
I.J. Information Engineering and Electronic Business, 2011, 1, 30-37
Published Online February 2011 in MECS (http://www.mecs-press.org/)

Research of the QoC based Middleware for the
Service Selection in Pervasive Environment

Di Zheng

Department of Computer Science, Naval University of Engineering
Wuhan, China

dizheng@nudt.edu.cn

Jun Wang
Key Research Lab, Wuhan Radar Institute

Wuhan, China
junwang@nudt.edu.cn

Abstract—With the rapid development of information
technology, it is inevitable for the distributed mobile
computing will evolve to the pervasive computing gradually
and whose final goal is fusing the information space
composed of computers with the physical space in which the
people are working and living in. Furthermore, with the
development of SOA, more and more pervasive applications
have been composed of different kinds of services. So how to
choose a suitable service from all the useable services is the
most important step for pervasive computing. Compare to
the traditional service selection we must take more care of
the context as well as the quality of them in pervasive
environment. However, most of existing researches pay no
attention to QoC(Quality of Service) which may lead to
unreliable selections. Therefore we proposed a middleware
based service selection scheme to support QoC-aware
service selection efficiently.

Index Terms—-QoC; middleware; Context-aware; Pervasvie

I. INTRODUCTION

Nowadays, the vision of pervasive computing is
becoming a reality. The paradigm for pervasive
computing aims to enable people to contact anyone at
anytime, anywhere in a convenient way. So, context-
awareness has become one of the core technologies in
pervasive computing environment gradually and been
considered as the indispensable function for pervasive
applications[1].A context-aware system generally consists
of two parts: sensing a context scenario, and adapting the
system to the changing context scenario by providing
desired services for a user.

Furthermore, with the development of SOA, more
pervasive applications begin to provide users with cost-
effective services that have the potential to run anywhere,
anytime and on any device without (or with little) user
attention. Such services are usually called pervasive
services and they are part of pervasive (or ubiquitous)

computing [2] .
Existing Service Selection methods such as Mobile

Agent, Bluetooth, Diane, Jini, Universal Plug and Play
(UPnP) have proposed a number of solutions on how to
deal with the problems including the semantic description,
service discovery, system architecture, service binding in
the service selection problem, and these programs focus
on the different considerations. Based on these researches,
a lot of work has been carried out for service selection [3-7]
in pervasive environment. However, these systems rarely
pay little attention to the Quality of Services for pervasive
applications. In [17], Kun give a QoS based service
selection method for pervasive applications by thinking
about the contexts of Network quality, Node availability,
Network delay, Network reliability, User-perceived
quality and so on. By using these criteria they can
complete the selection of services. However，how we
get the values of the criteria? All the values are so-called
service contexts coming from different sensors too. We
should pay attention to the service contexts themselves.
For example, two services have the same values for all
the criteria. Then we should choose which one? In fact,
the accuracy of service A’s contexts is 70% while the
other one is 85%.It’s obviously the latter service is a
better choise. So we should pay attention to the Quality of
Context information (QoC) of the services when we
complete the service selection.

Buchholz et al. [8] has been the first ones to define
QoC “as any information describing the quality of
information that is used as context”. Furthermore, context
information can be characterized by certain well-defined
QoC aspects, such as accuracy, precision, completeness,
access security, and up-to-date [12]. Despite its importance
few works [9~13] have proposed different QoC measuring
methods. Moreover, these studies evaluate quality only
on some aspects, i.e. they do not consider complex and
comprehensive applications. Comparatively, pervasive
environments have a wider range of applications such as
performing collaborative work. Hence, complex data
structures are used to gather data from sources ranging
from the simple sensors to user interfaces and
applications in mobile devices.

Footnotes: 8-point Times New Roman font;
Manuscript received January 1, 2011; revised June 1, 2011; accepted

March 1, 2011. Copyright credit, project number, corresponding author,
etc.

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

 Research of the QoC based Middleware for the Service Selection in Pervasive Environment 31

Therefore, based on our previous works [14-16], we propose
a context-aware framework that support QoC
management including threshold control, duplicate
context discarding and inconsistent context discarding in
various layers. Moreover we extend our autonomic
management approach for the service selection so as to
make these applications can be selected more accuracy
and efficient than traditional methods.

II. MIDDLEWARE BASED QOC-AWARE SERVICE
SELECTION

A. Architecture of the Context-aware Middleware

Figure 1. Adaptive Fault Tolerant Architecture

As our previous architecture depicted in figure
1[14,15,16], the core provides the fundamental platform-
independent services for the management of the
component/service based applications such as component
deployment, service discovery, service combination and
so on.

Context Manager is responsible for sensing and
capturing context information and changes, providing
access to context information (pull) and notifying context
changes (push) to the Adaptation Manager. The Context
Manager is also responsible for storing user needs and
preferences on application services.

Adaptation Manager is responsible for reasoning on
the impact of context changes on the application(s), and
for planning and selecting the application variant or the
device configuration that best fits the current context. As
part of reasoning, the Adaptation Manager needs to assess
the utility of these variants in the current context. The
Adaptation Manager produces dynamically a model of
the application variant that best fits the context.

Configurator is responsible for coordinating the
initial instantiation of an application and the
reconfiguration of an application or a device. When
reconfiguring an application, the Configurator proceeds
according to the configuration template for the variant
selected by the Adaptation Manager. Thus, the
Configurator carries out the adaptations decided by the

Adaptation Manager by applying the configuration
template.
Autonomic Manager provides the basis for realizing the
dynamic, automatic binding of components/services into
concrete functionality as well as the dynamic replacement
of a component/service with another. The Download
Module deals with the orchestration of the software
transfer to the system, and other procedures, i.e. asserting
the authenticity of the concerned component’s source,
and integrity checks. The Installation Module caters for
post-download steps. The Decision Module defines
certain actions and decisions for the configuration of the
autonomic system, after evaluating its behavior.

B. Architecture of the Context Management

Figure 2. Architecture of the Context Manager

As depicted in figure 2, the context repository is the main
entry point for clients to the context manager. The
primary tasks of the context repository are to maintain a
context model, register and notify listeners, give access to
context elements, and keep registry of available
components.

The context sensors are components which provide
context information to the context repository (a type of
context source). Sensors can be wrappers around
specialized hardware drivers, or legacy code used for
monitoring context, such as battery, memory, and
network information.

The context interpreter abstracts raw or low level
context information into richer or higher level
information according to interpretation rules described by
using the context meta-model provided by the
middleware. Furthermore, this component can fuse kinds
of basic information into more comprehensive elements.

The context reasoners can produce one or more
context elements using other context elements as input.
This component is used to filter context information to
determine relevant ones, and notify the subscribed
component of these context changes.

The reasoners are “plug and play” in order to make
it possible to target reasoners according to different needs
and domains.

The context storage keeps the track of historical
context information which is often required in order to
determine trends in context data (for example trends in
user behavior, network stability, etc).

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

32 Research of the QoC based Middleware for the Service Selection in Pervasive Environment

C. Ontology based Context-aware Service Model
As depicted in figure 3 is the ontology based context
model, the contexts are composed of computation
contexts, location contexts, user contexts and activity
contexts. The service contexts belong to the computation
contexts. Service ontology is not connect directly to
upper ontology’s context information but waits exit
process of executing service. Domain ontology is
inherited context information from upper ontology and
creates core ontology in domain-specific area. If service
deduction arises in domain ontology, service ontology is
created after service matching between domain-extend
ontology and new service ontology, and executes it.

Figure 3. Ontology based Context Model

As depicted in figure4, we use the parameters as follows
based on ontology:
(1). Security

We use security as the probability with which the
context is delivered in security to the consumers. This
parameter is useful to know the probability with which
the context has been maintained in security, from its
capture by sensors to its use.
(2). Precision

We use precision as the level of details in which the
context characterizes the real world. For numeric context
information, the value described with three significant
figures (e.g. 32.2) is more precise than with two
significant figures (i.e. 32).
(3). Resolution

We use resolution as the spatial granularity with
which the context is being described/sensed from the
environment. For instance, the lightness of a building can
be described in the following spatial granularity levels:
building, floor, and room.
(4). Freshness

We use freshness as the temple granularity with
which the context is being described/sensed from the
environment. This parameter reflects the time exhausted
for passing the context to consumers.
(5). Certainty

We use certainty as the probability of the accuracy
of the context. As we all know, the context comes from
different kinds of sources and some of them more

sensitive and useful than the others. So when we have
similar contexts from different sensors, we should choose
the right context with the help of certainty.
(6). Completeness

We use completeness as the ratio of the number of
context information available to the total number of
context gatherings. The completeness of a context object
is computed as the ratio between the sum of the weights
of available attributes of a context object, and the sum of
the weights of all the attributes of that context object.

Figure 4. QoC-aware Context Model based on Ontology

D. Detection and Discardtion of Duplicate or
Inconsistent Context

Besides the QoC factors we should also discard the
duplicate and inconsistent context. In our system, every
context has context ID, context name/value pairs. So we
define duplicate contexts as the contexts have the same
identifier, or the same name/value pairs. As described in
Algorithm 1, after context gathering newly arrived
context will be passed to check if it is the duplicate
context.

Firstly we get the identifier of the newly arrived
context and check if there is any context in the existing
data representing the same entity. If we do not find any
context having the same identifier, we will check the
name/value pairs further.

If there are some contexts having the same identifier
or the same name/value pairs, we will check the sources
of context. If they have different sources then some errors
may occur and we should check the gathering of the
contexts. If these two context objects are from the same
source then we check the time when these context objects
are generated. If they have the same timestamp then it
means that they are the exact duplicate of each other and
anyone of them can be discarded as well as keeping the
other one. If they have the different timestamps it means
that these are the duplicate contexts and will be discarded.
Algorithm 1 Algorithm to detect duplicate context
objects
INPUT: New arrived context
1. get the identifier of contexts
2. if There exists contexts with same ID
3. then

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

 Research of the QoC based Middleware for the Service Selection in Pervasive Environment 33

4. if sourceID of both context objects match
5. then
6. if timestamp of both context objects match
7. then
8. Find duplicate contexts and discard

anyone
9. end if
10. else
11. Check the context gathering
12. end if
13. else if There exists contexts with same name/value

pairs
14. Discard one according to the quality

tuple
15. end if
16. end if
After duplicate context dealing we need inconsistent
context dealing including matching of name/value pairs
and quality-aware tuple. Consistency constraints on
contexts can be generic (e.g., “nobody could be in two
different rooms at the same time”) or application specific
(e.g., “any goods in the warehouse should have a check-
in record before its check-out record”).
Firstly, we define the relations as follows to indicate the
relation of the fields of different contexts:

(1) (1 2)
(2) (equal in value)
(3) ()
(4) ()
(5) ()
(6) ()

identical v v
equivalent
plug in equivalent or E(v1) E(v2)
covering equivalent or E(v1) E(v2)
overlapping E(v1) E(v2)
unrelated E(v1) E(v2)

=

−
⊃

∩ ≠ ∅
∩ = ∅

⊂

)

Secondly, in our consistency checking, each constraint is
expressed by an FOL formula as given in Figure 5, where
bfunc refers to any function that returns true (T) or false
(F). Each expressed constraint is called a context
consistency rule (or rule for short). Note that we are only
interested in well-formed rules that contain no free
variables.

1

:: () | () |
() () | () (
() () | ()

(,..

|
formula var pat formula var pat formula

formula and formula formula or formula
formula implies formula not formula

bfunc var

= ∀ ∈ ∃ ∈

 .,)nvar

Figure 5. Rule Syntax

Figure 6. An example of context matching

The rule syntax follows traditional interpretations. For
example, (var pat formula)∃ ∈ the constraint that
any context instance matched by pattern pat must satisfy
formula. The formula definition is recursive until bf
terminals. Thanks to the expressive power of FOL,
expressing complex constraints becomes easier than
using ECA counterparts.

unc

As depicted in figure 6 is the example of the
inconsistent context matching. We get two different
contexts about the event that Tom went into the operating
room and we can find the difference between the
certainty and the freshness fields.

Furthermore, we use triggers to find the
inconsistence. As depicted in figure 7 is the example of
the inconsistent trigger in the complex condition.

Figure 7. Complex context matching

After detecting inconsistent contexts we should use the
algorithms as follows to discard the conflicted contexts.
Algorithm 2 Discarding all inconsistent context instances
INPUT: New arrived context

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

34 Research of the QoC based Middleware for the Service Selection in Pervasive Environment

1. get the new instance of context in the queue of

matching patterns _pat que

2. To all the patterns 1 2, ,... npat pat pat
3. In the pat’s trigger tgr
4. if exists 1ins in 1_pat que , 2ins in

2_pat que , ..., and nins in _ npat que and

tgr satisfy the constraint of 1ins ， 2ins ，…，

nins
5. then
6. if the constraint of tgr is satisfied
7. then
8. We get inconsistency
9. delete all the inconsistent context instances
10. add the remaining instances to the

repository
11. end if
12. end if
Algorithm 2 is deleting all the inconsistent context
instances. However, the occurrence of many conflicts is
due to the entrance of the new incoming context instance.
So we get algorithm 3, discarding the newest context
instance.
Algorithm 3 Discarding the newest incoming context
INPUT: New arrived context
1. get the new instance of context in the queue of

matching patterns _pat que

2. To all the patterns 1 2, ,... npat pat pat
3. In the pat’s trigger tgr
4. if exists 1ins in 1_pat que , 2ins in

2_pat que , ..., and nins in _ npat que and

tgr satisfy the constraint of 1ins ， 2ins ，…，

nins
5. then
6. if the constraint of tgr is satisfied
7. then
8. We get inconsistency
9. delete the newest incoming context

instances
10. add the remaining instances to the

repository
11. end if
12. end if
However, in some examples the newest context may be
the right one, so we get algorithm 4 to discard the
inconsistent context by the help of the field of certainty.
Algorithm 4 Discarding the context with lower certainty
INPUT: New arrived context
1. get the new instance of context in the queue of

matching patterns _ pat que
2. To all the patterns 1 2, ,... npat pat pat
3. In the pat’s trigger tgr

4. if exists 1ins in 1_pat que , 2ins in

2_pat que , ..., and nins in _ npat que and

tgr satisfy the constraint of 1ins ， 2ins ，…，

nins
5. then
6. if the constraint of tgr is satisfied
7. then
8. We get inconsistency
9. choose the context having the highest

context and delete all the others
10. add the remaining instances to the

repository
11. end if
12. end if
In algorithm 4, we need compare the certainty of all the
context instances and this may add the overall exhaustion
of the algorithm. Therefore, to different kinds of contexts,
we pay attention to the frequency of the contexts for the
context having higher frequency may be right. Moreover,
it is difficult to compare the frequency of different kinds
of context. So we import the concept of relativity as
follows:

As in algorithm 5, we compare the relativity of different
contexts and discard the ones having the lower relativity.
Algorithm 5 Discarding the context with lower relativity
INPUT: New arrived context
1. get the new instance of context in the queue of

matching patterns _pat que

2. To all the patterns 1 2, ,... npat pat pat
3. In the pat’s trigger tgr
4. if exists 1ins in 1_pat que , 2ins in

2_pat que , ..., and nins in _ npat que and

tgr satisfy the constraint of 1ins ， 2ins ，…，

nins
5. then
6. if the constraint of tgr is satisfied
7. then
8. We get inconsistency
9. compute the relativity of the contexts and

keep the highest context as well as deleting all the
others

10. add the remaining instances to the
repository

11. end if
12. end if

E. QoC-aware based Service Selection
Firstly, based on the QoC-aware context model in figure5
and the algorithms to detect and discard the
duplicate/inconsistent context, we propose a QoC-aware
context manager as depicted in figure 8.

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

 Research of the QoC based Middleware for the Service Selection in Pervasive Environment 35

Figure 8. QoC-aware Context Manager

As depicted in figure8, we provide different levels of
QoC. When the context retriever gets the context from
different providers, it can use different thresholds to
discard some of the context for its lower certainty,
precision, freshness. Then we can get less and more
useful context. Furthermore, the main question when
completing context interpretation and context aggregation
is the detection and discarding of the duplicate or
inconsistent context. The detailed quality-aware context
processing procedure is shown in Figure6.

The first step is the raw context gathering, in which
raw contexts from various sensor sources are collected
during a fixed short period. In this step we will use one or
multiple thresholds to refinery the raw context.

The second step is the duplicate and inconsistency
resolution during context interpretation and aggregation.
We resolve inconsistency among different raw contexts in
this step because duplicate and inconsistent raw contexts
may lead to high-level contexts more difficult to handle.
We process raw contexts in a batch by batch manner
instead of a piece by piece manner. Inconsistency in a
batch of raw contexts should be cleaned prior to context
reasoning so that the inconsistency of high-level contexts
can be mitigated in certain degree. We will update the
context repository with raw contexts and check the
dependency. Outdated or incorrect high-level contexts
will be deleted in this step. If they are not removed, they
will result in serious inconsistency among contexts after
reasoning.

Figure 9. Quality-aware Context Processing Procedure

Based on the Context-aware technology, the Service

Selection architecture obtains and using the context
information. We can define context-aware criteria that
link the two sides of context and service nonfunctional
constraints. Context-aware criteria consist of a number of
criteria that are initialized from the meta data of the
correct service category. For example, we can use one of
the QoC criteria such as precision, freshness, certainty,
completeness and so on. We can also use two or more
criteria to complete the selection. All the selection is
managed by the autonomic manager according to the
configuration of users.

All the procession is controlled by the Autonomic
Management Module. When deployed, every service will
have several context configuration constraints which
imply the services pay more attention to which contexts.
We can also set the thresholds for the constraints. If a
service’s contexts are under thresholds, then the service
cannot be selected.

Initially, the Autonomic manager of an our context-
aware middleware discovers the service providers that
match the user’s requirements by given service discover
methods. Then the Autonomic manager compares QoC of
different services by using the methods choose by users
and selects one of the suitable providers and creates a
binding to it. During service execution, when the
Autonomic manager detects broken service bindings (e.g.
the bound service provider becomes unavailable), it will
repair them by discovering and binding to an alternative
provider.

Besides the initial binding configuration and repair
facilities, the Autonomic manager can be configured to
continually optimize service selection during runtime.
Furthermore, a service provider that was optimal in a
certain context may be automatically replaced by a
different service provider, which becomes the optimal
choice in a new execution context. The context filter can
be specified to trigger the dependency optimization each
time a new service provider with the required
specification becomes available. And we will take more
complex replacement methods into account in the future
researches.

F. Performance Measurements
We are deploying the proposed framework in a

university building in order to provide context-aware
services to the users, such as context-based access control
and context-aware control of heating and lighting, among
others. Afterwards, the gathered information was
transmitted to a server running a CIS (Intel Core Duo
2.8GHz, 4 GB, Windows vista 32bits, SQL Server 2008).
The sensing was carried out during 24 hours, with
intervals of 5 seconds. The evaluation consisted of (i) a
study of performance verifying the time overhead added
by the quality support in the framework and (ii) the
compare of the different discarding algorithms.

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

36 Research of the QoC based Middleware for the Service Selection in Pervasive Environment

Figure 10. The Overhead of the QoC-aware Context Dealing
As depicted in figure 10, we compare the overhead

of the common context processing procedure as well as
the procedure with QoC-aware dealing. We can see the
QoC-aware dealing may exhaust more time.

However, by using the QoC-aware dealing schemes,
we can select better service. As depicted in figure 11, we
compare the true probability of the contexts by using
different contexts dealing algorithms such as selecting the
newest service, selecting the service with the highest
certainty and the service with the highest relativity as
follows.

Figure 11. Analysis of the true probability

We can see all the dealing algorithms can get better
true probability. If using the composition of more than
one QoC criteria, we can make better selections.
However, more time will be exhausted too. So, we should
balance the accuracy and efficiency as well as making
assure the difference of kinds of applications. In future
works, we will complete more experiments continuously
to find better service selection algorithms based on our
framework.

CONCLUSION
With the rapid development of the information
technology, it is inevitable that the distributed mobile
computing will evolve to the pervasive computing
gradually whose final goal is fusing the information space
composed of computers with the physical space in which

the people are working and living in. To achieve this goal,
one of the problems is how to continuously
monitor/capture and interpret the environment related
information efficiently. Sensing context information and
making it available to the people, involved in
coordinating a collaborative task, is a preliminary phase
in making a system adaptable to the prevailing situation
in pervasive environments.

Many attentions have been paid to the research of the
context-aware pervasive applications. However, the
diversity of the sources of context information, the
characteristics of pervasive environments, and the nature
of collaborative tasks pose a stern challenge to the
efficient management of context information by sensing a
lot of redundant and conflicting information. Most of
existing research just use the raw context directly or take
just some aspects of the Quality of Context (QoC) into
account. In this paper, we have proposed a middleware
based context-aware framework that support QoC
management in various layers. By this framework we can
evaluate raw context, discard duplicate and inconsistent
context so as to protect and provide QoS-enriched context
information of users to context-aware applications and
services. In future work, we will complete more
experiments to discuss more aspects of the framework.

REFERENCES

[1] A. K. Dey, “Understanding and using context,” Personal
and Ubiquitous Computing, vol. 5, no. 1, pp. 4–7, 2001.

[2] Kun Yang ,Alex Galis ,Hsiao-Hwa Chen, “QoS-Aware
Service Selection Algorithms for Pervasive Service
Composition in Mobile Wireless Environments, ”
Mobile Netw Appl (2010) 15:488–501.

[3] Ardagna D, Pernici B (2007) Adaptive service
composition in flexible processes. IEEE Trans Softw
Eng 33(6):369–384

[4] Zhao Tang, Wenan Zhou, Jie Chang, Research on the
Context-aware Service Selection Architecture,2010.

[5] Liu shulei, Liu yunxiang, Zhang fan. A Dynamic Web
Services Selection Algorithm with QoS Global Optimal
in Web Services Composition[J].Journal of Software,
2007, 18 (3): 646-656.

[6] Reiff-Marganiec, S., Truong, H.-L., Casella, G., Dorn,
C., Dustdar, S., Moretzki, S.: The incontext pervasive
collaboration services rchitecture. In: Mahonen, P., Pohl,
K., Priol, T. (eds.) Proceedings of Service Wave 2008.
LNCS, vol. 5377, pp. 134–146. Springer, Heidelberg
(2008)

[7] Riva, O., Toivonen, S.: A hybrid model of context-
aware service provisioning implemented on smart
phones. In: Proceedings of ACS/IEEE International
Conference on Pervasive Services (2006)

[8] T. Buchholz, A. K¨upper, and M. Schiffers, “Quality of
context: What it is and why we need it,” in (HPOVUA
2003), Geneva, 2003.

[9] Y. Kim and K. Lee, “A quality measurement method of
context information in ubiquitous environments,” in
ICHIT’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 576–581.

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

 Research of the QoC based Middleware for the Service Selection in Pervasive Environment 37

[10] P. N. MA Razzaque, S Dobson, “Categorization and

modelling of quality in context information,” in
Proceedings of the IJCAI 2005, 2005.

[11] D. Preuveneers and Y. Berbers, “Quality Extensions and
Uncertainty Handling for Context Ontologies,” in
Proceedings of (C&O 2006), P. Shvaiko, J. Euzenat, A.
L´eger, D. L. McGuinness, and H. Wache, Eds., Riva
del Garda, Italy, August 2006, pp. 62–64. [Online].
Available: http://www.cs.kuleuven.be/
davy/publications/cando06.pdf.

[12] K. Sheikh, M. Wegdam, and M. van Sinderen, “Quality-
of-context and its use for protecting privacy in context
aware systems,” JSW, vol. 3, no. 3, pp. 83–93, 2008.

[13] A. Manzoor, H. L. Truong, and S. Dustdar, “On the
evaluation of quality of context,” in Smart Sensing and
Context, Third European Conference, EuroSSC 2008,
Zurich, Switzerland, October 29-31, 2008. Proceedings,
2008, pp. 140–153.

[14] Di Zheng，Jun Wang，Yan Jia，Wei-hong Han，Peng
Zou. Deployment of Context-aware Component-based
Applications based on Middleware. In UIC 2007 ，

July，2007，Hongkong.
[15] Di Zheng，Jun Wang，Yan Jia，Wei-hong Han，Peng

Zou. Middleware based Autonomic Management of the
Context-aware Component-based Applications. In ATC
2007，July， 2007，Hongkong，

[16] Di Zheng, Yan Jia, Peng Zhou, Wei-Hong Han. Context-
Aware Middleware Support for Component based
Applications in Pervasive Computing. In： Proceedings
of The 7th International Conference on Advanced
Parallel Processing Technologies，November， 2007.

[17] Kun Yang , Alex Galis , Hsiao-Hwa Chen. QoS-Aware
Service Selection Algorithms for Pervasive Service
Composition in Mobile Wireless Environments,2009.

Di Zheng is a Lecturer of Department
of Computer Science at Naval
University of Engineering, China. She
is a pervasive computing researcher
whose interests include context
modeling and management,
development of the context-aware

middleware and evaluating the quality of the context-aware
applications. She received her Ph.D. in the area of context-
aware pervasive computing from NUDT in 2008.

Jun Wang is a Lecturer of Department
of Key Research Lab at Wuhan Radar
Institute, China. He is a Middleware
researcher whose interests include
development of the middleware based
applications. He received his Ph.D. in
the area of context-aware pervasive

computing from NUDT in 2007.

Copyright © 2011 MECS I.J. Information Engineering and Electronic Business, 2011, 1, 30-37

	I. Introduction
	II. Middleware based QoC-aware Service selection
	A. Architecture of the Context-aware Middleware
	B. Architecture of the Context Management
	C. Ontology based Context-aware Service Model
	D. Detection and Discardtion of Duplicate or Inconsistent Context
	E. QoC-aware based Service Selection
	F. Performance Measurements
	Conclusion
	References

