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Abstract— Although remarkable success has been achieved 
by genome-wide association (GWA) studies over the past 
few years, genetic variants discovered in GWA studies can 
typically account for only a small fraction of heritability of 
most common diseases. As such, the identification of 
multiple rare variants that are associated with complex 
diseases has been receiving more and more attentions. 
However, most of the recently developed statistical 
approaches for detecting association of rare variants with 
diseases require the selection of functional variants before 
the successive analysis, making an effective bioinformatics 
method for filtering out non-relevant rare variants 
indispensible. In this paper, we focus on a specific type of 
genetic variants called single amino acid polymorphisms 
(SAAPs). We propose to prioritize candidate SAAPs for a 
specific disease according to their association scores that are 
calculated using a guilt-by-association model with a set of 
features derived from protein sequences. We validate the 
proposed approach in a systematic way and demonstrate 
that the proposed model is powerful in distinguishing 
disease-associated SAAPs for the specific disease of interest.  
 
Index Terms— Single amino acid polymorphisms, 
prioritization, guilt-by-association, Euclidean distance, 
Manhattan distance 
 

I.  INTRODUCTION 

Over the past few years, remarkable success has been 
achieved by genome-wide association (GWA) studies in 
the discovery of genetic variants that are responsible for 

human inherited diseases [1], with examples including 
age-related macular degeneration [2], Diabetes [3], 
Hypertension [4], and many others [5-7]. Typically, a 
GWA study is designed to uncover potential associations 
of genetic variants with observable traits of a disease by 
examining whether these genetic variants occur in 
different frequencies between a case population and a 
control population. To accomplish this, it is often 
assumed that the etiology of common diseases is 
arbitrated by commonly occurring genomic variants in a 
population. This assumption is also known as the common 
disease-common variant (CD-CV) hypothesis [8, 9]. 
Nevertheless, recent studies have suggested that such 
common variants can only explain a small fraction of the 
heritability of most common diseases [10, 11], and that in 
general cases, the disease etiology is more likely to be 
caused collectively by multiple rare variants with 
moderate to high penetrance, resulting in the alternative 
common disease-rare variant (CD-VR) hypothesis for 
GWA studies [12, 13]. 

 Rare variants are different from common variants in 
many properties, such as the low marginal population 
attributable risk and the wide range of penetrance. It is 
therefore quite difficult to uncover genetic effects of rare 
variants using existing experimental techniques and 
computational approaches that are developed for common 
variants. However, with the accelerating advancement of 
the next generation sequencing technology, it becomes 
more and more feasible to directly sequence candidate 
genetic regions or even the whole genome to obtain a 
huge number of rare variants. Moreover, in order to deal 
with such a huge number of variants, several statistical 
methods have been developed to simultaneously identify 
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the association of multiple rare variants with the disease 
under investigation. These methods include the combined 
multivariate and collapsing method [8], the cohort allelic 
sums test approach [14], the weighted-sum statistical 
analysis [13], and many others [15-17]. Most of these 
methods use the grouping approach to cluster variants 
under investigation according to their functions. Though 
being effective, this approach requires correct 
classification of functional mutations and is quite 
sensitive to neutral or un-functional variants. On this 
scenario, bioinformatics tools or filters are expected to 
make functional predictions of the rare variants under 
investigation and accordingly decide which of them 
should be included in the successive statistical analysis. 

As a typical type of genetic variants, nonsynonymous 
single nucleotide polymorphisms (nsSNPs) that occur in 
single bases of protein coding sequences lead to single 
amino acid polymorphisms (SAAPs) in protein sequences. 
These SAAPs potentially alter structures of proteins, 
affect functions of proteins, and further cause human 
diseases [18]. In order to predict potential effects of such 
SAAPs, bioinformatics methods, such as SIFT [19], 
PolyPhen [18], KBAC [20], and MSRV [21] have been 
proposed. These methods typically classify SAAPs that 
are potentially associated with some diseases against 
neutral ones that are not associated with any disease from 
the perspective of binary classification. However, all 
these methods with such a formulation can only assign a 
generic “disease” category or a “non-disease” category to 
SAAPs, and can not specify the disease with which the 
SAAP may be associated. As such, the classification 
results of these methods can only provide limited 
information to practical applications. 

To overcome this limitation, in this paper, we 
formulate the identification of SAAPs that may be 
associated with a specific disease from a set of candidate 
SAAPs as a one-class novelty learning problem. More 
specifically, we define an association score to quantify 
the strength of association between a query disease and a 
candidate SAAP, and then we prioritize candidate SAAPs 
among according to their association scores. We design 
the scoring method according to the guilty-by-association 
principle [22], on the basis of the assumption that the 
disease under investigation is known to be associated 
with a set of seed SAAPs, who share similar properties. 
Following this assumption, a candidate SAAP may be the 
suspicious disease-associated SAAP for the query disease 
if it bears homogeneous properties with the seed SAAPs 
of the disease. We derive four features for SAAPs from 
multiple sequence alignment of protein sequences in 
which the SAAPs occur, and we use two popular distance 
measures (the Euclidean distance and the Manhattan 
distance) to calculate the dissimilarity between two 
SAAPs in the feature space. We demonstrate the 
effectiveness and predictive power of our approach via 
comprehensive large-scale leave-one-out cross-validation 
experiments.  Results show that our approach is effective 
in identifying relationships between SAAPs and diseases, 
with the Manhattan distance achieving the most precise 
prediction results. 

II.  MATERIALS AND METHODS 

A. Data Sources 

We carry out the proposed studies by taking advantage 
of two widely used databases in proteomics: the Swiss-
Prot database [23] and the Pfam database [24]. 

The Swiss-Prot database [23] provides detailed 
annotations of known SAAPs. In version 2010_10 
(released on October 5, 2010) of this database, a total of 
62,430 SAAPs occurring in 12,401 human proteins are 
collected. Each SAAP is annotated as “Disease,” 
“Polymorphism,” or “Unclassified.” In this paper, we 
refer to SAAPs with “Disease” annotations as disease 
SAAPs and those with “Polymorphism” annotations as 
neutral SAAPs. For disease SAAPs, the names and the 
OMIM accession numbers of the diseases to which the 
SAAPs are associated are further provided. 

The Pfam [24] database collects curated and predicted 
protein families and domain annotations. This database is 
further split into a Pfam-A part that includes curated 
protein families and a Pfam-B part that includes predicted 
protein families. In version 24.0 (released in October 
2009) of this database, there are a total of 11,912 protein 
families included in the Pfam-A part. 

In our studies, we focus on SAAPs that occur in 
protein domains, for the purpose of utilizing information 
of protein families to obtain multiple sequence alignment 
of protein sequences. By combining the annotations of 
SAAPs in the Swiss-Prot database and domain 
annotations in the Pfam database, we finally collect 
13,735 neutral SAAPs and 14,511 disease SAAPs that are 
associated with 1,575 diseases. 

 

B. Sequence Conservation Features  

We derive four sequence conservation features from 
protein multiple sequence alignment. Given a SAAP 
occurring in a protein, we extract its homologous proteins 
form the Pfam database to obtain the multiple sequence 
alignment. We then look at the column of the alignment 
that corresponds to the position at which the 
polymorphism occurs, and we calculate the conservation 
score of the original amino acid (Feature 1) as the relative 
frequency of occurrence of the original amino acid. 
Similarly, we calculate the conservation score of the 
substituted amino acid (Feature 2) as the relative 
frequency of occurrence of the substituted amino acid [21, 
25, 26]. 

The above two conservation scores do not take the 
background, i.e., frequencies of occurrence of amino 
acids in all human protein, into consideration. However, 
it is known that different types of amino acids do occur at 
different frequencies in known human proteins. For 
example, if we count the frequencies of occurrence of all 
twenty types of amino acids in human proteins that are 
collected in the Swiss-Prot database, we can obtain the 
following Table I, which shows that the twenty types of 
amino acids do, indeed, occur at quite different 
frequencies. Considering this fact, we further propose the 
following two conservation ratios by taking the 
background frequencies of amino acids into consideration. 
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TABLE I.   
FREQUENCY OF 20 TYPES OF AMINO ACIDS IN HUMAN PROTEINS 

Amino acid Frequency (%) Amino acid Frequency (%) 

A 8.28 M 2.43 

C 1.36 N 4.06 

D 5.46 P 4.69 

E 6.77 Q 3.94 

F 3.86 R 5.54 

G 7.10 S 6.52 

H 2.27 T 5.33 

I 5.99 V 6.88 

K 5.85 W 1.08 

L 9.67 Y 2.92 

 
First, we obtain the conservation ratio of the original 
amino acid in a SAAP (Feature 3) by dividing the relative 
frequency of occurrence of the original amino acid by the 
relative frequency of occurrence of the same type of 
amino acid in the background. Second, we obtain the 
conservation ratio of the substituted amino acid (Feature 
4) by dividing the relative frequency of occurrence of the 
substituted amino acid by the relative frequency of 
occurrence of the same type of amino acid in the 
background. 

 

C.  Guilt-by-association Model 

Given a query disease of interest, a set of seed SAAPs 
that are known to be associated with the query disease, 
and a set of candidate SAAPs whose associations with the 
disease need to be inferred, we adopt a guilt-by-
association model [22] to prioritize the candidate SAAPs 
according to their strength of associations with the query 
disease of interest. The basic assumption of this model is 
that SAAPs that are associated with the same disease 
should have similar conservation properties. Therefore, 
we can calculate for each candidate SAAP an association 
score by considering the similarity of the candidate 
SAAP with each of the seed SAAPs and then summarize 
all similarities to obtain a score that indicates the strength 
of association of the candidate SAAP to the query disease. 

For a single sequence conservation feature, we can 
evaluate the dissimilarity between two SAAP using the 
absolute value of the difference in their features, i.e.,  

( ) x yd x y f f= −, . 

Then, for a set of single sequence conservation features 
as a feature vector, we can obtain the dissimilarity 
between two SAAPs using some function to calculate 
distance between their feature vectors. 

The first distance function we propose to use is the 
Euclidean distance, which is considered as the most 
traditional and ordinary way to compare two points in the 
feature space. The mathematical formulation of the 
Euclidean distance between two SAAPs with feature 
vectors x and y is denoted as follow: 

2

1

( ) ( )i

n

i
id x y

=

= −∑x,y . 

The second distance function is the Manhattan 
distance, which is also known as the rectilinear distance, 
L1 distance, city block distance, or taxicab distance. The 
Manhattan distance is the sum of the lengths of the 
projections of the line segment between the points onto 
the coordinate axes [27]. The mathematical formulation 
of the Euclidean distance between two SAAPs with 
feature vectors x and y is denoted as follow: 

1

( ) i i

n

i

d x y
=

= −∑x,y . 

According to the literature [27], the advantage of the 
Manhattan over the Euclidean distance is that it weighs 
slight differences more heavily.  

Then, for the query disease D that has a set of seed 
SAAPs associated, the dissimilarity between a candidate 
SAAP with feature vector x and the query disease can be 
obtained as 

( )

( ) ( )
D

D
S

Z d
′∈

= ′∑
x

x x,x  

where SD is the collection of all seed SAAPs for the query 
disease D. 

With the dissimilarity between each of the candidate 
SAAPs and the query disease being calculated, we can 
further rank the candidate SAAPs according to their 
dissimilarity scores to obtain a rank list. Alternatively, we 
can define the reciprocal of the dissimilarity between a 
candidate SAAP and the query disease as an association 
score that indicates the strength of association between 
the SAAP and the disease, and then prioritize the 
candidate SAAPs according to their association scores. 

 

D.  Validation Methods and Evaluation Criteria 

We adopt a series of large-scale leave-one-out cross-
validation experiments to assess the validity of the 
proposed approach in recovering known associations 
between diseases and SAAPs. Specifically, in each 
validation run, we select an association between a disease 
and a seed SAAP that is known to be associated with the 
disease, assume that the association relationship is 
unknown, and then prioritize the SAAP against a set of 
control SAAPs based on their association scores. 
According to the polymorphism SAAPs derived from the 
Swiss-Prot database, we choose the following four 
control groups:  

(1) 99 randomly selected polymorphism SAAPs;  
(2) 999 randomly selected polymorphism SAAPs;  
(3) 9999 randomly selected polymorphism SAAPs; 
(4) All 13,735 polymorphism SAAPs.  

For every seed SAAP of every disease, we perform such 
validation run, and accordingly, we can obtain a series of 
ranking lists.  

To soundly evaluate the performance of the proposed 
prioritization method, we calculate two criteria with these 
ranking lists. The first criterion is termed mean rank ratio 
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Figure 1.    Distribution of mean rank ratios of all 723 diseases, against all 13735 polymorphism nsSNPs. A-F: Euclidean distance. G-L: Manhattan 
distance. A, G: Feature 1. B, H: Feature 2.  C, I: Feature 1 and 2. D, J: Feature 3. E, K: Feature 4.  F, L: Feature 3 and 4. 

of seed SAAPs (MRR), which is the average rank ratio of 
all seed SAAPs. The second criterion is termed AUC 
score (the area under the receiver operating characteristic 
(ROC) curve), which is obtained as follows. At a certain 
rank threshold, we define the sensitivity as the proportion 
of seed SAAPs ranked above the threshold, and the 
specificity as the fraction of control SAAPs ranked below 
the threshold. By varying the threshold, we are able to 
obtain a series of sensitivities and specificities, and 
further plot a ROC curve. The area under this curve is 
then defined as the AUC score. 

The above two criteria can be used to evaluate the 
proposed method in recovering known associations for a 
single query disease. In this case, we focus on the series 
of ranking lists obtained using seed SAAPs for the query 
disease. These criteria can also be used to evaluate the 
proposed method in recovering known associations for all 

diseases. In this situation, we focus on the series of 
ranking lists obtained for all seed SAAPs.   

As seed SAAPs that are associated with the same 
disease should be more similar than polymorphism 
SAAPs in the control group, it is expected that all the 
seed SAAPs should rank at the top. Therefore, we expect 
low mean rank ratios and high AUC scores for a good 
prioritization method. 

Ⅲ.  RESULTS 

A.  Validation of the Model 

We focus on diseases that have at least 4 seed SAAPs 
in the Swiss-Prot annotations, and we obtain a total of 
13,138 associations between 723 diseases and 13,138 
SAAPs. We then perform for each of these associations a 
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Figure 2.     Distribution of AUC scores of all 723 diseases, against all 13735 polymorphism nsSNPs. A-F: Euclidean distance. G-L: Manhattan 
distance. A, G: Feature 1. B, H: Feature 2.  C, I: Feature 1 and 2. D, J: Feature 3. E, K: Feature 4.  F, L: Feature 3 and 4. 

leave-one-out cross-validation experiment against each of 
the four control groups, using either the Euclidian 
distance or the Manhattan distance measure. We further 
evaluate the performance of the proposed method for 
each of the 723 diseases, in terms of the mean rank ratio 
of seed SAAPs and the AUC score, and we summarize 
the results in Figures 1 and 2, respectively. In each figure, 
we further present six situations: 

(1) Feature 1: using the conservation score of the 
original amino acid; 

(2) Feature 2: using the conservation score of the 
substituted amino acid; 

(3) Features 1 and 2: using a vector that is composed 
of the two conservation scores; 

(4) Feature 3: using the conservation ratio of the 
original amino acid to the background situation; 

(5) Feature 4: using the conservation ratio of the 

substituted amino acid to the background situation; 
(6) Features 3 and 4: using a vector composed of the 

two conservation ratios. 
From these figures, we can see that for a large 

proportion of diseases, the seed SAAPs can be ranked at 
top 50% among the control groups. In other words, we 
can recover relationships between a large number of 
known SAAPs and their associated diseases. Taking 
Figure 1 (H) as an example, we calculate that for 662 
(91.56%) diseases, the mean rank ratios are less than 50%; 
for 236 (32.64%) diseases, the mean rank ratios are less 
than 20%; for 78 (10.79%) diseases, the mean rank ratios 
are less than 10%. We further run Wilcoxon signed rank 
tests against the alternative hypothesis that the median of 
the mean rank ratios is less than 50% (random situation), 
and we find that no matter which features are used, the p-
value is less than 2.2×10-16. In other words, it is 
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Figure 3.    QQ-plots of different control groups. 

 

TABLE II.   
COMPARISON  RESULTS BETWEEN THE  TWO SIMILARITY MEASURES 

Feature Method 
Mean 

MRRs (%) 

Standard 
Derivation 
MRRs (%) 

p-value 

Euclidean 37.37 3.52 
1 

Manhattan 36.96 4.07 
0.3629 

Euclidean 37.12 2.88 
2 

Manhattan 28.31 2.25 
<2.2×10-16 

Euclidean 34.78 3.10 
1&2 

Manhattan 31.18 2.96 
<2.2×10-16 

Euclidean 38.26 2.78 
3 

Manhattan 40.15 3.24 
0.9890 

Euclidean 38.61 3.03 
4 

Manhattan 29.31 2.42 
<2.2×10-16 

Euclidean 36.21 2.52 
3&4 

Manhattan 34.73 2.51 
8.99×10-11 

 

statistically significant that our method can effectively 
prioritize seed SAAPs among the top of candidate SAAPs. 

 

B.  Comparison between Control Groups 

We then study the influence of the number of 
polymorphism SAAPs in the control group, for the 
purpose of understanding whether the proposed method is 
robust to the selection of the control set. To accomplish 
this, we fix the conservation feature (i.e. Feature 2) and 
the distance measure (i.e. the Manhattan distance), repeat 
the leave-one-out cross-validation experiment on each of 
the four control groups. We then run three Wilcoxon rank 
sum tests against the alternative hypothesis that mean 
rank ratios obtained using control group 4 (all 
polymorphism SAAPs) have a location shift over those 
using other control groups. We obtain three p-values, 
0.5627 for group 1, 0.9689 for group 2, and 0.9946 for 
group 3, which testify that little difference is made 
between these ranking lists calculated under different 
control groups. To make the results more visually, we 
draw three QQ-plots to compare these control groups, 
shown in Figure 3. It is not surprising to obtain such 
results, because control groups 1 to 3 are just random 
samples from control group 4. We therefore conclude that 
the random sampling procedure in generating control 
groups does not bring bias into the evaluation of the 
prioritization method. 

 

C.  Comparison between Similarity Measures 

Complying with the guilt-by-association model, we 
measure the similarity between two SAAPs in the feature 
space using two distance functions: the Euclidean 
distance and the Manhattan distance. Obviously, we want 
to find out the more precise measure for our prediction 
model. To accomplish this, we calculate the mean and 
standard deviation of the mean rank ratio using for each 
of the features, using either the Euclidean distance or the 
Manhattan distance, and we present the results in Table II. 
From this table, we can observe that the mean values of 
the mean rank ratios given by the Manhattan distance 
tend to be smaller in the leave-one-out cross-validation 
than those give by the Euclidean distance. Meanwhile, 
the standard deviation values given by the Manhattan 

distance are comparably similar to those given by the 
Euclidean distance. To further elucidate this observation, 
we run six Wilcoxon rank sum tests against the 
alternative hypothesis that mean rank ratios obtained 
using the Euclidean distance have a positive location shift 
over those using the Manhattan distance for the six 
situations mentioned above, and the results are also 
summarized in Table II. It is therefore clearly to see that 
the Manhattan distance measure is more suitable in 
measuring the similarity between two SAAPs, especially 
for features 2 and 4. 

 

D.  Comparison between Conservation Features 

From Figure 1 and Table II, we may conclude that 
mean rank ratios under the Manhattan distance seem to be 
smaller in the leave-one-out cross-validation when 
Feature 2 is used. We can also see that the performance 
of our model with the two conservation scores are better 
than the performance of our model with the 
corresponding conservation ratios, which indicates that 
considering the background frequencies of amino acids 
may decrease the discriminative power for uncovering the 
potential relationship between disease SAAPs and the 
relevant disease. To further testify these observations, we 
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first run 5 Wilcoxon rank sum tests against the alternative 
hypothesis that mean rank ratios obtained using Feature 2 
and the Manhattan distance have a negative location shift 
over those using other features and the Manhattan 
distance, and we obtain three p-values smaller than 
2.2×10-16 for Feature 1, Feature 3, and Features 3 & 4; 
two p-values smaller than 2.83×10-7 for Feature 4 and 
Features 1 & 2. That is to say, Feature 2 is more capable 
of recognizing the disease SAAPs than other features in 
this prioritization problem. Similarly, we run three other 
Wilcoxon rank sum tests against the alternative 
hypothesis that mean rank ratios obtained using 
conservation scores and the Manhattan distance have a 
negative location shift over those using the corresponding 
conservation ratios and the Manhattan distance, and we 
can also receive three small p-values (9.28×10-15, 
2.83×10-7, and 2.2×10-16) to verify our second assumption. 
These results are consistent with the analysis of relative 
importance of the features in the literature [25], which 
points out that the conservation score for the substituted 
amino acid has the most powerful discriminative ability 
to identify the disease-associated SAAPs against the 
neutral ones. 

 

E.  Effect of Number of Seeds 

For every specific disease, a prioritization model is 
trained using the conservation scores drawn from known 
seed SAAPs. When applying the proposed guilt-by-
association model to predict new candidate SAAPs, we 
may achieve higher performance if the trained model is 

more stable and we can use the conservation scores to 
precisely describe the disease. In other words, the model 
will achieve relative better prediction performance when 
the number of seed SAAPs is large enough to collect 
comprehensive and accurate information about the 
conservativity of the disease, while the model will give 
relative poor prediction results when the number of seed 
SAAPs is too small to capture the essence of the 
conservativity of corresponding disease. To validate our 
postulation, we run our model on four control datasets 
with three feature sets (Feature 1, Feature 2, and Features 
1 & 2) separately:  

1) Dataset 1 includes 177 diseases, and the number of 

seed SAAPs ranges from 20 to 260; 

2) Dataset 2 includes 182 diseases, and the number of 

seed SAAPs ranges from 10 to 19;  

3) Dataset 3 includes 168 diseases, and the number of 

seed SAAPs ranges from 6 to 9;  

4) Dataset 4 includes 196 diseases, and the number of 

seed SAAPs ranges from 4 to 5.  

The comparison results are given in Figure 4, from 
which we can see that the histogram results show 
different mean rank ratios distributions according to the 
change of the dataset and feature. By calculating the 
mean value and standard deviation of mean rank ratios 
for every dataset under a certain feature set, we find little 
difference for the mean value of mean rank ratios under 
different datasets, however, the standard deviation of 
mean rank ratios is enlarging quickly along with reduced 
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Figure 4.    The histograms result of mean rank ratios for different datasets. A,E,I: for Dataset 1.  B,F,J: for Dataset 2. C,G,K: for Dataset 3. D,H,L: 
for Dataset 4. A-D: Feature 1. E-H: Feature 2. I-L: Feature 1and 2. 
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amount of known seed SAAPs. On that scenario, we can 
conclude that our approach becomes more sensitive to the 
stability of the conservativity of the disease when there 
are little available seed SAAPs. If the disease possesses 
strong conservative character and can be accurately 
pictured by only a few seed SAAPs, the approach may 
perform outstandingly to measure the casual relationship 
between new candidate SAAP and the disease; on the 
contrary, if the disease does not have a stable 
conservative character, it is quite difficult to use 
conservation scores extracted from few seed SAAPs to 
construct a well-performed prediction model. In a word, 
the model may have better prediction results when there 
are enough seed SAAPs (more than 5 seed SAAPs) to 
capture the characters of the diseases. 

 

F.  Case studies 

Making use of guilt-by-association model to formulate 
the problem of prioritizing candidate SAAPs, we aim at 
finding disease-related SAAPs for the query disease, and 
accordingly promoting the detection of potential 
functional rare variants in successive association studies. 
We apply the proposed method with Feature 1and 2 and 
the Manhattan distance measure for some specific 
diseases, such as Familial hypercholesterolemia (FH) 
[MIM: 143890], we obtain the overall MRR=14.16% and 

AUC=85.85% (shown in Table Ⅲ ). According to the 

ranking results, we can thus get the top five significant 
disease-associated SAAPs, which are D579Y, P608S, 
D221Y, D224V, and D221G. All of these SAAPs belong 
to gene LDLR and rank top 140 among 13736 SAAPs 
(less than 1.00%). These results are just in accordance 
with some previously published research works [28-30], 
which point out that FH results from defective low-

density lipoprotein receptor (LDLR) activity, mainly due 
to LDLR gene defects. 

We also study some common complex diseases, such 
as breast cancer (BC) [MIM: 114480]. It was found in the 
middle of 1990s that genetic variants occurring in BRCA1 
or BRCA2 may significantly raise the odds of developing 
breast cancer [31]. In our study, the top 5 variants that are 
predicted to be associated with breast cancer are T826K 
in gene BRCA1, T2515I in gene BRCA2, S2072C in gene 
BRCA2, H888Y in gene BRCA1, and G960D in gene 
BRCA1, and they all rank top 1000 among 13736 SAAPs  
(smaller than 6.74%). 

Ⅳ.  CONCLUSIONS 

In this paper, we model the problem of distinguishing 
disease-associated SAAPs against neutral ones for 
specific types of diseases as a prioritization problem, and 
we solve this problem using a guilt-by-association model. 
We implement our method using two distance measures 
with four control groups on the basis of four conservative 
features drawn only from multiple sequence alignments. 
We demonstrate that the method is effective in ranking 
SAAPs that are responsible for specific diseases among 
the top of candidates. We also analyze the effects of 
different number of control samples, different distance 
measures, different features, and different number of seed 
SAAPs known to be associated with the query diseases. 

Certainly, there are several limitations of the proposed 
approach. First, we use the Pfam multiple sequence 
alignments to extract conserved protein domains for the 
query protein sequence. As a result, we are limited to the 
mutations occurring in known protein domains. This 
limitation can be overcome by using some other multiple-
sequence alignment methods, such as BLAST [32], PSI-
BLAST [33], COBALT [34]. Second, we currently use 

TABLE Ⅲ.   

PREDICTION PERFORMANCES FOR DISEASE ( MIM:143890) 

Condition 
99 Polymorphism 

nsSNPs (%) 
999 Polymorphism 

nsSNPs (%) 
9999 Polymorphism 

nsSNPs (%) 
All Polymorphism 

nsSNPs (%) 

Feature 1 19.51 ± 2.72 19.15 ± 0.86 19.30 ± 0.10 19.26 

Feature 2 45.85 ± 4.71 44.84 ± 1.13 44.82 ± 0.03 44.81 Euclidean 

Features 1and 2 17.52  ± 2.54 18.99  ± 0.86 18.75 ± 0.09 18.71 

Feature 1 13.88 ± 1.76 14.85 ± 0.68 14.79 ± 0.09 14.70 

Feature 2 20.42 ± 2.01 19.37 ± 0.77 19.46 ± 0.10 19.55 

Mean 
Rank 
Ratio 

Manhattan 

Features 1and 2 13.50 ± 1.29 14.06 ± 0.46 14.19 ± 0.06 14.16 

Feature 1 81.04 ± 2.77 80.90 ± 0.86 80.70 ± 0.10 80.73 

Feature 2 54.09 ± 4.80 55.15 ± 1.13 55.17 ± 0.03 55.19 Euclidean 

Features 1and 2 83.11  ± 2.58 81.07 ± 0.86 81.25 ± 0.09 81.29 

Feature 1 86.78 ± 1.74 85.21 ± 0.68 85.21 ± 0.09 85.22 

Feature 2 80.03 ± 2.03 80.67 ± 0.78 80.54 ± 0.10 80.45 

AUC 
score 

Manhattan 

Features 1and 2 87.15 ± 1.27 86.01± 0.45 85.81 ± 0.06 85.85 
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only the four conservation scores to construct our 
prediction model. In our future studies, we will combine 
some useful information such as the physicochemical 
characteristics of amino acids, or the structure 
information of proteins to form a more comprehensive 
feature set. Finally, our approach is limited to SNPs 
found in protein coding regions. However, mutations in 
other genome regions such as the transcriptional-factor 
binding sites, promoter regions, or introns are also known 
to cause diseases. Further studies are needed for these 
mutations. 

ACKNOWLEDGMENT 

This work was partly supported by the Natural Science 
Foundation of China (60805010, 60928007, 60934004), 
Tsinghua University Initiative Scientific Research 
Program, Tsinghua National Laboratory for Information 
Science and Technology (TNLIST) Cross-discipline 
Foundation. 

REFERENCES 

[1] Robinson R, "Common disease, multiple rare (and distant) 
variants," PLoS Biol, vol. 8, 2010: e1000293. 

[2] Naoshi K, Shigeru H, Shin‐ichi K, and Akira N, "Positive 
association of common variants in CD36 with neovascular 
age‐related macular degeneration," Aging, February 2009, 
vol. 1. No. 2. 

[3] Liana KB and Jose CF, "The genetics of type 2 diabetes: 
what have we learned from GWAS?" Ann. N.Y. Acad. Sci, 
1212 (2010), pp. 59–77. 

[4] Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, et 
al., "A Genome-Wide Association Study of Hypertension 
and Blood Pressure in African Americans," PLoS Genet 
5(7), 2009: e1000564. doi:10.1371/journal.pgen.1000564. 

[5] Marian B, Christa N, H. Eka DS, et al, "Genome-wide 
association study (GWAS)-identified disease risk alleles do 
not compromise human longevity," PNAS October 4, 2010, 
doi: 10.1073/pnas.1003540107 . 

[6] Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, 
Jarvelin MR, Balding D, Coin L, Levin M.," Pathway 
analysis of GWAS provides new insights into genetic 
susceptibility to 3 inflammatory diseases," PLoS One. 
2009 Nov 30;4(11):e8068. 

[7] Parkes M, Barrett JC, Prescott NJ, Tremelling M, 
Anderson CA,et al , " Sequence variants in the autophagy 
gene IRGM and multiple other replicating loci contribute 
to Crohn's disease susceptibility," Nat Genet. 2007 
Jul;39(7):830-2. Epub 2007 Jun 6. 

[8] Li B, Leal SM, "Methods for detecting associations with 
rare variants for common diseases: application to analysis 
of sequence data," Am J Hum Genet, vol. 83, pp. 311-321, 
2008. 

[9] Gaurav B, Vikas B, Olivier H, Nicholas J, Erik J, Kelly F, 
Vineet B., "A Covering Method for Detecting Genetic 
Associations between Rare Variants and Common 
Phenotypes," PLoS Comput Biol, vol. 6(10), 2010. 

[10] Bentley DR, "Whole-genome re-sequencing. Curr Opin 
Genet Dev,"16:545–552, 2006. 

[11] Bodmer W, Bonilla C, "Common and rare variants in 
multifactorial susceptibility to common diseases," Nat 
Genet 40:695–701, 2008. 

[12] Xiong M, Zhao J, Boerwinkle E, "Generalized T2 test for 
genome association studies," Am J Hum Genet, vol. 70, pp. 
1257-1268, 2002. 

[13] Bo EM and Sharon RB, "A groupwise association test for 
rare mutations using a weighted sum statistic," PLoS 
Genet.,vol. 5(2), 2009. 

[14] Morgenthaler S, Thilly WG, "A strategy to discover genes 
that carry multi-allelic or mono-allelic risk for common 
diseases: A cohort allelic sums test (CAST)," Mutat Res, 
615:28-56, 2007. 

[15] Haller G, Torgerson DG, Ober C, Thompson EE, 
"Sequencing the IL4 locus in African Americans 
implicates rare noncoding variants in asthma susceptibility, 
" J Allergy Clin Immunol, 2009, 124:1204-1209.e9. 

[16] Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, et al., 
"Rare independent mutations in renal salt handling genes 
contribute to blood pressure variation," Nat Genet, 40:592-
599, 2008. 

[17] Kotowski I, Pertsemlidis A, Luke A, Cooper R, Vega G, 
Cohen J, Hobbs H, "A Spectrum of PCSK9 Alleles 
Contributes to Plasma Levels of Low-Density Lipoprotein 
Cholesterol," Am J Hum Genet, 78:410-422, 2006. 

[18] Ramensky V, Bork P, Sunyaev S, "Human non-
synonymous SNPs: server and survey," Nucl Acids Res,  
vol. 30, pp. 3894-3900, 2002. 

[19] Ng PC, Henikoff S, "SIFT: Predicting amino acid changes 
that affect protein function," Nucl Acids Res, vol. 31, pp. 
3812-3814, 2003. 

[20] Liu DJ, Leal SM, "A novel adaptive method for the 
analysis of next-generation sequencing data to detect 
complex trait associations with rare variants due to gene 
main effects and interactions," PLoS Genet, vol. 6: 
e1001156, 2010.  

[21] Jiang R, Yang H, Zhou L, Kuo CC, Sun F, et al., 
"Sequence-based prioritization of nonsynonymous single-
nucleotide polymorphisms for the study of disease 
mutations,"  Am J Hum Genet, vol. 81, pp.346-360, 2007. 

[22] Altshuler D, Daly M, Kruglyak L, "Guilt by association,"  
Nat Genet, vol. 26, pp.135-137, 2000. 

[23] Consortium TU, "The Universal Protein Resource (UniProt) 
in 2010," Nucl Acids Res, vol. 38, pp. D142-148, 2010.  

[24] Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, 
Hollich V, et al., "Pfam: clans, web tools and services,"  
Nucl Acids Res, vol. 34, pp. D247-251, 2006. 

[25] Wu J, Zhang W, Jiang R, "Comparative study of ensemble 
learning approaches in the identification of disease 
mutations,"  BMEI 2010. 

[26] Jiang R, Yang H, Sun F, Chen T, "Searching for 
interpretable rules for disease mutations: a simulated 
annealing bump hunting strategy," BMC Bioinformatics, 
vol. 7, pp.417, 2006. 

[27] Stenström P, "High performance embedded architectures 
and compilers", third international conference, HiPEAC 
2008, Göteborg, Sweden, January 27-29, 2008 : 
proceedings. Berlin ; New York: Springer. xiii, pp. 400. 

[28] Bourbon M, Duarte MA, Alves AC, Medeiros AM, 
Marques L, et al., "Genetic diagnosis of familial 
hypercholesterolaemia: the importance of functional 
analysis of potential splice-site mutations,"  J Med Genet , 
vol. 46, pp.352-357, 2009. 

[29] Taylor A, Tabrah S, Wang D, Sozen M, Duxbury N, et al. , 
"Multiplex ARMS analysis to detect 13 common mutations 
in familial hypercholesterolaemia," Clin Genet, vol. 71, pp. 
561-568. 



10 Extraction of Sequence Conservation Features for the Prioritization of Candidate  
Single Amino Acid Polymorphisms 

Copyright © 2011 MECS                                                                I.J. Information Engineering and Electronic Business, 2011, 2, 1-10 

[30] Humphries SE, Neely RD, Whittall RA, Troutt JS, Konrad 
RJ, et al., "Healthy individuals carrying the PCSK9 
p.R46L variant and familial hypercholesterolemia patients 
carrying PCSK9 p.D374Y exhibit lower plasma 
concentrations of PCSK9,"  Clin Chem, vol. 55, pp.2153-
2161, 2009. 

[31] DNA Mutation Diseases, "DNA Mutation Diseases," 
http://wwwexplorednacouk/dna-mutation-diseaseshtml. 

[32] Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ, 
"Basic local alignment search tool, "  J. Mol. Biol., vol. 
215, pp.403-410,1990. 

[33] Altschul SF, Madden T, Schaffer A, Zhang J, Zhang Z, 
Miller W, Lipman D, "Gapped BLAST and PSI-BLAST: a 
new generation of protein database search programs, " 
Nucl Acids Res., vol. 25, pp. 3389–3402,1997. 

[34] Jason SP and Richa A, "COBALT: constraint-based 
alignment tool for multiple protein sequences," 
Bioinformatics, vol. 23, pp. 1073–1079,2007. 

 
 
 
 

Jiaxin Wu received her B.Sc. degree in 
Communication Engineering in 2005 from 
Beijing Jiaotong University, Beijing, China. 
She is now a M.S. candidate in the 
Department of Automation, Tsinghua 
University, Beijing, China. Her research 
interests include pattern recognition, machine 

learning, data mining, and bioinformatics. 
 
 

 
 

Mingxin Gan received her Ph.D. degree in 
Management Science and Engineering in 2006 
from Beijing Institute of Technology, Beijing, 
China. She is now a lecture in the School of 
Economics and Management, University of 
Science and Technology Beijing, Beijing, 
China. Her research interests include data 

mining, recommendation systems, and analysis of complex 
networks. 
 
 

 
Wangshu Zhang received her B.E. degree in 
Control Science and Engineering in 2008 from 
Harbin Engineering University, Harbin, China. 
She is now a M.S. candidate in the Department 
of Automation, Tsinghua University, Beijing, 
China. Her research interests include, machine 
learning, data mining, bioinformatics, and 

systems biology. 
 
 

 

 
Rui Jiang received his Ph.D degree in Control 
Science and Engineering in 2002 from 
Tsinghua University, Beijing, China. He is 
now an associate professor in the Department 
of Automation, Tsinghua University, Beijing, 
China. His research interests include 
bioinformatics, systems biology, pattern 

recognition, and machine learning. 

 
 
 


