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Abstract—Clustering algorithms are used in many Natural 
Language Processing (NLP) tasks. They have proven to be 
popular and effective tools to use to discover groups of 
similar linguistic items. In this exploratory paper, we 
propose a new clustering algorithm to automatically cluster 
together similar sentences based on the sentences’ part-of-
speech syntax. The algorithm generates and merges 
together the clusters using a syntactic similarity metric 
based on a hierarchical organization of the parts-of-speech. 
We demonstrate the features of this algorithm by 
implementing it in a question type classification system, in 
order to determine the positive or negative impact of 
different changes to the algorithm. 
 
Index Terms—natural language processing, Part-of-speech, 
clustering 

  
 
1. Introduction 
 

Clustering algorithms are used in many Natural 
Language Processing (NLP) tasks, from grouping words 
[1] and documents [2] to entire languages [3]. They are 
popular tools to use to group similar items together and 
discover the links between them. In this exploratory 
paper, we propose a new clustering algorithm to 
automatically discover and group together similar 
sentences based on the sentences’ part-of-speech syntax. 
As a clustering distance metric, we use a part-of-speech 
hierarchy which we developed in our past work [4]. We 
apply this clustering system to the task of discovering 
the informer spans that Krishnan et al. proposed in their 
work on question type classification [5], and our 
experimental results demonstrate that our clustering 
system generates interesting results relative to that 
application. 

The remainder of this paper is organized as follows. 
In Section 2, we review a representative sample of work 
done on NLP clustering system and in the task of 
question type classification, in order to clearly illustrate 
the nature of our contribution. The theoretical 
frameworks of our clustering algorithm and of our part-
of-speech hierarchy are all presented in Section 3. Our 
ideas have all been implemented and tested, and 
experimental results are presented and discussed in 
Section 4. Finally, we offer some concluding remarks in 
Section 5. 
  
2. Background 
 

Clustering systems are already being used in 
several branches of Natural Language Processing (NLP). 
For example, the authors of [3] designed a spoken 
language recognition system that clusters spoken 
utterances based on their spectral features. Preliminary 
tests of their system showed comparable results to the 
baseline, which is encouraging given the large range of 
currently-unexplored refinements they could implement. 
In parallel, the authors of [6] proposed a language 
recognition system that works by clustering languages 
and then dividing them hierarchically into sub-clusters. 
These authors studied several distance metrics to 
measure the difference between languages, and finally 
settled on a fusion of measures. In this context, one 
could see the methodology presented in this paper as the 
development of a new distance metric based on parts-of-
speech, to be used independently or with others in 
clustering algorithms. Another popular NLP task 
sometimes done with clustering is that of document topic 
identification. This one can be done more directly, by 
representing documents as word vectors and clustering 
the vectors according to their Euclidean Distance, Cosine 
Similarity, Jaccard Coefficient, or any other of the many 
possible vector distance metrics available [2], [7], or 
with probabilistic measures such as the Gaussian mixture 
model [8]. This further demonstrates how natural 
language text can be converted to a form usable by 
classical mathematical clustering algorithms. A final 
example, a little more closely related to this research, is 
the project on part-of-speech clustering presented in [1]. 
The author’s intuition is that they could improve on a 
unigram language model by differentiating between 
topic words, style words, and general words based on 
their parts-of-speech. To accomplish this, they developed 
a probabilistic clustering algorithm to group a set of 90 
parts-of-speech into these categories using two corpora 
of text documents covering several different topics. 
Their system discovered appropriate clusters, which 
could then be successfully applied in a large vocabulary 
speech recognition system. While our project’s aim and 
clustering technique are different, their work does 
confirm that parts-of-speech clustering can be applied 
successfully in NLP applications. 

The clustering system we are developing in this 
research will be customized to learn clusters useful for 
the task of question type classification. Question type (or 
answer type) classification is the NLP task of 
determining the correct type of the answer expected to a 
given query, such as whether the answer should be a 
person, a place, a date, and so on. This classification task 
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is of crucial importance in question-answering (QA) 
systems, to allow them to retrieve answers of the correct 
type and to reject possible answers of the wrong type [9]. 
In fact, it has been shown that questions that have been 
classified into the correct type are answered correctly 
twice as often as misclassified questions [9]. Over the 
years, many varied approaches to question type 
classification have been proposed. For example, the 
authors of [10] used a Naïve Bayes classifier to compute 
the probability of a query belonging to one of six 
question types given the prior probability of that type 
multiplied by the conditional probability of the query’s 
features (i.e. the words left after stemming and stopword 
removal) given that type. Going in a different route, a 
team from the University of Concordia developed a 
simple but accurate keyword- matching question type 
classification system with a large manually-built lexicon 
as part of their QA system for the TREC-2007 
competition [9]. The authors of [11] and [12] tried a 
similar approach using WordNet as a lexicon, but found 
that their systems could be misled in cases where the 
query’s syntax affected the meaning and importance of 
keywords. The authors of [12] took this a step further 
and added some question syntactic patterns in their 
system to deal with common problem phrasings. Finally, 
Zhang and Nunamaker [13] built a pattern-based 
question type classifier that classifies each user’s query 
according to a set of simple patterns that combine both 
the wh-terms (who, what, where, when, why, which, 
whom, whose, how) and the categories of keywords 
found in the query. It has been pointed out [5] that a 
common limiting factor in all these systems is the 
reliance on large unpublished knowledge bases, be it 
conditional probability tables, keyword lexicons, or lists 
of syntactic patterns. For our purposes, the most closely-
related project is the one proposed by Krishnan et al. in 
[5]. They proposed that the patterns used for question 
type classification could consist simply of a short string 
of contiguous words found in the query, which may or 
may not include wh-terms, and which they called the 
informer span (or simply informer) of the query. Their 
work shows clearly that a support vector machine 
classifier using hand-made informers yields better results 
than question bigrams, and that informers discovered 
automatically work almost as well as hand-made ones. 
Our work is related to theirs in the sense that, as we will 
explain later on, the centers of the clusters learned by our 
system correspond to informers that can be used for 
question type classification.  
 
3. Methodology 
 

In this paper, we develop a new system for sentence 
clustering based on the idea of informers and on a part-
of-speech hierarchy that we present below. The objective 
of this algorithm, as for any clustering algorithm, is to 
discover the set of clusters that best represent the data. In 
general terms, this means having high intra-cluster 
homogeneity, a high inter-cluster heterogeneity, and a 
small number of clusters. The application we are dealing 

with in this project is question type classification, 
because it has proven to be a challenging task to 
automate, as is evidenced by the number of manually-
created solutions presented in Section 2, and because of 
the direct connection with our past work [14]. In this 
application, the objectives of the clustering algorithm are 
to learn the smallest set of clusters to allow the best type 
classification results. 
   3.1 Part-of-Speech Hierarchy 

A part-of-speech (POS) is commonly defined as a 
linguistic category of lexical items that share some 
common syntactic or morphological characteristics. 
However, it is telling that, despite the concept of a POS 
being thousands of years old, grammarians and linguists 
still cannot agree on what exactly the shared 
characteristics are. This question has very real practical 
consequences: depending on where the line is drawn 
between common characteristics and distinguishing 
differences, one can end up with anywhere from the 
eight parts-of-speech defined in English textbooks to the 
198 parts-of-speech of the London-Lund Corpus of 
Spoken English [15]. 

Our solution to this problem is to organize lexical 
items not into a single set of parts-of-speech but into a 
part-of-speech hierarchy. The lower levels of this 
hierarchy feature a greater number of finely-
differentiated parts-of-speech, starting with the Penn 
Treebank POS tags at the lowest level, while the higher 
levels contain fewer and more general parts-of-speech, 
and the topmost level is a single all-language-
encompassing “universe” part-of-speech. Another 
innovation has been the inclusion in our hierarchy of 
several “blank” parts-of-speech, to represent and 
distinguish between the absences of different types of 
words. In total, our hierarchy contains 165 parts of 
speech organized in six levels. We originally developed 
it in the context of a keyword-extraction project; a 
detailed description of the hierarchy can be found in the 
paper describing that project [4]. 

We can define the semantic importance of different 
lexical items by assigning weights on the connections 
between POS in the hierarchy. This allows us to 
specialize the hierarchy for use in different NLP tasks. In 
our earlier work on keyword extraction [4], weight was 
given to verbs and nouns – the typical parts-of-speech of 
the keywords we were looking for. For question type 
classification, however, verbs and nouns are not the most 
semantically important words to take into account. 
Indeed, Tomuro [11] has shown that question type 
classification relies mostly on closed-class non-content 
words. The semantic weight in our hierarchy was thus 
shifted to the subtrees corresponding to popular query 
adverbs and pronouns, including wh-terms, and 
calibrated using queries from the 2007 TREC QA track 
[16] as examples. The value of each POS in our 
hierarchy is then computed on the basis of its semantic 
weight and of the number of descendents it has. The 
resulting hierarchy, with the value of each POS, is 
presented in Figure 1. 
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We showed in [4] how using a part-of-speech 
hierarchy makes it possible to mathematically define 
several linguistic comparison operations. It is possible to 
compute the similarity between two words or POS 
simply as a function of their distance in the hierarchy. 
This computation takes several factors into account, 
including the number of levels in the hierarchy that need 
to be traversed on the path from one POS to the other 
and the value of each intermediate POS visited. Likewise, 
we can find a general place-holder POS to represent two 
words simply by finding the lowest common ancestor of 
both words in the hierarchy, and the similarity of the 
place-holder compared to the original two words it 
represents is again a function of the distance in the 
hierarchy between each word and the place-holder POS. 
By extension, we can measure the similarity between 
two sentences by pairing their words together by 
similarity; the fact that our hierarchy includes “blank” 
parts-of-speech means that the two sentences do not need 
to be of the same length to be compared. And finally, we 
can merge two sentences by pairing their words together 
by similarity and replacing each pair by its lowest 
common ancestor in the hierarchy. 

It is now straightforward to see how our part-of-
speech hierarchy can be used for the task of question 
type classification. Given a list of informers representing 
different question types, we can use the hierarchy to 
compute the similarity between a user-specified query 
and each informer. The query is then classified to the 
same type as the informer it is most similar to. 

 
Fig 1: The POS hierarchy (POS values are in brackets). 

We implemented such a system in our work 
presented in [14]. The question types we used are 
“person” (who), “date” (when), “physical object” (what), 
“location” (where), “numeric value” (how many/how 
much), and “description” (how/why). The results 
presented in that paper show that a classifier based on 
our hierarchy can achieve an F-measure of 70% using 
only 16 basic informers, albeit with a strong bias for 
precision over recall. This stands in stark contrast to the 
other systems reviewed in Section 2, which need large 
sets of patterns, lexicons, or probability tables to work 

well. The 16 basic informers in that project were defined 
manually, but they are trivial two-word informers that 
combine each question type’s wh-term and one higher-
level POS from our hierarchy that represents a past-tense 
verb (vbd), a present-tense verb (vbz), a description 
adjective (jj), a singular common noun (nn) or a plural 
common noun (nns). The informers are listed in Figure 2. 
Finally, it is worth noting a second result from [14], 
which is that using a learning algorithm to discover more 
informers allows the classifier to balance precision and 
recall without reducing F-measure. 

Who [vbz] 
Who [vbd] 
When [vbz] 
When [vbd] 
Where [vbz] 
Where [vbd] 

What [nn]  
What [nns] 
What [vbz] 
What [vbd] 
Why [vbz] 
Why [vbd]  

How [jj] 
How [nn] 
How [vbz] 
How [vbd] 

Fig 2: 16 basic informer spans from [14]. 
   3.2 Informer-Clustering Algorithm 

In our algorithm, each cluster combines together 
queries of the same type. The cluster’s center is defined 
as the generic query obtained by merging all queries in 
the cluster. Adding a query to the cluster is done by 
merging that query with the current cluster center. 
Splitting a cluster is also possible; when the generic 
query in the center contains a part-of-speech that is 
higher than a set threshold in the hierarchy, that part-of-
speech is discarded and the query is split in two parts at 
that point. Each part becomes the center of its own new 
cluster, combining a copy of the set of queries of the 
original cluster. Given our discussion in the previous 
section, it can be seen that the cluster centers are the 
same as the informer spans we want the algorithm to 
learn. 

The pseudocode of the clustering algorithm we 
propose is presented in Figure 3. The algorithm takes in 
as input a list of training queries, which it will try to 
cluster. Optionally, we may also want to input some 
manually-defined application-specific informers, such as 
the 16 basic informers from our work in [14]. This 
would allow the system to consider clusters that we 
know to be valid. The impact of this additional input will 
be studied in the experiments in Section 4. 

The algorithm begins by pairing together all queries of 
each type according to their similarity to each other, with 
the constraint that each query can only be paired to one 
other query. The algorithm thus goes through the list of 
possible pairings, accepting them in order of decreasing 
similarity, and rejecting those that use queries that are 
already in more similar pairs. To illustrate, suppose a 
query type has four queries labeled A, B, C and D. The 
possible pairings are A-B, A-C, A-D, B-C, B-D and C-D, 
and the similarities between them (i.e. the distances 
between them in the POS hierarchy) are 5, 7, 9, 12, 8 and 
15 respectively. The algorithm considers these pairs in 
order of decreasing similarity (increasing distance) 
starting with the most similar (least distant) pair, A-B. 
Since neither A nor B has been paired yet, this pair is 
accepted. The algorithm considers the other pairs in 
order; however all other pairs except one use either A or 
B, which is not allowed since they have already been 
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paired, and thus are rejected. The last pair considered in 
order is the one with the lowest similarity (greatest 
distance), C-D. It is however the most similar acceptable 
pair for these queries, and is retained by the algorithm. 

This set of pairs is used by our algorithm as the initial 
set of clusters. This set will be naturally very large: at 
least half the size of the initial training set, and more if 
some of the clusters are split by the method described 
previously. Moreover, the informers of some of these 
initial clusters may not be useful to correctly classify 
queries into question types; they would typically be the 
result of splitting a cluster into two parts, one of which is 
irrelevant. For example, imagine two queries that are 
identical except for a completely different final word 
before the question mark. Merging these two queries 
together would give an informer that has a very general 
part-of-speech instead of the final word, and this 
informer would in turn be split into two, one that has all 
the words before the final one, and one that has 
everything after the final word, which is to say only the 
question mark at the end. Clearly, a question-mark-only 
informer is useless for classification! Consequently, the 
second step of our algorithm is to detect and remove 
these informers and clusters. This task is implemented 
by classifying the training set using the list of informers 
and deleting those informers that lead to more 
misclassifications than correct classifications, as 
illustrated in the pseudo-code of Figure 4. This is an 
optional step, however, since our algorithm can work 
whether or not it is executed. In our experimental results, 
we will study the impact of executing or skipping it. 

Steps 3 to 6 in our algorithm are the cluster merging 
steps. In this step, the algorithm considers all pairs of 
clusters, in order of decreasing similarity of their cluster 
centers. For each pair, the algorithm merges the cluster 
centers, and then evaluates the merged center. The 
quality of the merged cluster is evaluated and, if it is 
found to be better, the original clusters are discarded and 
the new cluster is added to the list of clusters for 
consideration. Otherwise, the new cluster is discarded 
and the two original ones are maintained. Several 
metrics could be used for this quality evaluation; in this 
study we will consider the similarity of the queries to the 
center and the classification results. In the first metric, 
we are comparing the quality of the new cluster to that of 
the original clusters. We compute the average similarity 
of the queries in each cluster to their respective cluster 
center to get the quality of the original clusters, and 
likewise the average similarity of the queries to the 
merged cluster center gives the new cluster’s quality. 
The cluster with the best average similarity is considered 
the one with the highest quality. For the second metric, 
we find the number of training queries that would be 
classified by the new informer corresponding to the 
cluster center, and count how many of these queries are 
correctly classified and how many are not. A cluster 
whose informer allows more correct classification than 
incorrect ones is considered to be of good quality. It 
should be noted that in this second metric, unlike in the 
first one, a merged cluster is accepted or rejected based 

on its own performance and not in comparison to the 
original two clusters it merges together. But either way, 
the algorithm can use a merger bonus to relax the 
acceptance criterion and allow the algorithm to accept 
bad mergers. 

The final step of the algorithm consists in a filtering 
task like the one optionally done in step 2. Earlier in the 
algorithm it was done to detect cluster that are not useful 
for type classification and eliminate them from 
consideration in the rest of the algorithm. Now it is done 
as a final step, to detect and eliminate similarly non-
predictive clusters that have been learned through the 
repetitive merging and splitting of clusters in steps 3 to 6. 
This is again done using the filtering algorithm of Figure 
4. 
Input: Training queries, initial 

informers (optional), bonus  
1. Pair the training queries by 

similarity to get initial clusters 
2. Filter non-predictive initial 

clusters (optional) 
3. For each pair of clusters, ordered 

by similarity 
   4. Merge the two cluster centers 

together 
   5. Evaluate the quality of the 

merger, and apply bonus 
   6. If the merger is of good 

quality, save the merged 
cluster and discard the 
original pair; otherwise 
discard the merger and keep the 
original pair 

7. Filter non-predictive clusters 
Fig 3: Pseudocode of our clustering algorithm. 

Input: Training queries, list of 
informers, Threshold 

1. Do: 
   2. Classify all training queries 

to the most similar informer in 
the list 

   3. For each informer: 
      4. NCorrect ← The number of 

queries of the correct type 
classified by this informer 

      5. NIncorrect ← The number of 
queries of other types 
misclassified by this 
informer 

      6. If NIncorrect*Threshold > 
NCorrect, remove informer 
from the list 

7. While informers are removed in 
step 6 
Fig 4: Pseudocode of the filtering step. 

 
4. Experimental Results 
 

For our experiments, we built a training corpus of 
queries using the 459 queries from the 2007 TREC QA 
track [16]. We tagged the words of the queries with their 
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4.1.1 Filtering initial clusters parts-of-speech using the standard Brill tagger, and we 
manually classified the queries into their correct question 
types. We used the data to run five-fold tests, breaking 
the data into five non-overlapping equal-sized sets of 
queries and successively training the system with four 
sets and testing with the fifth. 

One of the first options mentioned in Section 3.2 is 
whether or not to filter the initial set of clusters with the 
algorithm of Figure 4 before running the cluster-merging 
loop. The intuitive justification for this step is that if the 
system catches and eliminates non-predictive clusters 
early on, the merging algorithm will then focus on 
merging useful pairs of clusters together and learn valid 
general clusters. 

In each of the experiments, we used the centers of the 
final clusters generated by the algorithm as informers to 
classify the queries into each of our six question types, 
and we computed the precision and recall of the 
classification using the standard equations given in (1) 
and (2). We then computed the average precision and 
recall over all six types, and the average F-measure using 
equation (3). 

However, the results obtained in this test tell a 
different story. In our experiments, ignoring the one fold 
where the system fails and eliminates all clusters, we 
find that the initial filtering step takes out 28 clusters on 
average. As expected, after merging, the remaining 
clusters are more useful, and on average 22 fewer of 
them are eliminated by the final filtering step. However, 
this has no measurable impact on the final results of the 
algorithm. Compared to the default algorithm of the 
previous section, the final set of informers learned is 
almost identical with on average only one extra informer 
learned by the modified algorithm, and the classification 
results are absolutely identical. This indicates that the 
clustering algorithm we propose is resilient in the face of 
initial data of mixed quality, and that the final filtering 
step alone is enough to eliminate the bad informers 
learned. An initial filtering of the clusters is clearly 
unnecessary. 

Positive FalsePositive True
Positive TruePrecision
+

=  (1)

Negative FalsePositive True
Positive TrueRecall
+

=  (2)

RecallPrecision
RecallPrecision2MeasureF

+
××

=−  (3)

4.1 Experiments 
We thoroughly tested our clustering algorithm by 

using it to learn informers from our training corpus while 
varying one or another of the options we described in 
Section 3.2 and keeping the other options to their 
“default” settings. This will make it possible to clearly 
see the contribution and impact of each option we study. 
For ease of comparison, we listed the default settings of 
the algorithm in Table 1. The default version of the 
classifier learns on 69 clusters on average over the five-
fold test, and classifying the final fold of training queries 
using the informers corresponding to the centers of these 
clusters gives on average a precision of 0.54, a recall of 
0.50, and an F-measure of 0.52. However, it is worth 
noting that the system failed for one fold, by which we 
mean that the final filtering loop deleted all informers 
and left an empty set, which naturally gets 0.00 in all 
classification statistics. If we ignore that fold, the system 
learned on average 86 informers, and classifies with a 
precision of 0.68, a recall of 0.63, and an F-measure of 
0.65. 

4.1.2 Merged cluster evaluation 
In section 3.2 we proposed two methods to evaluate 

merged clusters and determine whether or not a merger 
should be kept. The first method uses the part-of-speech 
hierarchy to compute the average similarity between the 
clustered queries and the cluster center, and compares it 
to the similarity in the original clusters to determine if an 
improvement has been made. The second method finds 
which queries are classified by the informer at the center 
of the cluster, and determines whether more correct than 
incorrect classifications are made. In both cases, we can 
use a bonus value to allow the merger of bad clusters. 
The bonus value varies from 0.0 to 1.0. A bonus of 1.0 
requires that the merger be strictly an improvement, in 
the sense that it is either more similar or makes more 
correct classifications, while a lower bonus value allows 
some bad clusters, that either have a worse similarity or 
make more incorrect classifications. We should also note 
that the algorithm still performs the final filtering step 
before returning the clusters. 

    
Table 1：Default options and settings of the algorithm 

Option  Default  
Initial informers None 

Filtering initial clusters Not done 

Quality evaluation algorithm Similarity 

Merging quality bonus 1.0 

Threshold for final filtering 1.0 

We can compare the two methods in terms of the final 
number of clusters the algorithm returns and of the f-
measure of the classification of the test queries. We 
begin by considering the number of clusters, presented in 
Figure 5. It can be seen from this graphic that few 
clusters are returned at low values of the bonus. In fact, 
the algorithm is found to fail and return no clusters at all 
for many of the 5-fold tests in that range. The reason is 
that, lowering the bonus allows more mergers by 
tolerating worse and worse mergers. The resulting 
clusters are bad and taken out by the final filtering step, 
leading to the many empty sets observed in the results. 
Good clusters begin to appear and be retained at a bonus 



6 Sentence Clustering Using Parts-of-Speech  

Copyright © 2012 MECS                                            I.J. Information Engineering and Electronic Business, 2012, 1, 1-9 

of 0.3 using the classification method and 0.4 using the 
similarity method, and the number of clusters peaks at 
0.6 for the classification method and 0.7 for the 
similarity method. Finally, the number of clusters spikes 
for both methods at a bonus of 1.0, where the strict 
criteria prevents a lot of mergers. Overall, we find that 
the behaviors of both methods are very similar from this 
point of view. 

 

 
Fig 5: Number of clusters returned using different bonus values 

with the similarity method (black dashed line) and the correct 
classification method (solid grey line). 

The second comparison point is the average f-measure 
of the classification using the rules learned for each fold 
at each bonus value. That one is presented in Figure 6. 
The left-hand graph of that figure plots the overall f-
measure, including the zeros that come from the folds 
where the algorithm failed. The varying number of zeros 
at each threshold causes the apparent instability of the 
results, and overall the shape of the curve follows closely 
the shape of Figure 5. To truly compare the performance 
of both methods, it is more informative to consider only 
those cases where the algorithm didn’t fail for either one. 
The average f-measure of those common cases is 
presented in the right-hand graph of Figure 6. As we can 
see in that graph, both methods perform about equally 
well. The differences visible in the left-hand graph are 
really only due to different numbers of failed folds. 

Fig 6: Classification f-measure using different bonus values with 
the similarity method (black dashed line) and the correct classification 
method (solid grey line) over all folds (top) and for folds that did not 
fail on both methods (bottom). 

We can note that the second method uses the same 
evaluation standard as the final filtering step, namely to 
use the cluster centers’ informers to classify the training 
queries and discard informers that do not lead to enough 
correct classifications. This leads to a final question: is 
the final filtering step still necessary, or is it redundant 
after this training? We ran the test again without the final 
filtering step to check. The first thing that appears from 
the results is that this version of the system never fails on 
a fold; there is no case in which the training ends up 
eliminating all clusters. This is not completely 
unexpected, since the filtering step is in charge of 
eliminating non-predictive informers; without this step, 
nothing gets eliminated and the algorithm is guaranteed 
to return something. However, the flip side is that the 
unfiltered set of informers returned is a lot larger than 
normal: between 80 and 120 informers, compared to the 
filtered version that returns on average 34 informers and 
never goes up to 80. This result is clearly at odds with 
one of our objectives, which is to generate a set of 
clusters that is as small as possible. The second thing to 
consider is whether this larger set of informers allows for 
better or worse classification of the unseen fifth fold of 
queries. When compared to the results in the left-hand 
graph of Figure 6, the classification results with the 
unfiltered set of informers appear to be a lot better. 
However, this is due to the fact that the comparison is 
not entirely fair: as we mentioned, the smaller set of 
informers fails on several folds and the zeros f-measures 
from these failures lower the average results, while the 
unfiltered informer set never fails and never returns 

It is interesting that both methods appear to be 
equivalent in performance, given that they are very 
different in implementation: one evaluates the cluster 
based on classification and the other based on similarity, 
and one compares the merged cluster to the original ones 
while the other compares it to its own failure cases. The 
fact that our overall algorithm performs as well using 
either methods points to the resilience of the entire 
system. 
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zeros, and consequently always appear better. As before, 
a more fair and informative study is to compare the folds 
that did not fail in the first test to the same folds with the 
unfiltered set. These are the results we present in Figure 
7. It is immediately apparent now that the unfiltered rule 
base actually leads to classification results that are on 
average 18% worse than before. It is clear, then, that the 
final filtering step remains important even when the 
cluster merging function uses the same methodology. 
However, the problem that it can filter out all clusters 
and return a useless empty list remains. In the next 
subsection, we will study the filtering step in more 
details and see how we can deal with it. 

 
Fig 7: Performance of the second quality evaluation method for 

different merger bonus values, with (solid grey line) and without 
(dotted black line) the final filtering step. 
4.1.3 Final filtering step 

The final step of our algorithm is to filter out non-
predictive informers from the rule base. As we explained 
in Section 3.2, these are informers that have become so 
general through repeated merging that they no longer 
model features of a single question type, but could apply 
equally well to all question types. These informers 
would at best have no effect, if they are always 
supplanted by more similar type-specific informers, or at 
worst lead to misclassifications if they are not. 

In our first experiment, we studied the impact of the 
threshold present in the pseudo-code of Figure 4. This 
threshold controls the tolerance the system has for 
informers that cause misclassifications. At the default 
value of 1.0, an informer must lead to as many or more 
correct classifications than incorrect ones to be retained. 
At the other extreme, a threshold of 0.0 retains all 
informers, even those that do not correctly classify any 
queries. 

In Figure 8, we present the impact of changing the 
threshold from 0.0 to 1.0 on the average F-value of the 
five-fold experiment (solid grey line) and on the average 
final number of informers learned (dashed black line). 
For this first test, the other options of the system are left 
at their default settings described in Section 4.1. The 
figure reveals that the number of informers remains 
stable in the 120-130 range until the threshold increases 
to 0.8, at which points it begins dropping sharply. The F-
measure seems to have the opposite behavior: it peaks at 

0.7 and remains in its highest plateau until 0.9, where it 
then also drops sharply. It is worth noting the fact that 
the algorithm failed for one of the folds when the 
threshold was set to 1.0. Nonetheless, this result 
indicates that filtering the non-predictive rules from the 
rule base is beneficial, but within limits; setting the bar 
too high filters out useful rules, as indicated by the drop 
and failure at 1.0. 

 
Fig 8: Impact of the threshold impact on the average F-measure 

(solid grey line) and the average number of informers (dashed black 
line). 
4.1.4 Using initial informers 

We noted in Section 3.1 that, in our past work on 
question-type-informer-learning (Khoury 2011), the 
system we designed started with a set of 16 simple 
informers. Including these informers allowed the system 
to focus its learning process and to converge on a lower 
number of final informers. It would thus be interesting to 
study the impact of adding these informers into the 
current clustering system. The first question to settle, 
however, is at which point in the algorithm the informers 
should be inserted. Referring back to the algorithm of 
Figure 3, there are three points where new informers can 
be inserted. First, they could be added to the set of 
training queries received as input by the clustering 
algorithm, before step 1 of the algorithm. They would 
then be treated as regular queries and paired off into 
clusters. The second option is to insert them into the list 
of initial clusters between steps 2 and 3, before the 
merging algorithm begins, and to have them treated as 
regular cluster centers. In this case each of the 16 
informers would be a cluster center influencing the 
merging, by contrast to the first approach where they 
were necessarily paired off and modified prior to the 
merging. The third and final option is to insert the new 
informers into the final set of cluster centers learned, 
before the final filtering of step 7. This would make it 
like the system had learned these 16 informers by 
merging other clusters. We ran the system using each of 
these three options, and compare the results in Table 2. 
For comparison, this table also includes the results of the 
basic system without adding extra informers. The first 
thing to note when studying Table 2 is that the version of 
the system without initial informers fails on one fold, 
while the three versions that add in the basic informers 
do not. This explains the noticeably lower average F1 
value and number of informers of that system. For an 
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additional benchmark, we also included in the table the 
average F1 and number of informers of the four folds for 
which the algorithms do not fail. 
    

Table 2：Impact of inserting informers at different points in the 
algorithm 

Added 
as: 

F1  
all 

folds 

F1  
common 

folds 

Num. 
of inf.  

all 
folds 

Num. of 
inf.  

common 
folds 

Not 0.52 0.65 69 86 
Training 
queries  0.67 0.66 113 116 

Initial 
clusters  0.70 0.70 112 112 

Final 
clusters  0.70 0.70 119 119 

 
Table 2 shows that the main difference between 

including and not including the extra informers is in the 
total number of informers returned by the system. Indeed, 
in the first two cases, adding the extra 16 informers 
before clustering changes the clustering process 
substantially, leading to new clusters being learned and 
to 8 more clusters on average. In the next step in these 
cases, as well as in the third case where the informers are 
added after clustering, the final filtering step behaves 
very differently and retains an extra 30 informers – 
clearly at odds with our stated goal to keep a minimum 
of informers. The benefit of these extra informers on the 
average F-measure is minimal, as they only lead to an 
average 5% improvement in cases where the algorithm 
does not fail. To be fair, we’ll note again that none of the 
three versions of the system that included the extra 
informers failed in the one case in our five-fold test 
where the basic system failed; however, we showed in 
the previous subsection that this result can also be 
realized by changing the final filtering threshold, without 
artificially adding manually-defined informers. 
4.2 Comparison 

It is interesting to compare the results obtained in this 
paper with those we presented in [14]. The system we 
experimented with in that paper stemmed from the same 
basic idea but used a substantially different framework 
and implementation. In that version, the system 
maintained two lists of queries, one for queries that 
could be correctly classified by a current set of informers 
and the other for queries that couldn’t. Pairs of queries in 
the second list were merged together to discover general 
informers that could classify them, and successful 
informers were added to the set. This system also 
required the use of an initial set of informers; in [14] we 
used the basic informers presented in Figure 2. 

The system in [14] discovered 11 new informers by 
merging misclassified queries, for a final total of 27 
informers, far below the number of informers generated 
from cluster centers in this paper. However, there was 
also on average 37 queries that remained misclassified 
and for which no informers could be learned, giving a 
total of 64 informers in the system overall. In 

classification experiments, the system shows a precision 
of 0.80 and a recall of 0.65, for an overall F-measure of 
0.71. By comparison, the best version of the system we 
found in our study in section 4.1 is the one that does not 
use any initial informers, does not filter the informers 
before clustering, compares clusters by similarity rather 
than correct classification rate, and uses a bonus of 0.7 
for the cluster merging and a threshold between 0.8 and 
0.9 for the final filtering step (we set it to 0.85). In 
classification experiments, a system with that 
configuration generates 83 informers, and shows a 
precision of 0.70 and a recall of 0.63, for an overall F-
measure of 0.66. 

It is difficult to compare the two systems directly, 
since by their very design they end up with completely 
different sets of informers. However, we can contrast 
them statistically based on their results. It appears that 
increasing the number of informers does not necessarily 
entail better results. The system in this paper generated 
almost 20 more informers than before but the precision 
dropped by 10%. This echoes the analysis presented in 
[14], in which we added new informers between two 
experiments and found that the precision also dropped by 
10%. Meanwhile, the recall value remained consistent 
between the two systems, and this fact limited the drop 
in F-measure. 

The decrease in precision implies that the additional 
informers in the larger set learned by clustering appear to 
be very similar (i.e. have similar wording) to queries of 
different types. Part of the problem comes from the fact 
that the clustering version of the system takes a “filter-
out” approach, in the sense that it maintains all clusters 
into the final set unless they misclassifies test-fold 
queries, while the system in [14] takes an “add-in” 
approach and does not include an informer unless it is 
shown to correctly classify test-fold queries. This 
explains both why the final set of informers in [14] is 
smaller and why it shows a better precision. There is 
thus a clear benefit to this “add-in” approach, and a 
version of it should be included to enhance our 
clustering algorithm in future works. 
 
5. Conclusion 
 

In this paper, we presented an exploratory study of a 
clustering methodology to group together similar 
sentences based on their part-of-speech syntax and using 
a weighted part-of-speech hierarchy we designed. We 
believe that such an algorithm could have numerous 
applications, including for instance key phrase detection 
or syntax error correction. In order both to demonstrate 
the use of this algorithm and to test its performance, we 
applied it to the task of question type classification, 
specifically to learning type informers like those 
suggested in [5]. The results obtained are very promising: 
different variations of the algorithm cluster together 
between 75% and 80% of the training queries, and the 
cluster centers, obtained by merging together all queries 
in a cluster using our part-of-speech hierarchy, can then 
be used directly as type informers to classify the queries 
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with up to 70% f-measure. These results demonstrate the 
validity of the proposed methodology, and are quite 
encouraging for a first prototype of a new technique. 
There are many directions to explore to further improve 
and refine the clustering algorithm, including both 
modifications of the current algorithm such as using the 
“add-in” approach mentioned earlier, and major 
revisions such as implementing it as a k-nearest-
neighbor clustering algorithm. These changes will likely 
lead to a more robust algorithm and even better results. 

References 

[1] Suzuki, M., Kuriyama, N., Ito, A., Makino, S. Automatic 
clustering of part-of-speech for vocabulary divided PLSA 
language model. International Conf. on Natural Language 
Processing and Knowledge Engineering, 2008, pp. 1-7. 
[2] Chen, M, Song, Y. Summarization of text clustering based 
vector space model. IEEE 10th International Conference on 
Computer-Aided Industrial Design & Conceptual Design, 2009, 
pp.2362-2365. 
[3] You, C. H., Lee, K. A., Ma, B., Li, H. Self-Organized 
Clustering for Feature Mapping in Language Recognition. 6th 
International Symposium on Chinese Spoken Language 
Processing, 2008, pp. 1-4. 
[4] Khoury, R., Karray, F., Kamel, M. Keyword extraction 
rules based on a part-of-speech hierarchy. International Journal 
of Advanced Media and Communication. 2008, 2(2):138—153. 
[5] Krishnan, V., Das, S., Chakrabarti, S. Enchanced Answer 
Type Inference from Questions using Sequential Models. 
Proceedings of Human Language Technology Conference / 
Conference on Empirical Methods in Natural Language 
Processing, 2005, pp. 315—322. 
[6] Yin, B., Ambikairajah, E. Chen, F. Improvements on 
hierarchical language identification based on automatic 
language clustering. IEEE International Conf. on Acoustics, 
Speech and Signal Processing, 2008, pp. 4241-4244. 
[7] Froud, H. R., Benslimane, A., Lachkar, A., Ouatik, S. A. 
Stemming and similarity measures for Arabic Documents 
Clustering. 5th International Symposium on I/V 
Communications and Mobile Network, 2010, pp. 1-4. 
[8] Meedeniya, D.A., Perera, A.S. Evaluation of Partition-
Based Text Clustering Techniques to Categorize Indic 
Language Documents. IEEE International Advance Computing 
Conference, 2009, pp. 1497-1500. 
[9] Razmara, M., Fee, A., Kosseim, L. Concordia University at 
the TREC 2007 QA track. Proceedings of the Sixteenth Text 
REtrieval Conference, 2007. 
[10] Liang, Z., Lang, Z., Jia-Jun, C. Structure analysis and 
computation-based Chinese question classification. Sixth 
International Conference on Advanced Language Processing 
and Web Information Technology, 2007, pp. 39—44. 
[11] Tomuro, N. Question terminology and representation of 
question type classification. Second International Workshop on 
Computational Terminology, 2002, vol. 14. 
[12] Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., 
Surdeanu, M., Bunescu, R., Girju, R., Rus, V., Morarescu, P. 
Falcon: Boosting knowledge for answer engines. Proceedings 
of the 9th Text REtrieval Conference (TREC-9). 2000, pp. 
479–488. 
[13] Zhang D., Nunamaker J. F. A Natural language approach 
to content-based video indexing and retrieval for interactive e-
learning. IEEE Transactions on Multimedia. 2004, 6(3):450—
458. 

[14] Khoury, R. A Learning Algorithm for Question Type 
Classification. Proceedings of the 2011 International 
Conference on Artificial Intelligence, 2011, 1:265-371.   
[15] Marcus, M., Santorini, B., Marcinkiewicz, M. A. Building 
a large annotated corpus of English: the Penn Treebank. 
Computational Linguistics. 1993, 19(2):313—330. 
[16] Dang, H. T., Kelly, D., Lin, J. Overview of the TREC 
2007 Question Answering Track. Proceedings of the Sixteenth 
Text REtrieval Conference (TREC 2007), 2007.  
 
 
 

Richard Khoury: Assistant Professor in the Department of 
Software Engineering at Lakehead University. Dr. Khoury’s 
primary area of research is natural language processing, but his 
research interests also include data mining, knowledge 
management, and machine learning. 

 
 


	1. Introduction
	2. Background
	3. Methodology
	4. Experimental Results
	5. Conclusion
	References




