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Abstract——Nowadays there are lots of novel forecasting 
approaches to improve the forecasting accuracy in the 
financial markets. Support Vector Machine (SVM) as a 
modern statistical tool has been successfully used to solve 
nonlinear regression and time series problem. Unlike most 
conventional neural network models which are based on the 
empirical risk minimization principle, SVM applies the 
structural risk minimization principle to minimize an upper 
bound of the generalization error rather than minimizing 
the training error. To build an effective SVM model, SVM 
parameters must be set carefully. This study proposes a 
novel approach, support vector machine  method combined 
with genetic algorithm (GA) for feature selection and 
chaotic particle swarm optimization(CPSO) for parameter 
optimization support vector Regression(SVR),to predict 
financial returns. The advantage of the GA-CPSO-SVR 
(Support Vector Regression) is that it can deal with feature 
selection and SVM parameter optimization simultaneously 
A numerical example is employed to compare the 
performance of the proposed model. Experiment results 
show that the proposed model outperforms the other 
approaches in forecasting financial returns. 

Index Terms—SVR; GA-CPSO; financial returns; 
forecasting 

I.  INTRODUCTION 
The ability of accurately predicting financial returns is 

invaluable for financial institutions. Reliability 
predictions are used for various purposes, such as 
reliability assessment, evaluating risks and liabilities, 
evaluating replacement policies etc. Thus numerous 
models have been depicted to provide the investors with 
more precise predictions. Unlike traditional statistical 
models, SVM is data-driven, non-parametric model and 
let ”the date speak for themselves”. Recently, with the 
introduction of Vapnik’s insensitiveε—  loss function, 
SVM has been extended to solve nonlinear regression 
estimation problems and has been used successfully to 
solve forecasting problem in various fields. At present, 
SVR has been used in predicted areas widely. It’s not 
easy to judge whether financial returns is purely linear or 
nonlinear due to the complexity of financial returns. 
Therefore, many empirical results have indicated that 
combination of different is able to increase the 
forecasting accuracy as well as improve the robustness of 
forecasting models. In this article, the linear and 

nonlinear SVM models are combined to capture the data 
pattern of financial returns.  

Several studies have proved that the SVM is capable to 
correctly predict, but there remains two problems for the 
SVM, namely feature selection and optimal SVM 
parameters setting , which influence each other, that 
means that they should be dealt with at the same time.  

Therefore, an integrated Support Vector Regression 
model is built to overcome the problem. In the new 
model feature selection and  SVM parameter 
optimization are considered simultaneously. 

Genetic algorithm(GA)  is used for the feature 
selection and  chaotic particle swarm optimization 
algorithm(CPSO)  is used for parameter optimization. A 
series of experiments show that the proposed GA-CPSO-
SVR possesses better ability of finding the global 
optimum compared with other methods. More detail of 
the proposed model is presented in Section II. 

II. A INTEGRATED SUPPORT VECTOR REGRESSION (GA-
CPSO-SVR) 

The Support Vector Machine (SVM) developed at 
AT&T 
Bell Laboratories by Vapnik and co-works, as a new 
machine learning method, has been very successful in 
pattern classification and regression problems for crisp 
data [3]. 

A.   SUPPORT VECTOR REGRESSION(SVR) 
The basic concept of the SVR is to map nonlinearly the 

original data x into a higher dimensional feature space. 
Hence, suppose we are given a training data 
set 1 1 2 2{( , ), ( , ),..., ( , )}n nx y x y x y  *N R⊂ , where N  denotes the 
space of input patterns—for instance, kR . 

 In ε—SVM  Regression, the goal is to find a regression 
function f(x):that has at most ε deviation from the 
actually obtained targets iy for all the training data. In 
other words, we do not care about error as long as they 
are less than ε , but will not accept any deviation larger 
than ε . An insensitiveε—  loss function 

{ ( ) ( )
0( , , ( ) ) − − − ≥= y f x if y f x

e ls eL x y f x ε ε
ξ

                                         (1)                
so the error is penalized only if it is outside the 

ε—tube . Fig.1 depicts this situation graphically. To make 
the SVM regression nonlinear, this could be achieved by 
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simply mapping the training patterns xi by a nonlinear 
transform φ : N→F into some high dimensional feature 
space F. A simple example of the nonlinear transform φ  
is the polynomial transform function:  

 
 

Figure 1. The epsilon insensitive loss setting corresponds for a linear 
Support Vector regression machine 
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Where the degree of the polynomial transform function 
is 3, and dimension is input space N and feature space F 
is 2 and 9, respectively. A best fitting function 

1
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N

T
i i

i

f x w x b w x bϕ ϕ
=

= + = +∑                                        (3) 

where  

)(xiϕ  is the feature of inputs x; both iw  and b  are 
coefficients which are estimated by minimizing the 
regularized risk function: 

To avoid over-fitting in the very high-dimension 
feature space, one should add a capacity control term, 
which in the SVM case results to be ||w||2. Formally, the 
SVM regression model can be written as a convex 
optimization problem by requiring: 

2* *

1

1: ( , , ) ( ( ))
2 =

− = + +∑
N

i i
i

tubeMinimize R w w Cε ζ ζ ζ ζ           (4) 

With the constraints: 
*( ) , 1, 2,..., ,+ − ≤ + =i i i iw x b d i Nφ ε ζ  

( ) , 1, 2,..., ,− − + ≤ + =i i i iw x b d i Nφ ε ζ  
*, 0, 1, 2,....,≥ =i i i Nζ ζ  

The constant C>0 determines the trade off between the 
complexity of f(x) and the amount up to which deviations 
larger than ε are tolerated. We can estimate a linear 
function in the feature space that makes SVM regression 
attractive. In addition, the regression task was achieved 
by solving a convex programming with linear constraints 
that means it has a unique solution. The size of 

insensitiveε—  is a pre-defined constant. The modeling 
performance may seriously affected by the selection of a 
parameter. The insensitiveε—  zone represented as a tube 
shape in the SVM regression, only the training data 
outside the —tubeε will be penalized. In many real-world 
applications, the effects of the training points are 
different. We would require that the precise training 
points must be regressed correctly, and would allow more 
errors on imprecise training points. 

The constrained optimization problem in (4) is solved 
using the following primal Lagrangian form: 

1
| |
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l
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c r o s s v a lid a tio n

a p
M in f M A P E

l
=

−
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Karush-Kuhn-Tucker (KKT) conditions are applied to 
the regression, and (4) thus yields the dual Lagrangian,  

* * * *

1 1 1 1

1( , ) ( ) ( ) ( ) ( , )
2= = = =

= − − + − −∑ ∑ ∑ ∑
N N N N

i i ii i i i j j i
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s.t. 
*

1

( *) 0, 0 , , 1, 2, ..., .
=
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i
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Both iα and *
iα   are called Lagrangian multipliers that 

satisfy the equalities *
* 0=i iα α . 

Hence an optimal desired weights vector of the 
regression hyper-plane is represented as  
 *

1

* ( ) ( , )
=

= −∑
N

i ji i
i

w K x xα α                                                       (7) 

Therefore, the regression function could be  
*

1

( , , * ) ( ) ( , )
=

= − +∑
N

i i i j
i

f x K x x bα α α α                                        (8) 

Here, ( , )i jK x x  is called the kernel function. The value 
of the kernel equals the inner product of two vectors xi 
and xj in the feature ( )ixϕ  and ( )jxϕ  ; that 
is ( , )i jK x x = ( )ixϕ * ( )jxϕ  . Any function that satisfies 
Mercer’s Condition by Vapink can be called the Kernel 
function. 

There are several frequently-used kernel functions, all 
of them have their own advantages and disadvantages.  

In this work, the linear kernel function, represented as 
(9), is employed for linear SVM model.  

( , ) T
i j i jK x x x x=                                                                (9) 

In general , a mixed kernel function is used for 
nonlinear SVM model. With the purpose of better learning 
ability and better generalization ability. In order to here a 
global kernel and a local kernel are combined to achieve a 
mixed kernel function. For instance , we usual use 
addition, multiplication to combine two or more kernels. 
For instance, there are two kernels 1k  and 2k that we can 
possible define a kernel 1 2k k k= + .Given a set of kernel 

1 2{ , ,..., }mk k k K= , in this article, the linear combination can 
be represented as : 

1

m

i i
i

k u k
=

= ∑                                                                     (10) 

For example, the Gaussian function and the linear 
function are mixed with a specified weight m, shown as 
(11) 

2

2

|| ||
( , ) ex p ( ) (1 )

2
i j T

i j i j

x x
K x x m m x x

σ
− −

= + −               (11) 

The selection of the three parameters ( , ,cσ ε ) of a 
SVM model is important to the accuracy of forecasting. 
Notably, there are only two parameters, ε and c  , for the 
linear SVM model. However, structural methods for 
confirming efficiently the selection of parameters 
efficiently are lacking. Therefore, CPSO is used in the 
proposed SVM model to optimize parameter selection. 

ε

'ξ

ε

ξ  
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B. GENETIC ALGORITHM FOR THE FEATURE SELECTION 
Genetic algorithm(GA), proposed by Holland, which is 

an organized random search technique and which imitates 
the biological evolution process. The algorithms try to 
retain genetic information form generation to generation 
that are based on the principle of the survival of the fittest. 
GA has been successfully applied to a series of problems 
such as data mining and optimization. It has also been 
used for the feature selection in SVM modeling[4]. 

As to a specific problem, The GA looks  a solution as 
an individual chromosome. It defines an initial 
population of these individuals, which represent the 
solution space of the problem. First a set of chromosomes 
is randomly chosen from the search space to form the 
initial population. Second the individuals are selected in a 
competitive manner, based on their fitness as measured 
by a specific objective function. The chromosome are 
binary-encoded, each bit of the chromosome represents a 
gene. 

In our implementation of GA, a binary string with each 
bit representing a feature(‘1’ means that this gene is kept 
in the gene subset and ‘0’ represents the gene is not 
included in the subset)was used to represent a 
chromosome. The GA is then applied to a population of  
randomly generated binary stings. The fitness of each 
string is determined as follows: 

* _ *A F Ffitness W SVM accuracy W N= +                                          (12) 

Where AW  is the SVM classification accuracy weight, 
FN is the number of feature selected, FW  is the weight of 

feature number. The accuracy of 10-fold cross validation 
was used as _ .SVM accuracy  

AW and FW both can be adjusted based on their relative 
importance. 

The Genetic algorithm for the feature selection  is 
presented as follows. 

• Step 1: (Initialization): In this study, the initial 
population was composed of 50 randomly created 
chromosomes. The population size of 50 was 
selected as a trade-off between the convergence 
time and the population diversity. 

• Step 2: (Fitness evaluation): Evaluate the fitness 
of each chromosome. The fitness value for each 
chromosome was calculated according to  

1
| |

*100%
l

i ii
cross validation

a p
Min f MAPE

l
=

−
= = ∑  (13) 

Where l is the number of training data samples; 
ia is the actual value, and ip is the predicted value. 

The solution with a smaller crossMAPE s validation of 
the training data set has a smaller fitness value, 
and thus has a better chance of surviving in the 
successive generations. 

• Step 3:  Selection: A standard roulette wheel was 
employed to select 10 chromosomes from the 
current population 

• Step 4: Crossover. The simulated binary crossover 
(Deb & Agrawal), 1995; Deb & Kumar, 1995) 

was applied to randomly paired chromosomes. 
The probability of creating new chromosomes in 
each pair was set to 0.7. The newly created 
chromosomes constituted a new population. 

• Step 5: Mutation: The mutation operation follows 
the crossover operation and determines whether a 
chromosome should be mutated in the next 
generation. This study applied polynomial 
mutation methods  to the proposed model. Each 
chromosome in the new population was subject to 
mutation with a probability of 0.08. 

• Step 6: Elitist strategy: The fitness value was 
calculated for the chromosomes of the new 
population. If the minimum fitness value of the 
new population is smaller than that of the old 
population, then the old chromosome can be 
replaced with the new chromosome of the 
minimum fitness value. 

• Step 7 : Stopping criteria. The process was 
repeated from 2 to 6 until the number of 
generations was equal to 60. If the number of 
generations equals a threshold, then the best 
chromosomes are presented as a solution; 
otherwise go back to Step2. 

An overview of GA for the feature selection will be 
given in the next  subsequent paragraphs. 

 The setting probability of parameter is largely effect 
the converged solution. In this  study,  the crossover 
probability is recommended  from Holland.  The choices 
of other parameters such as the mutation--probability, 
population seize are based on numerous experiments as 
those values provide the smallest   crossvalidationMAPE   on 
the training data set. 

C. CPSO ALGORITHMS FOR SELECTING PARAMETER OF 
SVR MODEL 

In SVR, parameters inappropriately chosen result in 
over-fitting or under-fitting. Generally, when selecting the 
parameters, most researchers still follow standard 
procedure (trial-and-error).First building a few SVR 
models based on different parameter sets, then testing 
them on validation set to obtain optimal parameters. 
However, this procedure is time-consuming and requires 
some luck. 

Particle swarm optimization(PSO), for easy 
implementation and quick convergence, has gained much 
attention and wide applications in solving continuous 
nonlinear optimization problem. Particle swarm 
optimization system begins with the random initialization 
of a population and multiple candidate solutions in the 
problem search space. Each particle looks for the optimal 
position to land. Finally the best global position can be 
attained by adjusting the direction of each particle 
towards its own best location at each generation. Adjust 
the velocity of each particle to improve the direction of 
each particle,tracking and memorizing the best position 
encountered could cumulate each particle’s experience. 
So each particle remembers the best position where it 
reached in the past, then the PSO system combines local 
search method with global search methods. 



40 Application of an integrated support vector regression method in prediction of financial returns  

Copyright © 2011 MECS                                                              I.J. Information Engineering and Electronic Business, 2011, 3, 37-43 

In a SVR model, the velocity, the position, the best 
position of each particle, due to the three parameters, that 
can be represented as (14)-(16) 

( ) ( ) ,1 ( ) ,2 ( ) ,[ , ,... ],k i k i k i k i nx x x x=                                              (14) 

( ) ( ) ,1 ( ) ,2 ( ) ,[ , ,... ],k i k i k i k i nv v v v=                                               (15) 

( ) ( ) ,1 ( ) ,2 ( ) ,[ , ,... ],k i k i k i k i np p p p=                                             (16) 

, , , 1, 2,....= =k c i Nε σ  
 Thus the global best position among all particles in 

the swarm ( )1 ( )2 ( )[ , ,... ]k k k k Nx x x x=  is computed by (12) 

( ) ( ) ,1 ( ) ,2 ( ) ,[ , ,... ]k global k g k g k g dp p p p=                                       (17)                              

The new position of each particle in next generation 
can be shown as (18) 

       
( ) ( ) 1 ( ) ( ) ( )

2 ( )

( 1) ( ) (1)( )

(2)(

, , , 1, 2, ...,

k i k i k i k i t

k g

V t lV t m rand P x

m rand P

k c i Nε σ

+ = + −

+

= =

        (18)                             

Where l is called the inertia weight that controls the 
impact of the previous velocity of the particle on its 
current one, 1m  and 2m  are  called acceleration 
coefficients. 

After the velocity has been updated, the new position 
of the particle for each parameter in the next generation is 
shown as(19) 

( ) ( ) ( )

1 2

( 1) ( 1) ( )

[ , , . . . , ]
k i k i k i

N

X t V t X t

X X X X

+ = = + +

=
                            (19) 

Where l  is called the inertia weight that controls the 
impact of the previous velocity of the particle on its 
current one; m1 and m2 are two positive constants called 
acceleration coefficients; rand(1) and rand(2) are two 
independently uniformly distributed random variables 
with range[0,1], ( ) ( )1 ( )2 ( )[ , ,..., ]k i k k k nV V V V= represents the 
distance to be traveled by the particle from its current 
position; 1 2[ , ,..., ]NX X X X=  means the position of 
particle l , and ( )best ip  the best previous position of particle 
l ; ( )gbest ip t represents the best position among all particles 
in the population. 

The performance depends on its parameters in the 
procedure of PSO, it often lead to be trapped in local 
optimum. Thus proper control of l  is very important to 
find the optimum solution accurately.  

To overcome the problem, a chaotic PSO (CPSO) 
method that combined PSO with AIWF (adaptive inertia 
weight factor) and chaotic local search (CLS) is employed 
to overcome the shortcoming. CPSO is a two phase 
iterative strategy based on the proposed PSO with AIWF 
and CLS, in which AIWF is used to encourage good 
particles to improve the exploration to refine results by 
local search, and bad ones to modify searching space with 
large step. AIWF is determined as(20) 

max min min
min

min

max

( )( )− −
+ ≤

−
⎧⎪= ⎨
⎪⎩

i
i avg

avg

l l f fl if f f
f f

l else
l                              (20) 

Where maxl and minl are the maximum and minimum of l, 

respectively, if  is the current objective value of the 

particle, avgf and minf are the average and minimum 
objective values of all particle , respectively. 

CLS is used to perform locally oriented search for the 
solution globalif , which is resulted from PSO. CLS is based 
on the logistic equation, with sensitive dependence on 
initial conditions, and is defined by the following equation: 

( 1) ( )
( ) ( ) ( )4 (1 )k i k i k icx cx cxλ λ λ+ = −                                                  (21)           

Where ( )k icx  is the thi  chaotic variable; λ represents 
the iteration number, ( )

( )k icx λ is distributed in the range(0,1) 
and (0) (0)

( ) ( )(0,1) {0.25,0.5,0.75}k i k icx but cx∈ ∉ . 

The procedure of CLS is illustrated is presented as 
follows: 

• Step 1: Setting λ  = 0 and map the three 
parameters into chaotic variable 

( ) min( )
( )

max( ) min( )

−
=

−
k i k i

k i
k i k i

x x
cx

x x

λ
λ                                          (22)                     

• Step 2: Compute the next iteration chaotic 
variable ( 1)

( )
+i

k icxλ with (16). 
• Step 3: Obtain three parameters for the next 

iteration by the 17 and compute the new 
objective value 

( 1) ( 1)
( ) min( ) ( ) max( ) min( )( )+ += + −i
k i k i k i k i k ix x cx x xλ λ

   .                           (23)   

• Step 4: If the new objective value with smaller 
forecasting accuracy index value or maximum 
iteration is reached, then, the new chaotic 
variable ( 1)

( )k ix λ+  and its corresponding objective 
value is the final solution; otherwise, let 1λ λ= +   
and go back to Step 2. 

In the investigation, the normalized mean squared 
error (NMSE), shown as (22), serves as the forecasting 
accuracy index for identifying suitable parameters, 
determined in Step 4 of PSO and in Step 5 of CLS, for use 
in the GA-CPSO- SVR model. 

2

2
1

1 ( )
n

i i
i

NMSE a f
nδ =

= − −∑                                        （24） 

Where 
22

1

1 ( )n
ii

a a
n

δ
=

= −∑  and  

 n is the number of forecasting periods; 

ia  is the actual value at period i ; 

if denotes is the forecasting value at period i .  

An overview of CPSO parameter settings will be 
given in the subsequent paragraphs.  

Fig. 2 shows the framework of the proposed GA-
CPSO-SVR model.  
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Figure 2. The architecture of a GA-CPSO-SVR model 

D  THE PROPOSED SVRCPSO MODEL 
A strategy which has both linear and nonlinear 

modeling 

abilities is a good alternative for forecasting financial 
returns for the complex data pattern of financial returns. In 
this article, the linear GA-CPSO-SVR model is used as a 
preprocessor to capture the linear data pattern, while the 
nonlinear GA-CPSO-SVR model is applied right after the 
linear GA-CPSO-SVR to forecast the nonlinear data 
pattern of residuals from the linear GA-CPSO-SVR model. 
The hybrid model ( iH ) can be represented as :  

= +i i iH L N                                                               (25) 

Where Li is the linear part; and iN  represents the 
nonlinear part of the hybrid model. Both of them are 
estimated from the data set, *

iL  is the forecast value of the 
linear GA-CPSO-SVR model at time i . Let iε  represent 
the residual at time i  from the linear GA-CPSO-SVR 
model; then, 

*
i i iH Lε = −                                                             （26） 

The residuals are modeled by the nonlinear GA-
CPSO-SVR and can be represented as follows: 

1 2( , ,..., )i i i i n ifε ε ε ε− − −= + Δ                                       （27） 

Where f represents the nonlinear model and iΔ  
represents the random error. Thus the combined forecast 
is  

* * *
i i iL N H+ =                                                            (28) 

Notably, *
iN is the forecast value of (24). Fig. 3 shows 

the structure of the GA-CPSO-SVR model proposed in 
this article. 

iε

*
iL

*
i

N

 
 

Figure 3. The architecture of proposed GA-SVR-CPSO model for 
prediction 

III A NUMERICAL EXAMPLE 
In order to verify the accuracy of the algorithm we 

proposed in forecasting financial returns. We predict 
financial returns of the Shanghai Composite Index. The 
samples of this paper were collected from Shanghai Stock 
Exchange from February 5, 2006 to January 28, 2007, a 
total of 358 observations. The samples were ordered from 
1 to 358, and we divided them into 3 groups: The training 
group (from 1 to 150), the validation group (from 151 to 
263), the testing group (264-358) 

After the CPSO was applied to search for the optimal 
parameter sets, the optimal parameters in the Linear GA-
CPSO-SVR model. where c=2.639, ε=13.928, and 2σ  
=2.365 , as shown in Fig.  4. 

 
Figure 4. The optimal parameters in the Linear GA-CPSO-SVR 

model 
 

The parameters of the Nonlinear GA-CPSO-SVR 
model as Fig. 5 shows 

We can see c=2.8284, ε=16 in the Nonlinear GA-
CPSO-SVR model. 

In order to reduce the differences among the  different 
data fractional error. Sample need to be normalized when 
we have reconstructed the sample. AS the sample which 
used in this study are all positive. So we shrink them to 
[0,1] range, data normalization formula is:  
                             ' min

max min

i
i

X XX
X X

−
=

−
                        (29)          
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Figure 5. The parameters of the Nonlinear GA-CPSO-SVR 

model 
The results of data  after normalization  as shown   in     

Fig. 6:  

 
Figure 6 . Data of Shanghai Stock Exchange after normalization 

 
Then the final SVR forecasting models were built. The 

forecasting simulation was performed against the testing 
data.             Fig. 7 makes comparison of actual values and 
forecasted values by the proposed model. 

In the Fig. 8, we can see the fractional error of actual 
values and forecasted values with the model we built. 

Compare the results obtained with the forecasting 
results form the Back Propagation Neural Network model 
(BPNN) and the Auto Regressive Integrated Moving 
Average model (ARIMA) and Support Vector Regression 
and CPSO-SVR. Here we use the criterion MAPE (the 
smallest value of MAPE) to illustrate the accuracy index. 

 
Figure 7. Comparison of actual values and forecasted values by GA-

CPSO-SVR  model 

 
 

Figure 8. Fractional error of actual values and forecasted values by GA-
CPSO-SVR  model 

TABLE I.  PARAMETERS OF HSVRCPSO MODEL 

Model MAPE(%) 

GA-CPSO-SVR 3.12 

CPSO-SVR 3.69 

SVR 4.12 

BPNN 4.98 

ARIMA 5.64 

IV  CONCLUSIONS 
The motivation of this study is based on the evidence 

that different forecasting models can complement each 
other in approximation data sets. This paper applied SVM 
model composed of linear and nonlinear SVR to the 
forecasting field of financial returns. Then Genetic 
algorithm is used for the feature selection in SVR 
modeling and chaotic particle swarm optimization 
algorithm  is used to search for better combinations three 
parameters in SVM. Compared with other models, within 
the forecasting fields of financial returns, the proposed 
model offers a valid for application in financial market. 

However; the algorithm still has to be improved, other 
advanced searching techniques to determine the suitable 
parameters should be combined with the SVR model to 
forecast financial returns. Furthermore the number of 
input data influences the forecasting performance to a 
large extent. Thus, to develop a more effective technique 
available to determine the number of input data will be an 
important direction for future development.  
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