
I.J. Information Engineering and Electronic Business, 2012, 1, 1-9
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijieeb.2012.01.01

Sentence Clustering Using Parts-of-Speech

Richard Khoury
Department of Software Engineering, Lakehead University, Thunder Bay (ON), Canada

Email: Richard.Khoury@lakeheadu.ca

Abstract—Clustering algorithms are used in many Natural
Language Processing (NLP) tasks. They have proven to be
popular and effective tools to use to discover groups of
similar linguistic items. In this exploratory paper, we
propose a new clustering algorithm to automatically cluster
together similar sentences based on the sentences’ part-of-
speech syntax. The algorithm generates and merges
together the clusters using a syntactic similarity metric
based on a hierarchical organization of the parts-of-speech.
We demonstrate the features of this algorithm by
implementing it in a question type classification system, in
order to determine the positive or negative impact of
different changes to the algorithm.

Index Terms—natural language processing, Part-of-speech,
clustering

1. Introduction

Clustering algorithms are used in many Natural
Language Processing (NLP) tasks, from grouping words
[1] and documents [2] to entire languages [3]. They are
popular tools to use to group similar items together and
discover the links between them. In this exploratory
paper, we propose a new clustering algorithm to
automatically discover and group together similar
sentences based on the sentences’ part-of-speech syntax.
As a clustering distance metric, we use a part-of-speech
hierarchy which we developed in our past work [4]. We
apply this clustering system to the task of discovering
the informer spans that Krishnan et al. proposed in their
work on question type classification [5], and our
experimental results demonstrate that our clustering
system generates interesting results relative to that
application.

The remainder of this paper is organized as follows.
In Section 2, we review a representative sample of work
done on NLP clustering system and in the task of
question type classification, in order to clearly illustrate
the nature of our contribution. The theoretical
frameworks of our clustering algorithm and of our part-
of-speech hierarchy are all presented in Section 3. Our
ideas have all been implemented and tested, and
experimental results are presented and discussed in
Section 4. Finally, we offer some concluding remarks in
Section 5.

2. Background

Clustering systems are already being used in
several branches of Natural Language Processing (NLP).
For example, the authors of [3] designed a spoken
language recognition system that clusters spoken
utterances based on their spectral features. Preliminary
tests of their system showed comparable results to the
baseline, which is encouraging given the large range of
currently-unexplored refinements they could implement.
In parallel, the authors of [6] proposed a language
recognition system that works by clustering languages
and then dividing them hierarchically into sub-clusters.
These authors studied several distance metrics to
measure the difference between languages, and finally
settled on a fusion of measures. In this context, one
could see the methodology presented in this paper as the
development of a new distance metric based on parts-of-
speech, to be used independently or with others in
clustering algorithms. Another popular NLP task
sometimes done with clustering is that of document topic
identification. This one can be done more directly, by
representing documents as word vectors and clustering
the vectors according to their Euclidean Distance, Cosine
Similarity, Jaccard Coefficient, or any other of the many
possible vector distance metrics available [2], [7], or
with probabilistic measures such as the Gaussian mixture
model [8]. This further demonstrates how natural
language text can be converted to a form usable by
classical mathematical clustering algorithms. A final
example, a little more closely related to this research, is
the project on part-of-speech clustering presented in [1].
The author’s intuition is that they could improve on a
unigram language model by differentiating between
topic words, style words, and general words based on
their parts-of-speech. To accomplish this, they developed
a probabilistic clustering algorithm to group a set of 90
parts-of-speech into these categories using two corpora
of text documents covering several different topics.
Their system discovered appropriate clusters, which
could then be successfully applied in a large vocabulary
speech recognition system. While our project’s aim and
clustering technique are different, their work does
confirm that parts-of-speech clustering can be applied
successfully in NLP applications.

The clustering system we are developing in this
research will be customized to learn clusters useful for
the task of question type classification. Question type (or
answer type) classification is the NLP task of
determining the correct type of the answer expected to a
given query, such as whether the answer should be a
person, a place, a date, and so on. This classification task

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

2 Sentence Clustering Using Parts-of-Speech

is of crucial importance in question-answering (QA)
systems, to allow them to retrieve answers of the correct
type and to reject possible answers of the wrong type [9].
In fact, it has been shown that questions that have been
classified into the correct type are answered correctly
twice as often as misclassified questions [9]. Over the
years, many varied approaches to question type
classification have been proposed. For example, the
authors of [10] used a Naïve Bayes classifier to compute
the probability of a query belonging to one of six
question types given the prior probability of that type
multiplied by the conditional probability of the query’s
features (i.e. the words left after stemming and stopword
removal) given that type. Going in a different route, a
team from the University of Concordia developed a
simple but accurate keyword- matching question type
classification system with a large manually-built lexicon
as part of their QA system for the TREC-2007
competition [9]. The authors of [11] and [12] tried a
similar approach using WordNet as a lexicon, but found
that their systems could be misled in cases where the
query’s syntax affected the meaning and importance of
keywords. The authors of [12] took this a step further
and added some question syntactic patterns in their
system to deal with common problem phrasings. Finally,
Zhang and Nunamaker [13] built a pattern-based
question type classifier that classifies each user’s query
according to a set of simple patterns that combine both
the wh-terms (who, what, where, when, why, which,
whom, whose, how) and the categories of keywords
found in the query. It has been pointed out [5] that a
common limiting factor in all these systems is the
reliance on large unpublished knowledge bases, be it
conditional probability tables, keyword lexicons, or lists
of syntactic patterns. For our purposes, the most closely-
related project is the one proposed by Krishnan et al. in
[5]. They proposed that the patterns used for question
type classification could consist simply of a short string
of contiguous words found in the query, which may or
may not include wh-terms, and which they called the
informer span (or simply informer) of the query. Their
work shows clearly that a support vector machine
classifier using hand-made informers yields better results
than question bigrams, and that informers discovered
automatically work almost as well as hand-made ones.
Our work is related to theirs in the sense that, as we will
explain later on, the centers of the clusters learned by our
system correspond to informers that can be used for
question type classification.

3. Methodology

In this paper, we develop a new system for sentence
clustering based on the idea of informers and on a part-
of-speech hierarchy that we present below. The objective
of this algorithm, as for any clustering algorithm, is to
discover the set of clusters that best represent the data. In
general terms, this means having high intra-cluster
homogeneity, a high inter-cluster heterogeneity, and a
small number of clusters. The application we are dealing

with in this project is question type classification,
because it has proven to be a challenging task to
automate, as is evidenced by the number of manually-
created solutions presented in Section 2, and because of
the direct connection with our past work [14]. In this
application, the objectives of the clustering algorithm are
to learn the smallest set of clusters to allow the best type
classification results.
 3.1 Part-of-Speech Hierarchy

A part-of-speech (POS) is commonly defined as a
linguistic category of lexical items that share some
common syntactic or morphological characteristics.
However, it is telling that, despite the concept of a POS
being thousands of years old, grammarians and linguists
still cannot agree on what exactly the shared
characteristics are. This question has very real practical
consequences: depending on where the line is drawn
between common characteristics and distinguishing
differences, one can end up with anywhere from the
eight parts-of-speech defined in English textbooks to the
198 parts-of-speech of the London-Lund Corpus of
Spoken English [15].

Our solution to this problem is to organize lexical
items not into a single set of parts-of-speech but into a
part-of-speech hierarchy. The lower levels of this
hierarchy feature a greater number of finely-
differentiated parts-of-speech, starting with the Penn
Treebank POS tags at the lowest level, while the higher
levels contain fewer and more general parts-of-speech,
and the topmost level is a single all-language-
encompassing “universe” part-of-speech. Another
innovation has been the inclusion in our hierarchy of
several “blank” parts-of-speech, to represent and
distinguish between the absences of different types of
words. In total, our hierarchy contains 165 parts of
speech organized in six levels. We originally developed
it in the context of a keyword-extraction project; a
detailed description of the hierarchy can be found in the
paper describing that project [4].

We can define the semantic importance of different
lexical items by assigning weights on the connections
between POS in the hierarchy. This allows us to
specialize the hierarchy for use in different NLP tasks. In
our earlier work on keyword extraction [4], weight was
given to verbs and nouns – the typical parts-of-speech of
the keywords we were looking for. For question type
classification, however, verbs and nouns are not the most
semantically important words to take into account.
Indeed, Tomuro [11] has shown that question type
classification relies mostly on closed-class non-content
words. The semantic weight in our hierarchy was thus
shifted to the subtrees corresponding to popular query
adverbs and pronouns, including wh-terms, and
calibrated using queries from the 2007 TREC QA track
[16] as examples. The value of each POS in our
hierarchy is then computed on the basis of its semantic
weight and of the number of descendents it has. The
resulting hierarchy, with the value of each POS, is
presented in Figure 1.

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

 Sentence Clustering Using Parts-of-Speech 3

We showed in [4] how using a part-of-speech
hierarchy makes it possible to mathematically define
several linguistic comparison operations. It is possible to
compute the similarity between two words or POS
simply as a function of their distance in the hierarchy.
This computation takes several factors into account,
including the number of levels in the hierarchy that need
to be traversed on the path from one POS to the other
and the value of each intermediate POS visited. Likewise,
we can find a general place-holder POS to represent two
words simply by finding the lowest common ancestor of
both words in the hierarchy, and the similarity of the
place-holder compared to the original two words it
represents is again a function of the distance in the
hierarchy between each word and the place-holder POS.
By extension, we can measure the similarity between
two sentences by pairing their words together by
similarity; the fact that our hierarchy includes “blank”
parts-of-speech means that the two sentences do not need
to be of the same length to be compared. And finally, we
can merge two sentences by pairing their words together
by similarity and replacing each pair by its lowest
common ancestor in the hierarchy.

It is now straightforward to see how our part-of-
speech hierarchy can be used for the task of question
type classification. Given a list of informers representing
different question types, we can use the hierarchy to
compute the similarity between a user-specified query
and each informer. The query is then classified to the
same type as the informer it is most similar to.

Fig 1: The POS hierarchy (POS values are in brackets).

We implemented such a system in our work
presented in [14]. The question types we used are
“person” (who), “date” (when), “physical object” (what),
“location” (where), “numeric value” (how many/how
much), and “description” (how/why). The results
presented in that paper show that a classifier based on
our hierarchy can achieve an F-measure of 70% using
only 16 basic informers, albeit with a strong bias for
precision over recall. This stands in stark contrast to the
other systems reviewed in Section 2, which need large
sets of patterns, lexicons, or probability tables to work

well. The 16 basic informers in that project were defined
manually, but they are trivial two-word informers that
combine each question type’s wh-term and one higher-
level POS from our hierarchy that represents a past-tense
verb (vbd), a present-tense verb (vbz), a description
adjective (jj), a singular common noun (nn) or a plural
common noun (nns). The informers are listed in Figure 2.
Finally, it is worth noting a second result from [14],
which is that using a learning algorithm to discover more
informers allows the classifier to balance precision and
recall without reducing F-measure.

Who [vbz]
Who [vbd]
When [vbz]
When [vbd]
Where [vbz]
Where [vbd]

What [nn]
What [nns]
What [vbz]
What [vbd]
Why [vbz]
Why [vbd]

How [jj]
How [nn]
How [vbz]
How [vbd]

Fig 2: 16 basic informer spans from [14].
 3.2 Informer-Clustering Algorithm

In our algorithm, each cluster combines together
queries of the same type. The cluster’s center is defined
as the generic query obtained by merging all queries in
the cluster. Adding a query to the cluster is done by
merging that query with the current cluster center.
Splitting a cluster is also possible; when the generic
query in the center contains a part-of-speech that is
higher than a set threshold in the hierarchy, that part-of-
speech is discarded and the query is split in two parts at
that point. Each part becomes the center of its own new
cluster, combining a copy of the set of queries of the
original cluster. Given our discussion in the previous
section, it can be seen that the cluster centers are the
same as the informer spans we want the algorithm to
learn.

The pseudocode of the clustering algorithm we
propose is presented in Figure 3. The algorithm takes in
as input a list of training queries, which it will try to
cluster. Optionally, we may also want to input some
manually-defined application-specific informers, such as
the 16 basic informers from our work in [14]. This
would allow the system to consider clusters that we
know to be valid. The impact of this additional input will
be studied in the experiments in Section 4.

The algorithm begins by pairing together all queries of
each type according to their similarity to each other, with
the constraint that each query can only be paired to one
other query. The algorithm thus goes through the list of
possible pairings, accepting them in order of decreasing
similarity, and rejecting those that use queries that are
already in more similar pairs. To illustrate, suppose a
query type has four queries labeled A, B, C and D. The
possible pairings are A-B, A-C, A-D, B-C, B-D and C-D,
and the similarities between them (i.e. the distances
between them in the POS hierarchy) are 5, 7, 9, 12, 8 and
15 respectively. The algorithm considers these pairs in
order of decreasing similarity (increasing distance)
starting with the most similar (least distant) pair, A-B.
Since neither A nor B has been paired yet, this pair is
accepted. The algorithm considers the other pairs in
order; however all other pairs except one use either A or
B, which is not allowed since they have already been

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

4 Sentence Clustering Using Parts-of-Speech

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

paired, and thus are rejected. The last pair considered in
order is the one with the lowest similarity (greatest
distance), C-D. It is however the most similar acceptable
pair for these queries, and is retained by the algorithm.

This set of pairs is used by our algorithm as the initial
set of clusters. This set will be naturally very large: at
least half the size of the initial training set, and more if
some of the clusters are split by the method described
previously. Moreover, the informers of some of these
initial clusters may not be useful to correctly classify
queries into question types; they would typically be the
result of splitting a cluster into two parts, one of which is
irrelevant. For example, imagine two queries that are
identical except for a completely different final word
before the question mark. Merging these two queries
together would give an informer that has a very general
part-of-speech instead of the final word, and this
informer would in turn be split into two, one that has all
the words before the final one, and one that has
everything after the final word, which is to say only the
question mark at the end. Clearly, a question-mark-only
informer is useless for classification! Consequently, the
second step of our algorithm is to detect and remove
these informers and clusters. This task is implemented
by classifying the training set using the list of informers
and deleting those informers that lead to more
misclassifications than correct classifications, as
illustrated in the pseudo-code of Figure 4. This is an
optional step, however, since our algorithm can work
whether or not it is executed. In our experimental results,
we will study the impact of executing or skipping it.

Steps 3 to 6 in our algorithm are the cluster merging
steps. In this step, the algorithm considers all pairs of
clusters, in order of decreasing similarity of their cluster
centers. For each pair, the algorithm merges the cluster
centers, and then evaluates the merged center. The
quality of the merged cluster is evaluated and, if it is
found to be better, the original clusters are discarded and
the new cluster is added to the list of clusters for
consideration. Otherwise, the new cluster is discarded
and the two original ones are maintained. Several
metrics could be used for this quality evaluation; in this
study we will consider the similarity of the queries to the
center and the classification results. In the first metric,
we are comparing the quality of the new cluster to that of
the original clusters. We compute the average similarity
of the queries in each cluster to their respective cluster
center to get the quality of the original clusters, and
likewise the average similarity of the queries to the
merged cluster center gives the new cluster’s quality.
The cluster with the best average similarity is considered
the one with the highest quality. For the second metric,
we find the number of training queries that would be
classified by the new informer corresponding to the
cluster center, and count how many of these queries are
correctly classified and how many are not. A cluster
whose informer allows more correct classification than
incorrect ones is considered to be of good quality. It
should be noted that in this second metric, unlike in the
first one, a merged cluster is accepted or rejected based

on its own performance and not in comparison to the
original two clusters it merges together. But either way,
the algorithm can use a merger bonus to relax the
acceptance criterion and allow the algorithm to accept
bad mergers.

The final step of the algorithm consists in a filtering
task like the one optionally done in step 2. Earlier in the
algorithm it was done to detect cluster that are not useful
for type classification and eliminate them from
consideration in the rest of the algorithm. Now it is done
as a final step, to detect and eliminate similarly non-
predictive clusters that have been learned through the
repetitive merging and splitting of clusters in steps 3 to 6.
This is again done using the filtering algorithm of Figure
4.
Input: Training queries, initial

informers (optional), bonus
1. Pair the training queries by

similarity to get initial clusters
2. Filter non-predictive initial

clusters (optional)
3. For each pair of clusters, ordered

by similarity
 4. Merge the two cluster centers

together
 5. Evaluate the quality of the

merger, and apply bonus
 6. If the merger is of good

quality, save the merged
cluster and discard the
original pair; otherwise
discard the merger and keep the
original pair

7. Filter non-predictive clusters
Fig 3: Pseudocode of our clustering algorithm.

Input: Training queries, list of
informers, Threshold

1. Do:
 2. Classify all training queries

to the most similar informer in
the list

 3. For each informer:
 4. NCorrect ← The number of

queries of the correct type
classified by this informer

 5. NIncorrect ← The number of
queries of other types
misclassified by this
informer

 6. If NIncorrect*Threshold >
NCorrect, remove informer
from the list

7. While informers are removed in
step 6
Fig 4: Pseudocode of the filtering step.

4. Experimental Results

For our experiments, we built a training corpus of
queries using the 459 queries from the 2007 TREC QA
track [16]. We tagged the words of the queries with their

 Sentence Clustering Using Parts-of-Speech 5

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

4.1.1 Filtering initial clusters parts-of-speech using the standard Brill tagger, and we
manually classified the queries into their correct question
types. We used the data to run five-fold tests, breaking
the data into five non-overlapping equal-sized sets of
queries and successively training the system with four
sets and testing with the fifth.

One of the first options mentioned in Section 3.2 is
whether or not to filter the initial set of clusters with the
algorithm of Figure 4 before running the cluster-merging
loop. The intuitive justification for this step is that if the
system catches and eliminates non-predictive clusters
early on, the merging algorithm will then focus on
merging useful pairs of clusters together and learn valid
general clusters.

In each of the experiments, we used the centers of the
final clusters generated by the algorithm as informers to
classify the queries into each of our six question types,
and we computed the precision and recall of the
classification using the standard equations given in (1)
and (2). We then computed the average precision and
recall over all six types, and the average F-measure using
equation (3).

However, the results obtained in this test tell a
different story. In our experiments, ignoring the one fold
where the system fails and eliminates all clusters, we
find that the initial filtering step takes out 28 clusters on
average. As expected, after merging, the remaining
clusters are more useful, and on average 22 fewer of
them are eliminated by the final filtering step. However,
this has no measurable impact on the final results of the
algorithm. Compared to the default algorithm of the
previous section, the final set of informers learned is
almost identical with on average only one extra informer
learned by the modified algorithm, and the classification
results are absolutely identical. This indicates that the
clustering algorithm we propose is resilient in the face of
initial data of mixed quality, and that the final filtering
step alone is enough to eliminate the bad informers
learned. An initial filtering of the clusters is clearly
unnecessary.

Positive FalsePositive True
Positive TruePrecision
+

= (1)

Negative FalsePositive True
Positive TrueRecall
+

= (2)

RecallPrecision
RecallPrecision2MeasureF

+
××

=− (3)

4.1 Experiments
We thoroughly tested our clustering algorithm by

using it to learn informers from our training corpus while
varying one or another of the options we described in
Section 3.2 and keeping the other options to their
“default” settings. This will make it possible to clearly
see the contribution and impact of each option we study.
For ease of comparison, we listed the default settings of
the algorithm in Table 1. The default version of the
classifier learns on 69 clusters on average over the five-
fold test, and classifying the final fold of training queries
using the informers corresponding to the centers of these
clusters gives on average a precision of 0.54, a recall of
0.50, and an F-measure of 0.52. However, it is worth
noting that the system failed for one fold, by which we
mean that the final filtering loop deleted all informers
and left an empty set, which naturally gets 0.00 in all
classification statistics. If we ignore that fold, the system
learned on average 86 informers, and classifies with a
precision of 0.68, a recall of 0.63, and an F-measure of
0.65.

4.1.2 Merged cluster evaluation
In section 3.2 we proposed two methods to evaluate

merged clusters and determine whether or not a merger
should be kept. The first method uses the part-of-speech
hierarchy to compute the average similarity between the
clustered queries and the cluster center, and compares it
to the similarity in the original clusters to determine if an
improvement has been made. The second method finds
which queries are classified by the informer at the center
of the cluster, and determines whether more correct than
incorrect classifications are made. In both cases, we can
use a bonus value to allow the merger of bad clusters.
The bonus value varies from 0.0 to 1.0. A bonus of 1.0
requires that the merger be strictly an improvement, in
the sense that it is either more similar or makes more
correct classifications, while a lower bonus value allows
some bad clusters, that either have a worse similarity or
make more incorrect classifications. We should also note
that the algorithm still performs the final filtering step
before returning the clusters.

Table 1：Default options and settings of the algorithm

Option Default
Initial informers None

Filtering initial clusters Not done

Quality evaluation algorithm Similarity

Merging quality bonus 1.0

Threshold for final filtering 1.0

We can compare the two methods in terms of the final
number of clusters the algorithm returns and of the f-
measure of the classification of the test queries. We
begin by considering the number of clusters, presented in
Figure 5. It can be seen from this graphic that few
clusters are returned at low values of the bonus. In fact,
the algorithm is found to fail and return no clusters at all
for many of the 5-fold tests in that range. The reason is
that, lowering the bonus allows more mergers by
tolerating worse and worse mergers. The resulting
clusters are bad and taken out by the final filtering step,
leading to the many empty sets observed in the results.
Good clusters begin to appear and be retained at a bonus

6 Sentence Clustering Using Parts-of-Speech

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

of 0.3 using the classification method and 0.4 using the
similarity method, and the number of clusters peaks at
0.6 for the classification method and 0.7 for the
similarity method. Finally, the number of clusters spikes
for both methods at a bonus of 1.0, where the strict
criteria prevents a lot of mergers. Overall, we find that
the behaviors of both methods are very similar from this
point of view.

Fig 5: Number of clusters returned using different bonus values

with the similarity method (black dashed line) and the correct
classification method (solid grey line).

The second comparison point is the average f-measure
of the classification using the rules learned for each fold
at each bonus value. That one is presented in Figure 6.
The left-hand graph of that figure plots the overall f-
measure, including the zeros that come from the folds
where the algorithm failed. The varying number of zeros
at each threshold causes the apparent instability of the
results, and overall the shape of the curve follows closely
the shape of Figure 5. To truly compare the performance
of both methods, it is more informative to consider only
those cases where the algorithm didn’t fail for either one.
The average f-measure of those common cases is
presented in the right-hand graph of Figure 6. As we can
see in that graph, both methods perform about equally
well. The differences visible in the left-hand graph are
really only due to different numbers of failed folds.

Fig 6: Classification f-measure using different bonus values with
the similarity method (black dashed line) and the correct classification
method (solid grey line) over all folds (top) and for folds that did not
fail on both methods (bottom).

We can note that the second method uses the same
evaluation standard as the final filtering step, namely to
use the cluster centers’ informers to classify the training
queries and discard informers that do not lead to enough
correct classifications. This leads to a final question: is
the final filtering step still necessary, or is it redundant
after this training? We ran the test again without the final
filtering step to check. The first thing that appears from
the results is that this version of the system never fails on
a fold; there is no case in which the training ends up
eliminating all clusters. This is not completely
unexpected, since the filtering step is in charge of
eliminating non-predictive informers; without this step,
nothing gets eliminated and the algorithm is guaranteed
to return something. However, the flip side is that the
unfiltered set of informers returned is a lot larger than
normal: between 80 and 120 informers, compared to the
filtered version that returns on average 34 informers and
never goes up to 80. This result is clearly at odds with
one of our objectives, which is to generate a set of
clusters that is as small as possible. The second thing to
consider is whether this larger set of informers allows for
better or worse classification of the unseen fifth fold of
queries. When compared to the results in the left-hand
graph of Figure 6, the classification results with the
unfiltered set of informers appear to be a lot better.
However, this is due to the fact that the comparison is
not entirely fair: as we mentioned, the smaller set of
informers fails on several folds and the zeros f-measures
from these failures lower the average results, while the
unfiltered informer set never fails and never returns

It is interesting that both methods appear to be
equivalent in performance, given that they are very
different in implementation: one evaluates the cluster
based on classification and the other based on similarity,
and one compares the merged cluster to the original ones
while the other compares it to its own failure cases. The
fact that our overall algorithm performs as well using
either methods points to the resilience of the entire
system.

 Sentence Clustering Using Parts-of-Speech 7

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

zeros, and consequently always appear better. As before,
a more fair and informative study is to compare the folds
that did not fail in the first test to the same folds with the
unfiltered set. These are the results we present in Figure
7. It is immediately apparent now that the unfiltered rule
base actually leads to classification results that are on
average 18% worse than before. It is clear, then, that the
final filtering step remains important even when the
cluster merging function uses the same methodology.
However, the problem that it can filter out all clusters
and return a useless empty list remains. In the next
subsection, we will study the filtering step in more
details and see how we can deal with it.

Fig 7: Performance of the second quality evaluation method for

different merger bonus values, with (solid grey line) and without
(dotted black line) the final filtering step.
4.1.3 Final filtering step

The final step of our algorithm is to filter out non-
predictive informers from the rule base. As we explained
in Section 3.2, these are informers that have become so
general through repeated merging that they no longer
model features of a single question type, but could apply
equally well to all question types. These informers
would at best have no effect, if they are always
supplanted by more similar type-specific informers, or at
worst lead to misclassifications if they are not.

In our first experiment, we studied the impact of the
threshold present in the pseudo-code of Figure 4. This
threshold controls the tolerance the system has for
informers that cause misclassifications. At the default
value of 1.0, an informer must lead to as many or more
correct classifications than incorrect ones to be retained.
At the other extreme, a threshold of 0.0 retains all
informers, even those that do not correctly classify any
queries.

In Figure 8, we present the impact of changing the
threshold from 0.0 to 1.0 on the average F-value of the
five-fold experiment (solid grey line) and on the average
final number of informers learned (dashed black line).
For this first test, the other options of the system are left
at their default settings described in Section 4.1. The
figure reveals that the number of informers remains
stable in the 120-130 range until the threshold increases
to 0.8, at which points it begins dropping sharply. The F-
measure seems to have the opposite behavior: it peaks at

0.7 and remains in its highest plateau until 0.9, where it
then also drops sharply. It is worth noting the fact that
the algorithm failed for one of the folds when the
threshold was set to 1.0. Nonetheless, this result
indicates that filtering the non-predictive rules from the
rule base is beneficial, but within limits; setting the bar
too high filters out useful rules, as indicated by the drop
and failure at 1.0.

Fig 8: Impact of the threshold impact on the average F-measure

(solid grey line) and the average number of informers (dashed black
line).
4.1.4 Using initial informers

We noted in Section 3.1 that, in our past work on
question-type-informer-learning (Khoury 2011), the
system we designed started with a set of 16 simple
informers. Including these informers allowed the system
to focus its learning process and to converge on a lower
number of final informers. It would thus be interesting to
study the impact of adding these informers into the
current clustering system. The first question to settle,
however, is at which point in the algorithm the informers
should be inserted. Referring back to the algorithm of
Figure 3, there are three points where new informers can
be inserted. First, they could be added to the set of
training queries received as input by the clustering
algorithm, before step 1 of the algorithm. They would
then be treated as regular queries and paired off into
clusters. The second option is to insert them into the list
of initial clusters between steps 2 and 3, before the
merging algorithm begins, and to have them treated as
regular cluster centers. In this case each of the 16
informers would be a cluster center influencing the
merging, by contrast to the first approach where they
were necessarily paired off and modified prior to the
merging. The third and final option is to insert the new
informers into the final set of cluster centers learned,
before the final filtering of step 7. This would make it
like the system had learned these 16 informers by
merging other clusters. We ran the system using each of
these three options, and compare the results in Table 2.
For comparison, this table also includes the results of the
basic system without adding extra informers. The first
thing to note when studying Table 2 is that the version of
the system without initial informers fails on one fold,
while the three versions that add in the basic informers
do not. This explains the noticeably lower average F1
value and number of informers of that system. For an

8 Sentence Clustering Using Parts-of-Speech

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

additional benchmark, we also included in the table the
average F1 and number of informers of the four folds for
which the algorithms do not fail.

Table 2：Impact of inserting informers at different points in the
algorithm

Added
as:

F1
all

folds

F1
common

folds

Num.
of inf.

all
folds

Num. of
inf.

common
folds

Not 0.52 0.65 69 86
Training
queries 0.67 0.66 113 116

Initial
clusters 0.70 0.70 112 112

Final
clusters 0.70 0.70 119 119

Table 2 shows that the main difference between

including and not including the extra informers is in the
total number of informers returned by the system. Indeed,
in the first two cases, adding the extra 16 informers
before clustering changes the clustering process
substantially, leading to new clusters being learned and
to 8 more clusters on average. In the next step in these
cases, as well as in the third case where the informers are
added after clustering, the final filtering step behaves
very differently and retains an extra 30 informers –
clearly at odds with our stated goal to keep a minimum
of informers. The benefit of these extra informers on the
average F-measure is minimal, as they only lead to an
average 5% improvement in cases where the algorithm
does not fail. To be fair, we’ll note again that none of the
three versions of the system that included the extra
informers failed in the one case in our five-fold test
where the basic system failed; however, we showed in
the previous subsection that this result can also be
realized by changing the final filtering threshold, without
artificially adding manually-defined informers.
4.2 Comparison

It is interesting to compare the results obtained in this
paper with those we presented in [14]. The system we
experimented with in that paper stemmed from the same
basic idea but used a substantially different framework
and implementation. In that version, the system
maintained two lists of queries, one for queries that
could be correctly classified by a current set of informers
and the other for queries that couldn’t. Pairs of queries in
the second list were merged together to discover general
informers that could classify them, and successful
informers were added to the set. This system also
required the use of an initial set of informers; in [14] we
used the basic informers presented in Figure 2.

The system in [14] discovered 11 new informers by
merging misclassified queries, for a final total of 27
informers, far below the number of informers generated
from cluster centers in this paper. However, there was
also on average 37 queries that remained misclassified
and for which no informers could be learned, giving a
total of 64 informers in the system overall. In

classification experiments, the system shows a precision
of 0.80 and a recall of 0.65, for an overall F-measure of
0.71. By comparison, the best version of the system we
found in our study in section 4.1 is the one that does not
use any initial informers, does not filter the informers
before clustering, compares clusters by similarity rather
than correct classification rate, and uses a bonus of 0.7
for the cluster merging and a threshold between 0.8 and
0.9 for the final filtering step (we set it to 0.85). In
classification experiments, a system with that
configuration generates 83 informers, and shows a
precision of 0.70 and a recall of 0.63, for an overall F-
measure of 0.66.

It is difficult to compare the two systems directly,
since by their very design they end up with completely
different sets of informers. However, we can contrast
them statistically based on their results. It appears that
increasing the number of informers does not necessarily
entail better results. The system in this paper generated
almost 20 more informers than before but the precision
dropped by 10%. This echoes the analysis presented in
[14], in which we added new informers between two
experiments and found that the precision also dropped by
10%. Meanwhile, the recall value remained consistent
between the two systems, and this fact limited the drop
in F-measure.

The decrease in precision implies that the additional
informers in the larger set learned by clustering appear to
be very similar (i.e. have similar wording) to queries of
different types. Part of the problem comes from the fact
that the clustering version of the system takes a “filter-
out” approach, in the sense that it maintains all clusters
into the final set unless they misclassifies test-fold
queries, while the system in [14] takes an “add-in”
approach and does not include an informer unless it is
shown to correctly classify test-fold queries. This
explains both why the final set of informers in [14] is
smaller and why it shows a better precision. There is
thus a clear benefit to this “add-in” approach, and a
version of it should be included to enhance our
clustering algorithm in future works.

5. Conclusion

In this paper, we presented an exploratory study of a
clustering methodology to group together similar
sentences based on their part-of-speech syntax and using
a weighted part-of-speech hierarchy we designed. We
believe that such an algorithm could have numerous
applications, including for instance key phrase detection
or syntax error correction. In order both to demonstrate
the use of this algorithm and to test its performance, we
applied it to the task of question type classification,
specifically to learning type informers like those
suggested in [5]. The results obtained are very promising:
different variations of the algorithm cluster together
between 75% and 80% of the training queries, and the
cluster centers, obtained by merging together all queries
in a cluster using our part-of-speech hierarchy, can then
be used directly as type informers to classify the queries

 Sentence Clustering Using Parts-of-Speech 9

Copyright © 2012 MECS I.J. Information Engineering and Electronic Business, 2012, 1, 1-9

with up to 70% f-measure. These results demonstrate the
validity of the proposed methodology, and are quite
encouraging for a first prototype of a new technique.
There are many directions to explore to further improve
and refine the clustering algorithm, including both
modifications of the current algorithm such as using the
“add-in” approach mentioned earlier, and major
revisions such as implementing it as a k-nearest-
neighbor clustering algorithm. These changes will likely
lead to a more robust algorithm and even better results.

References

[1] Suzuki, M., Kuriyama, N., Ito, A., Makino, S. Automatic
clustering of part-of-speech for vocabulary divided PLSA
language model. International Conf. on Natural Language
Processing and Knowledge Engineering, 2008, pp. 1-7.
[2] Chen, M, Song, Y. Summarization of text clustering based
vector space model. IEEE 10th International Conference on
Computer-Aided Industrial Design & Conceptual Design, 2009,
pp.2362-2365.
[3] You, C. H., Lee, K. A., Ma, B., Li, H. Self-Organized
Clustering for Feature Mapping in Language Recognition. 6th
International Symposium on Chinese Spoken Language
Processing, 2008, pp. 1-4.
[4] Khoury, R., Karray, F., Kamel, M. Keyword extraction
rules based on a part-of-speech hierarchy. International Journal
of Advanced Media and Communication. 2008, 2(2):138—153.
[5] Krishnan, V., Das, S., Chakrabarti, S. Enchanced Answer
Type Inference from Questions using Sequential Models.
Proceedings of Human Language Technology Conference /
Conference on Empirical Methods in Natural Language
Processing, 2005, pp. 315—322.
[6] Yin, B., Ambikairajah, E. Chen, F. Improvements on
hierarchical language identification based on automatic
language clustering. IEEE International Conf. on Acoustics,
Speech and Signal Processing, 2008, pp. 4241-4244.
[7] Froud, H. R., Benslimane, A., Lachkar, A., Ouatik, S. A.
Stemming and similarity measures for Arabic Documents
Clustering. 5th International Symposium on I/V
Communications and Mobile Network, 2010, pp. 1-4.
[8] Meedeniya, D.A., Perera, A.S. Evaluation of Partition-
Based Text Clustering Techniques to Categorize Indic
Language Documents. IEEE International Advance Computing
Conference, 2009, pp. 1497-1500.
[9] Razmara, M., Fee, A., Kosseim, L. Concordia University at
the TREC 2007 QA track. Proceedings of the Sixteenth Text
REtrieval Conference, 2007.
[10] Liang, Z., Lang, Z., Jia-Jun, C. Structure analysis and
computation-based Chinese question classification. Sixth
International Conference on Advanced Language Processing
and Web Information Technology, 2007, pp. 39—44.
[11] Tomuro, N. Question terminology and representation of
question type classification. Second International Workshop on
Computational Terminology, 2002, vol. 14.
[12] Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R.,
Surdeanu, M., Bunescu, R., Girju, R., Rus, V., Morarescu, P.
Falcon: Boosting knowledge for answer engines. Proceedings
of the 9th Text REtrieval Conference (TREC-9). 2000, pp.
479–488.
[13] Zhang D., Nunamaker J. F. A Natural language approach
to content-based video indexing and retrieval for interactive e-
learning. IEEE Transactions on Multimedia. 2004, 6(3):450—
458.

[14] Khoury, R. A Learning Algorithm for Question Type
Classification. Proceedings of the 2011 International
Conference on Artificial Intelligence, 2011, 1:265-371.
[15] Marcus, M., Santorini, B., Marcinkiewicz, M. A. Building
a large annotated corpus of English: the Penn Treebank.
Computational Linguistics. 1993, 19(2):313—330.
[16] Dang, H. T., Kelly, D., Lin, J. Overview of the TREC
2007 Question Answering Track. Proceedings of the Sixteenth
Text REtrieval Conference (TREC 2007), 2007.

Richard Khoury: Assistant Professor in the Department of
Software Engineering at Lakehead University. Dr. Khoury’s
primary area of research is natural language processing, but his
research interests also include data mining, knowledge
management, and machine learning.

	1. Introduction
	2. Background
	3. Methodology
	4. Experimental Results
	5. Conclusion
	References

