
I.J. Information Engineering and Electronic Business, 2011, 1, 9-15 
Published Online February 2011 in MECS (http://www.mecs-press.org/) 

Copyright © 2011 MECS                                                               I.J. Information Engineering and Electronic Business, 2011, 1, 9-15 

Irregular Function Estimation with LR-MKR  
 

Weiwei Han 
Department of Mathematics & Computer Science of Guangdong University of Business Studies, Guangzhou, China 

Email: hww_2006@163.com 
 
 

Abstract—Estimating the irregular function with multi-scale 
structure is a hard problem. The results achieved by the 
traditional kernel learning are often unsatisfactory, since 
underfitting and overfitting cannot be simultaneously 
avoided, and the performance relative to boundary is often 
unsatisfactory. In this paper, we investigate the data-based 
local reweighted regression model under kernel trick and 
propose an iterative method to solve the kernel regression 
problem, local reweighted multiple kernel regression (LR-
MKR). The new framework of kernel learning approach 
includes two parts. First, an improved Nadaraya-Watson 
estimator based on blockwised approach is constructed to 
organize a data-driven localized reweighted criteria; Second, 
an iterative kernel learning method is introduced in a series 
decreased active set. Experiments on simulated and real 
data sets demonstrate the proposed method can avoid under 
fitting and over fitting simultaneously and improve the 
performance relative to the boundary effetely.  
 
Index Terms—irregular function, statistic learning, multiple 
kernel learning 
 

I.  INTRODUCTION 

Learning to fit irregular data with noise is an important 
research problem in many real-world data mining 
applications, which can be viewed as a function 
approximation from sample data. Kernel tricks have 
attracted more and more research attention recently. For 
kernel methods, the data representation should be 
implicitly chosen through the kernel function. Because 
this kernel actually plays several roles: it defines the 

similarity between two examples x  and x′ , while 
defining an appropriate regularization term for learning 

problem. Choosing a kernel K  is equivalent to 
specifying a prior information on a Reproducing Kernel 
Hilbert Space (RKHS), therefore having a large choice of 
RKHS should be fruitful for the approximation accuracy, 
if over fitting is properly controlled, since one can dapt its 
hypothesis space to each specific data set [1]-[3] 

For given data set 1{( , )}n
i i iS x y == . Assume that 

( )m x H∈ , where H  is some reproducing kernel 

Hilbert space called active space, with respect to the 

reproducing kernel K . The square norm related to the 

inner product by 
2|| || ,H H

f f f= . Consider the 

problem, 

1

min ( ) ( , ( )) ( )
n

i i
i

H m L y m x P mλ
=

= +∑  

Where λ  is a positive number which balances the trade-

off  between fitness and smoothness; L  is a loss function 

which determines how different between iy  and ( )im x  

and should be penalized; ( )P m  is a function which 

denotes the prior information on the function ( )m ⋅ . 

When the penalized function ( )P ⋅  is defined as 

2( ) || ||Hp m m= . By the represent theory, the solution of 

the upper kernel learning problem is of the general form 

    
1

( ) ( , )
n

i i
i

m x K x xα
=

= ∑                               (1) 

Where iα  are the coefficients to be learned from the 

examples, while K is positive definite kernel associated 

with RKHS H .  It should be noted that m  can also be 

expressed with regards to the basis elements of  H  as 

( ) ( )i im x xα φ= ∑ , which is called the dual from of 

m . An advantage of using the kernel representation 
given in (1) is that the number of coefficients to be 
estimated depends only on n  and not on cardinality of 
the basis, which may be infinite. It is this properly that 
makes the kernel methods so popular, see, e.g. [16]. 

Recently, using multiple kernels instead of a single one 
can enhance the interpretability and improve 
performance [1]. In such cases, a convenient approach is 
to consider:  

 
1 1

( , ) ( , ), . . 1, 0
N N

i i i i
i i

K x x c K x x s t c c
= =

′ ′= = ≥∑ ∑       (2) 

Where N is the total number of kernels. Interpretability 
can then be enhanced by a careful choice of the kernels, 

jK and their weighting coefficients, ic . Each basis 

kernel jK  may either use the full set of variables 

describing x  or only a subset of these variables. Within 
this framework, the multiple kernel learning problem is 

transformed to learning both the coefficients iα and the 

weights jc  in a single optimization problem. 

Unfortunately, it is difficult problem to search the optimal 
parameters in 2-dimention space in irregular function 
regression problem. In addition, it ignored that a 
sequence of kernels will induce representation 
redundancy inevitably and will increase computational 
burden as a result of much more parameters. Also, the 
correct number of kernels N is unknown, and 
simultaneously determining the required number of 
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kernels as well as estimating the associated parameters of 
MKL is a challenging problem [1]. 

For irregular functions which comprise both the steep 
variations and the smooth variations, it is sometimes 
unsuitable to use one kernel even if a composite multiple 
kernel with several global bandwidths to estimate the 
unknown function [2]. First, the kernels are chosen prior 
to learning, which may be not adaptive to the 
characteristics of the function so that under fittings and 
over fittings occur frequently in the estimated function 
[3]. Although, the localized multiple kernel learning 
proposed in [4] is adaptive to portions of high and low 
curvature, it is sensitive to initial parameters. Second, 
how to determine the number of kernels is unanswered. 
Finally, classical kernel regression methods exhibit a 
poor boundary performance [5][6][7]. In order to estimate 
an irregular function, this paper proposed an improved 
Nadaraya-Watson estimator approach to produce 
localized data-driven reweighted multiple kernel learning 
method; Different from classical MKL, we solve the 
MKL problem in a series decreased active subspace. 
Simulations show that the performance of the proposed 
method is systematically better than a fixed RBF kernel. 

The rest of this correspondence is organized as follows. 
In section 2, we proposed an iterative localized regression 
to deal with non-flat function regression problem. Section 
3 presented regression results on numerical experiments 
on synthesis and real-world data sets while section 4 
concludes the paper and contains remarks and other 
issues about future work. 

 

II.  THE LOCALIZED REWEIGHTED MULTIPLE KERNEL 

REGRESSION METHOD 

In order to achieve the objects refer to abstract, we 
suggest adherence to the following recommendations. 
Different from the simple combination of several basis 
kernels, we proceed a new multiple kernel learning on a 
sequence of nested subspaces based on iteration approach. 
During iteration, the active subspace is decreasing while 
the classical multiple kernel regression is not. 

A.  The Improved Nadaraya-Watson Estimator 

Nadaraya(1964) [8] and Watson(1964) [9] proposed to 

estimate ( )m x  using a kernel as a weighting function. 

Given the sample data set 1{( , )}n
i i iS x y == : 

1

1
1

( , )
ˆ ( ; ) ( ; )

( , )

n
n

h i ii
i in

ih ii

K x x y
m x S w x S y

K x x

=

=
=

= =
∑

∑
∑

  

Where 
1

1

( ; ) [ ( , )] ( , )
n

i h i h i
i

w x S K x x K x x−

=

= ∑  is the 

Nadaraya-Watson weights,  such that  

1

( ; ) 1,
n

j
j

w x S x
=

= ∀∑  

And 
1( ) ( / )hK x h K x h−=  is a kernel with 

bandwidth h . 
Associating blockwise technique, we propose an 

improved localized kernel regression estimator which 
achieves automatic data-driven bandwidth selection [10]. 

Suppose the initial data set S  is partitioned into p  

blocks denote by 1 2, ,..., pSS SS SS  with length 

1 2, ,..., pd d d  such that 
1

p

j
j

b n
=

=∑ [11]. For given x , if 

there is some block xSS  such that 

min{ | } max{ | }i i x i i xx x SS x x x SS∈ ≤ ≤ ∈  

Then the block wised Nadaraya-Watson estimator is 
given as follows 

( , )
ˆ ( ; ) ( ; )

( , )
i x

i x
i x

h i ix SS

x i x i
x SSh ix SS

K x x y
m x SS w x SS y

K x x

∈
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= =
∑

∑
∑

As thus, the localized estimator presents the unknown 
function m  without a complicated parameters selection 
procedure. 

B. The new regression method 

Given a dataset, {( , ), , }n
i i i iS x y x R y R= ∈ ∈ . 

Assume that ( )m x H∈ , where H  is some reproducing 

kernel Hilbert space called active space, with respect to 

the reproducing kernel K . The square norm related to 

the inner product by 
2

,
H H

f f f= . Consider the 

problem, 

1

min ( ) ( , ( )) ( )
n

i i
i

H m L y m x P mλ
=

= +∑             (3) 

Where λ  is a positive number which balances the trade-

off between fitness and smoothness; L  is a loss function; 
2

( )
H

P m m=  is penalized function. By the represent 

theory,  the solution of equation (3) is [12], 

1

ˆ ( ) ( , )
n

i i
i

m x K x xα
=

= ∑                     (4) 

A generalized framework of kernel is defined as 

1

( , ) ( , )
N

i i
i

K x x c K x x
=

′ ′= ∑               (5)  

Where , 1,...,iK i N=  are N  positive definite kernels 

on the same input space X , and each of them being 

associated to a RKHS iH  whose elements will be 

denoted if  and endowed with an inner product ,
i

⋅ ⋅ , 

and 1{ }N
i ic =  are coefficients to be learned under the 

nonnegative and unity constraints 

1

1, 0,1
N

i i
i

c c i N
=

= > ≤ ≤∑                   (6) 
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How to determine N  is an unanswered problem. 

For any 0ic > , iH ′  is the Hilbert space derived 

from iH  as follows: 

{ | : }iH

i i

i

f
H f f H

c
′ = ∈ < ∞  

Endowed with the inner product 

1
, ,

iH i
i

f g f g
c′

=  

Within this framework, iH ′  is a RKHS with 

kernel ( , )i i iK c K x x′ ′= , since 

( ) ( ), ( , ) ( ), ( , )
i i

i i iH H
m x m K x m c K x ′= ⋅ ⋅ = ⋅ ⋅  

Then, we define H  as the direct sum of the 

RKHS iH ′ . Substituting (5) into (4), an updated 

equation of (2) is obtained as follows, 

1

1 1

1 1

1

ˆ ( ) ( , )

( , )

( , )

( )

n

i i
i

n N

i j j i
i j

N n

j i j i
j i

N

j
j

m x K x x

c K x x

c K x x

m x

α

α

α

=

= =

= =

=

=

=

=

=

∑

∑ ∑

∑ ∑

∑

            (7) 

Instead of the equation (3), we convert to consider the 

models for 1,...,j N= , 

1

min ( ) ( , ( )) ( )
n

j j i j i j j
i

H m L y m x P mλ
=

= +∑         (8) 

Then, the kernel learning problem can thus be envisioned 
as learning a predictor belonging to a series of adaptive 
hypothesis space endowed with a kernel function. The 
forthcoming part explains how we solve this problem. 

Assume that a kernel function 1( , )K ⋅ ⋅  and corresponding 

reproducing kernel Hilbert space 1H ′  are included, and 

then we get the initial estimator, 

1

1

1

( , )
ˆ ( )

( , )

i j

i j

p

h i ij x SS

p

h ij x SS

K x x y
m x

K x x

= ∈

= ∈

=
∑ ∑

∑ ∑
                 (9) 

The residual function can be obtained, 

1 1 1 1
ˆ( ) ( ) ( )res x m x m x V H H ′= − ∈ = −              (10) 

If we have introduced t  kernels 1{ }t
j jK = , then the 

estimator  can be updated as 

1 1 1

ˆ ˆ( ) ( ) ( , )
t t n

j
j i j i

j j i

m x m x K x xα
= = =

= =∑ ∑∑  

And the residual function, 

ˆ( ) ( ) ( )tres x m x m x= −                          (11) 

If the measurements of tres  fulfilled certain thresholding 

criteria, here we employ 2-norm, N t=  represents the 
number of introduced kernels and puts an end to 
iteration procedure. If not, considering the problem in 

the decreased subspace 1tH +
′ , compute 

ˆ ( )i i ires y m x= −  and update the sample set 

{( , )}i iS x res=  which can be treated as the limited of 

the initial data set in 1tH +
′ . Employing iteration, we will 

consider a new regression problem on the updated 
sample data set in a decreased subspace. 

 Compared with the general multiple kernel learning 
(MKL), the first advantage is that it needs not to select 

weights iα  which will reduce much more computation 

burden and just need to select one kernel bandwidth at 
each iteration step. Furthermore, the new method is 
adaptive to the local curvature variation and improves the 
boundary performance as a result of the introduction of 
blockwised Nadaraya-Watson estimate technique. At last, 
the number of kernels introduced will change according 
to real data settings based on iteration which will avoid 
under fitting and over fitting problem effectively. 

C .LR-MKR  Algorithm 

The complete algorithm of Iterative Localized Multiple  
Kernel Reweighted Regression can be briefly described 
by the following steps: 

1) Input S , the maximum iterarion step M , the 
threshold ε , and 1N = ; 

2) Initialize the pilot estimator ˆ ( ) 0m x = , and pilot 
residual e y= ; 

3) Update the data set 1{( , )}n
j j jS x e == ; 

4) Select kernel K , compute the estimator 
ˆ ( ; )m x S with equation (9); 
5) Update the estimator ˆ( ) ( ) ( ; )m x m x m x S= + ; 
6) Update  the residuals ( )e y m x= − , and update 

1N N= + ; 
7) Calculate the norm of residual e . 

Repeating the steps from 3) to 7), this process is 
continued until the norm of residual e  is smaller than the 
pre-determined value ε  or the number of iteration step 

N  is larger than the pre-determined value M . 
     The algorithm of Localized Reweighted Multiple 
Kernel Regression algorithm is adaptive to different 
portions with different curvatures and is not sensitive to 
noise level and the pilot estimation. One kernel in one 
interation step the new method avoids the representation 
redundance problem effectively. Although the choice of 
optimal kernel and associated parameters have been 
investigated by many model selection problems, the 
model parameters are generally domain-specific. The 
Gaussian kernel is most popularly used when there is no 
prior knowledge regarding the data. 
     In order to select parameters, we choose 10-fold cross-
validation: randomly divide the given data into ten blocks 
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and consider the Generalized Cross Validation function is 
given as 

( ) 21
ˆ( ) ( )

10
j

j

GCV m mθ −= −∑  

Where θ  represents the set of relevant parameters, and 
( )ˆ jm −

 is the estimator of m  without the jth  block 

samples of S . Smaller values of the GCV function imply 
better prediction performance. Thus, among a possible set 
of parameters, the optimal value is the minimized of the 
GCV function. 
 

Ⅲ. EXPERIMENT RESULTS 

We have conducted studies on simulated data and real-
world data using the proposed method. Each experiment 
is repeated 50 times with different random splits in order 
to estimate the numerical performance values. Some of 
the results are reported in the following. We decide to use, 
as it is done often, Gaussian radial basis kernel which not 
only satisfies Mercer’s conditions for kernels, but also is 
most widely used. Mercer’s conditions are illustrated in 
Scholkopf (2002) [3]. In classical MKL, it rises not only 
how many kernels to chose but also which one to choose. 

A. Application to Simulated Data (1) 

At first, we consider the test function 
2( ) 5sin(2 )exp( 16 / 50)m x x x= −  

To examine the performance of regression algorithm. In 
this experiment, three random samples of size 100, 200, 
500 were generated uniformly from the interval [-5,5], 
respectively. The target values are then corrupted by 

some noise with a normal distribution 
2(0, )N σ . The 

standard deviation  σ  is 0.4 and 1, which determines the 
noise level. 
Which has different curvature for different design, so a 
global bandwidth can not deal with well. It is well known 
that around the peak of the true regression function 

( )m x  the bias of the estimate is particularly important. 

So, in such areas, it would be better to choose a small 
bandwidth to reduce these bias effects. Conversely, a 
larger bandwidth could be used to reduce variance effects, 
without letting the bias increase too much, when the 
curve is relatively flat [14]. Experiments result shows that 
the new method could deal this intrinsic shortcoming well 
combining with the improved Nadaraya-Watson 
estimation and iteration approach. 
    Figure 1 presents the curves of the test function 
(slender line) and the estimation curves (bold line) when 

the additive Gaussion noise is (0,1)N . Figure 1(a) 

demonstrates the test function and sample data; Figure 
1(b) shows the estimated curve using the proposed 
method with two step iteration which deals well with 
different portions with different curvature; Figure 1(c) 
demonstrates the standard single kernel regression based 
on Gaussian kernel with a global bandwidth which was 
determined through GCV. The mean-square error (MSE) 
is adopted as the performance metric, which has been 

widely used in regression tasks.  In the experiment, we 
generated several versions of data sets with different 
noise level. Then, we repeated each experiment up to 50 
runs and summarized average results in Table 1. From the 
experimental results, several observations can be drawn. 
First, compared with single kernel regression, the 
iterative localized reweighted multiple kernel regression 
could adapt to different portions with different curvature 
and it could avoid under fitting and over fitting 
simultaneously. Second, the proposed method shows a 
better boundary performance. At last, the numerical 
results show that the new method is less sensitive to the 
noise level when the sample size is fixed. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Demonstration of  LR-MKL results: the test function (slender 
line) and the approximation function (bold line). Figure (a) 
demonstrates the test function and noised sample data;  Figure (b) 
shows the estimated curve using the proposed method which deals with 
well with different portion of different curvature; Figure (c) 

demonstrates the standard single kernel regression results( 1σ = ).
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TABLE I.  THE AVERAGED EXPERIMENTAL RESULTS OVER 50 

REPETITIONS FOR EACH SITUATION. AND THE MSE IS ADOPTED AS THE 

METRIC 

n 
 

100 200 500 

0.4σ =  0.0226 0.0152 0.0074 

1σ =  
 

0.0258 0.0157 0.0076 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The test function (slender line) and the approximation 
function (bold line). Figure (a) shows simulated data with white 
noise (SNR=20); Figure (b) shows the estimated curve using the new 
method; Figure (c) demonstrates the standard single kernel 
regression result. 

B. Application to Simulated Data (2) 

The test function is the mixture of Gaussian and 
Laplacian distributions define by 

2( 2)
0.7 22

1 0.7
( )

42 2

x
x

m x e e
π

−
− − +

= +  

The number of data points for experiment is 200, and 
the experiment was repeated 50 times. Figure 2(a) shows 
the target values which were corrupted by white noise. 
The performance of the experiment was shown in Figure 
2, in which the slender line present the true test function 
and the bold line represented the estimated results. Figure 
2(b) represented the estimated curve using the proposed 
method with two step iteration which deals well with 
different portions with different curvature; Figure 2(c) 
demonstrated the standard single kernel regression based 
on Gaussian kernel with a global bandwidth. For this 
example, it can be seen that the Iterative Localized  
Multiple Kernel regression method achieved the better 
performance. Compared with the proposed method, the 
single kernel regression could not avoid under fitting and 
over fitting simultaneously and sensitive to the noise at 
boundary area. 

C. Application to real data: Burning Ethanol Data 

In order to evaluate the performance of our proposed 
method in practice, we analyzed the Burning Ethanol 
Data set. Figure 3(a) shows the data set of Brinkmann 
(1981) that has been analyzed extensively. The data 
consist of 88 a measurement from an experiment in which 
ethanol was burned in a single cylinder automobile test 
engine. Because of the nature of the experiment, the 
observations are not available at equally-spaced design 
points, and the variability is larger for low equivalence 
ratio.  

As we all know, it is a difficult problem to control the 
pump around 0.8. Figure 3 shows the Iterative Localized 
Multiple Kernel regression results with different 
parameters and iteration steps. The red line represents the 
single kernel estimator. The blue in figure 3(b)-(c) 
represent the estimators after two and three steps iteration 
with different kernel bandwidths which are determined by 
GCV. From the experimental results, several advantages 
can be drawn. First, all the estimated curves have not a 
spurious high-frequency feature when the equivalence 
ratio is around 0.8 which is the drawback other regression 
methods must deal with cautiously. Second, compared 
with [13], the proposed method is not sensitive to the 
pilot estimator and the kernel bandwidth selection. 
Finally, all the fitting results show the good boundary 
performance. 

D. CUP Time 

    All the experiments were implemented in the 
environment of MATLAB-7.0 on 2.6 GHz Pentium 4 
machine with 2-G RAM. Table 2 presents the average 
CPU time (second) of the general single kernel regression 
(SK) and the proposed method (LR-MKR) on simulation 
1 for three training sample sizes 100, 200, 500, each 
sample size has been run 50 times.  It can be seen that the 
proposed method needs more CPU time than the general 
single kernel regression as a result of multiple kernels to 
be introduced. 
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(a) 

 
(b) 

 
(c) 

Figure 3. Figure (a) shows Burning Ethanol Data; The blue bold lines in 
figure (b) and (c) show different estimated curves with two and three 
kernels. 

TABLE II.  TRAINING TIMES (SECONDS) OF GENERAL SINGLE 

KERNEL REGRESSION (SK) AND THE NEW METHOD (LR-MKR) ON 

SIMULATION 1. 

Sample 
size 

100 200 

100 0.3120 0.3276 

200 0.3588 0.9204 

500 2.7456 5.5068 

 

Ⅳ. CONCLUSIONS AND DISCUSSION 

In this paper, we consider the kernel trick and 
proposed an iterative localized reweighted multiple 

kernel regression method which includes two parts. At 
first, an improved Nadaraya-Watson estimator is 
introduced based on blockwised approach to produce an 
localized data-driven reweighting method, which 
improves the classical Nadaraya-Watson estimator to be 
adaptive to different portions with different curvatures; 
Then, considering the shortcoming of general multiple 
kernel regression, we convert to iteration in a series 
decreased active subspaces and proposed a novel kernel 
selection framework during iteration procedure which 
simultaneously avoids under fitting and over fitting 
effectively. The presentation covers the curves both deep  
variation and smooth variation. The simulation results 
show that the proposed method is less sensitive to noise 
level and pilot selection. Furthermore, experiments on 
simulated and real data set demonstrate that the new 
method is adaptive to the local curvature variation and 
could improve boundary performance effectively. It is 
easy to extend the method to other type additive noise. 
Kernel function plays an important role in kernel trick 
and can only work well in some circumstances, so,  how 
to construct a new kernel function according to the given 
sample data settings is another direction we will keep up 
with. 
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