a previous study involving gait, Costa et al. [30] 
applied Multi-Scale Entropy (MSE) for analyzing gait 
with different speeds and studied the scaling effect on 
Sample Entropy for different walking rates. The results 
of Khandoker et al. [31] suggest that gait pathologies 
with falls and balance problems are reflected in Poincare 

plots and features extracted from these plots are 
effective in differentiating between healthy and falls-
prone gaits. In another study, Stansfield et al. [32] 
applied linear regression analysis of the relationships 
between speed of walking and related kinetic and 
kinematic parameters. They have quantified significant 
trends in gait parameters with normalized speed. 

 
 

V. CONCLUSION 

The nonlinear dynamics of the stride interval 
fluctuations is different under faster or slower paced 
frequencies relative to the normal paced frequency of a 
subject. 

The results show that nonlinear analysis of time 
series has a potential to find the exact and hidden 
changes of signals, which cannot be found in linear 
methods. These methods are predominantly used for 
analyzing an irregular behavior in complex systems, 
since they enable the introduction of basic concepts 
directly from the experimental data, thus guaranteeing a 
better link between real-life phenomena and the theory.  

In summary, this study shows that analysis of 
Poincare plots, Hurst Exponent and Lyapunov 
Exponents can be useful in analyzing the human gait 
signals in different states.  

There is a huge but unexplored potential for 
discovering additional relationships in gait signal 
fluctuations. Furthermore, the present study examined 
only a small subset of the potentially relevant gait 
parameters and a few dynamical measures. Many 
different aspects of gait could be examined with other 
dynamical approaches. 

Hopefully, the present work will motivate 
additional studies and analyses of gait in different paces 
of walking and variety types of walking problems. 
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