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Abstract—In this paper, we consider an extension to a  dual 
model under a barrier strategy, in which the innovation 
sizes depend  on the innovation time via the FGM  copula.  
We first derive a renewal equation for the expected total 
discounted dividends until ruin. Some differential equations 
and closed-form expressions are given for exponential 
innovation sizes. Then the optimal dividend barrier and the 
Laplace transform of the time to ruin are considered. 
Finally, a numerical example is given..  
 
Index Terms—Dividends, dependence, barrier strategies. 
 

I.  INTRODUCTION 

It is well known that the classical risk process has been 
studied profoundly, e.g. Asmussen[1], Gerber and Shiu [2, 
3], Dufresne and Gerber [4]. For the classical risk model, 
it is assumed that the inter-claim times between two 
successive claims and the claim amounts are independent. 
Such an assumption may be inappropriate in real world. 
To avoid the restriction, some risk models with 
dependence structure between inter-claim times and 
claim sizes are proposed. Among them, Albrecher and 
Boxma[5] have proposed an extension to the classical 
compound Poisson risk model in which the distribution of 
the time between two successive claims depends on the 
the previous claim size. Albrecher and Teugels [6] 
considered an risk model with arbitrary dependence 
structure between the inter-claim times and the 
subsequent claim size through a copula. In Boudreault et 
al.[7], they assumed that the claim size depend on the 
inter-claim times.  

The barrier strategy was first studied in De Finetti [8]. 
Barrier strategies for the compound Poisson process risk 
model have been studied in detail by numerous authors, 
e.g. Dickson and Waters[9], Landriault[10],  Lin et 
al.[11]and  Lin and Pavlova[12].  
      Recently, there has been growing interest in   a model 
which is dual to the classical risk model. See Asmussen 
[1], Albrecher et al. [13], Avanzi et al. [14], Avanzi and 
Gerber [15], Ng [16], Song et al. [17] and references 
therein.  Avanzi et al. [14] considered the expected total 
discounted dividends until ruin for the dual model under 
the barrier strategy by means of integro-differential 
equation. 
Avanzi and Gerber [15] extended some results of Avanzi 
et al. [14] to a dual model perturbed by diffusion. Ng [16] 
generalized   the study of Avanzi et al. [14] to a dual 

model with dividend threshold strategy.    Here, we aim at 
extending some results of Avanzi et al. [14] to a dual risk 
model with dependence structure which is based on the 
Farlie-Gumbel-Morgenstern (FGM)(see Nelsen [18]) 
copula. 

Consider the dual model 
 

 

where  is the initial surplus,  is the constant 
rate of expenses and  represents the aggregate gains 
up to time t. The innovation number process 

 is a renewal process with inter-innovation 
times , where  is a sequence of strictly 
positive and independent random variables (r.v.) with 
probability density function (p.d.f.)  and distribution 
function (d.f.)  Throughout this paper, it is assumed 
that    has an exponential distribution with mean    . 
The innovation size (gains) r.v.’s , where  
corresponds to the amount of the th innovation, are 
assumed to be a sequence of strictly positive and 
independent r.v.’s with a common p.d.f. , d.f. , 
mean  and Laplace transform . We assume that 

 forms a sequence of i.i.d. random vectors 
with joint p.d.f.  for  and . It is 
clear that the increments  of 
the surplus process are still independent. To ensure that 
ruin will not occur almost surely, we assume that 
 

 (1) 
Furthermore, we assume that the joint distribution of 

 is defined with the FGM copula (see Nelsen [18]), 
which is defined by 

 (2) 
Given (2), the joint distribution function of  is 
defined by 
 

                                                                     (3) 
Thus, the joint p.d.f. is given by 
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                                                                      (4) 
 

In this paper, we assume that the dividends are paid 
according to a barrier strategy, say with the parameter 

. Whenever the surplus exceeds the barrier b, the 
excess is paid out immediately as a dividend. Let  be 
the modified surplus process with initial surplus 

 under the above barrier strategy . 
Let  denote the 

expectation of the discounted dividends until ruin with 
the boundary condition , where 

 if ruin does not 
occur) is the time of ruin and  is the force of interest 
to discount the dividends. 

Noticing that 
  (5) 
we will mainly discuss the model for  

The paper is organized as follows. In Section 2, we 
start by deriving an integro ‐ differential equation 
satisfied by . Then the integro ‐ differential 
equation leads to some differential equations and closed 
form expressions for exponential gains. In Section 3, we 
discuss how we can use the method of Laplace transforms 
to obtain the expected total discounted dividends. A 
renewal equation is also given. In section 4, the optimal 
dividend barrier is considered. The Laplace transform of  
differential equation leads to  some differential equations 
and closed form expressions for exponential gains. In 
Section 3, we discuss how we can use the method of 
Laplace transforms to obtain the expected total 
discounted dividends.  A renewal equation is also given. 
In section 4, the optimal dividend barrier is considered. 
The Laplace transform of the time to ruin is studied in 
Section 5 for exponential gains. Finally, a numerical 
illustration is given in Section 6  

  

II       EXPRESSIONS FOR  
Theorem 2.1 For ,  satisfies the 
following integro‐differential equation 
 

 (4) 

where 
 

 (5) 
Proof. Choosing a time  small enough such that 

, one obtains 

 

                                                                     (6) 
Differentiating the above equation with respect to  and 
then letting  yield (4). 
Corollary 2.1 For  if the gains are 
exponentially distributed with mean , then 

 satisfies the following integro-differential 
equation 
 

 (7) 

 
 
Corollary 2.2 If the profits are exponentially 
distributed with p.d.f.  and 

 then  satisfies 
differential equation 
 

 (8) 
for . 
Proof. Applying the operator  to 
(7), then we obtain (8). 
From (8) and the boundary condition , we 
have 

  (9) 
where  are the solutions of the equation 

  (10) 

To determine , we insert (9) into (7) and 
obtain 
 

                                                               (11) 
By matching the coefficients in (11) one obtains 
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   (12) 

which is the coefficient of , and 

       (13) 

which is the coefficient of . Combining with 
the boundary condition , we have 

                                   (14) 

Define  as the coefficient matrix of the system (12)‐
(14) and the column vector . Let  
be the matrix obtained from  by replacing its th 
column by  for . Denote the determinant of a 
matrix by . Then, we have 

 provided that 
 Some careful calculations give 

 

  
Remark 2.1 When , one can show that 

    

When , one can show that 

    

In a word, (10) has one negative root and two positive 
roots. 
 
Corollary 2.3 If the profits are exponentially 
distributed with p.d.f. , and 

, then  satisfies differential equation 

 

                                                                  (15) 
for . 
Proof. Setting  in (10), we have 
 

  

By applying the operator  to this equation, we 
obtain (15). From the boundary condition  
and (15), it follows that 
 

 (16) 
where  are solutions of equation 
                (17) 
 
Corollary 2.4 If the profits are exponentially 
distributed with p.d.f. , and 

, then for  
 

 
which is (3.2) in Avanzi et al. [14]. Thus 
 

                                                                      
where  are solutions of equation 
              (18) 
  

Let  be the 
time of the first upcrossing of the surplus process through 
 from  without ruin occurring. Then 

  
which means that 
  
 
Corollary 2.5 If the profits are exponentially 
distributed with p.d.f. , then 
for  
    

where  are solutions of character equation (17); for 
 the expression for  is the same as that 

for  in the style, but  are solutions of character 
equation (18). For , 
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NEWAL EQUATION III     RE

 
For notational convenience, we denote the Laplace 

transform of a function  by  for 
, and  

 
In order to get the Laplace transform of , we 

replace the random variable  by  as in Avanzi 
et al. [14]. Denote 
  (19) 
Then it follows from (7) that 
 

  
with boundary condition 
                             (20) 

                                            (21) 
We extend the definition of  by (20) to  and 
denote the resulting function by . Then 
 

                                                                    (22) 
with  and  Taking Laplace 
transform on both sizes of (22) and rearranging it, one 
obtains 
 

 (23) 

where 
 

  
 
Let 
 

  
where  is the denominator in (23). It is obvious 

 When 
, the second derivative of  is positive, 

otherwise the second derivative of  is negative. 

Under any circumstance,  has a unique positive zero, 
which is defined as   must be the zero of the 
numerator of (23). Some careful calculations lead to 

                    (24) 

 
Remark 3.1 When the gains are exponentially 
distributed with mean , we have 

. Replacing  with 
 in , we know that  is the negative root 

of the expression on the left‐hand side of (10). In 
this case, . 
Remark 3.2 When , (23) and (24) can be 
simplified to (7.3) and (7.8) in Avzani et al. [14], 
respectively. 
For any integral real function , denote 

 (see Dickson and 
Hipp [19]). 
Inverting the Laplace transform in (23) lead to the 
following Theorem: 
Theorem 3.1  satisfies the following renewal 
equation 
 

                                                                       (25) 
with boundary condition 
                                           (26) 
  

                            (27) 

where 
 

  

Proof. Noticing that 

 

  
Inverting (23) leads to the renewal (25). 

Since  is the zero of , it must also be the 
zero of the numerator in (23). Substituting  into the 
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numerator of (23, noticing  and some careful 
calculation lead to (27). (26) is obvious since (21). 
Remark 3.3 For (25) to be a defective renewal 
equation, it remains to show that  By the 
property of operator , we have 
 

 (28) 

where we have used 

   

For , it follows from (28) that 

   

The last equality is due to the positive security condition 
(1). 
For , we have 

   

When , (25) is also a 
defective renewal equation. 
 

IV     THE OPTIMAL DIVIDEND BARRIER 
In this section, we adopt a similar approach to those 

used in Avanzi et al.[5] and Avanzi et al.[6] to consider 
the problem of the determination of the optimal barrier. 
Let  be the optimal value of b, then  is maximal 
at  for each . Thus 

                             (29) 

and hence that 

              (30) 

where  denotes the left derivative of  
at . Using (3), we can get 
               (31) 

This phenomenon is the high contact condition in 
finance literature and the smooth pasting condition in 
literature on optional stopping problem. 
Setting  in (4) and using (30), we obtain 

                            (32) 

According to Avanzi and Gerber[6], we can set 
 and obtain the function  by 

inversion of its Laplace transform. Then  is the zero of 
 and  

Remark 4.1 When the gains distribution is 
exponential distribution with mean  and 

, we can easily get the optimal 
dividend barrier  as Avanzi and Gerber[6] did. It 
follows from (30) and (9) that 
              (33) 
Now differentiating (12) and (13) with respect to , 
setting  and applying (33), we get 

                             (34) 

                               (35) 

Then solving the linear system for  
) and (35), we can get the composed by (14), (34  which 

satisfies  
Remark 4.2 When the gains distribution is 
exponential distribution with mean  and , 
there is a closed form expressions for  From (16) 
we obtain 
               (36) 

where  and  are the solutions of (17) with 
.  

  

LAPLACE TRANSFORM OF THE TIME TO RUIN V   

In this section, we consider the Laplace transform of 
the time of ruin T for the surplus process  under the 
barrier strategy. Let 
  
be the expected present value 1 due at the time of ruin. As 
a function of , it is the Laplace transform of . As a 
function of , it is easy to see that  for . 
 
Noting that , we only discuss 

 for  
Theorem 5.1. Suppose that the profits are 
exponentially distributed with p.d.f. 

, then  satisfies the 
following integro‐differential equation 

  (36) 
Proof. The proof is similar to theorem 2.1. 
Corollary 5.1 When the gains distribution is 
exponential distribution with mean  and 
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 satisfies the following 
differential equation 

        (37) 
proof. Applying the operator  to 
(36), we obtain (37). 
Then from (37) and the boundary condition , 
we have 

           (38) 

where  are the solutions of equation (10). 
Substituting (38) into (36), we have 

                            (39) 

                            (40) 

From the boundary condition , we have 

                                          (41) 

Then solving the linear system composed by (39), (40) 
and (41), we can get . 
 
Corollary 5.2 When the gains distribution is 
exponential distribution with mean  and 

 satisfies the following differential 
equation 
 
 (4.1) 
Proof. Setting  in (36), we have 
 

 (42) 

By applying the operator  to this equation and 
after some careful calculation, we obtain (42). 

It follows from the boundary condition  and 
equation (42) that 
 

  
where  and  are the solutions (18.) 
Corollary 5.3 When the gains distribution is 
exponential distribution with mean  and 

 satisfies the following differential 
equation 
 

 (43) 
Proof. Similar to Corollary 2.3. 
From the boundary condition  and equation 
(43), we have 

 

  
where  and  are the solutions (17) 

 

UMERICAL ILLUSTRATION VI N
In this section, we illustrate the effect of dependence. 

Let , then the covariance between  and  
is given by , where 

. This implies that 
 is positive correlation when , otherwise the 

verse. 
Set  By comparing table I–V, we 
find that  is a increase function about ; when  is 
a determine constant  is a increase function about 

. The optimal dividend barrier  decrease as  increase. 
Table VI‐IX shows the probabilities that  reaches  
from  without ruin occurring. When  is a 
determinant constant, the probabilities increase as  
increase. When  and  are constants, the first exit 
probabilities increase as  decrease. 

Table I 
INFLUENCE OF  ON  

u =1 =0.5 =0 =‐0.5
0.1 0.0707 0.0999 0.3554 0.7067 
0.5 0.3629 0.4362 1.4993 2.8484 
0.8 0.5956 0.6235 2.1336 3.9553 
1 0.7595 0.7156 2.4784 4.5489 

Table II 
INFLUENCE OF  ON  b=2 

  u =1 =0.5 =0 =‐0.5
0.1 0.0491 0.1270 0.5559 1.3081 
0.5 0.2516 0.5708 2.3453 5.2404 
0.8 0.4130 0.8466 3.3374 7.2099 
1 0.5267 1.0075 3.8768 8.2080 
1.2 0.6464 1.1516 4.3393 9.0214 
1.5 0.8392 1.3373 4.9198 9.9897 
1.8 1.0513 1.4848 5.3970 10.7573
2 1.2054 1.5588 5.6719 11.2052

Table III 
INFLUENCE OF  ON  

  u =1 =0.5 =0 =‐0.5
0.1 0.0257 0.1290 0.6837 1.7196 
0.5 0.1318 0.5824 2.8841 6.8866 
1 0.2759 1.0393 4.7675 10.7750
1.5 0.4395 1.4103 6.0502 13.0736
2 0.6313 1.7217 6.9750 14.5328
2.5 0.8615 1.9881 7.6897 15.5526
3 1.1426 2.2106 8.28840 16.3462
3.5 1.4902 2.3681 8.8127 17.0272
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Table IV 
INFLUENCE OF  ON  

 u =1 =0.5 =0 =‐0.5
0.1 0.0204 0.1238 0.6817 1.7255 
0.5 0.1049 0.5591 2.8756 6.9102 
1 0.2196 0.9983 4.7534 10.8188
1.5 0.3498 1.3564 6.0324 13.1182
2 0.5204 1.6605 6.9545 14.5825
2.5 0.6856 1.9285 7.6670 15.6058
3 0.9094 2.1700 8.2596 16.4020
4 1.5307 2.5574 9.2822 17.7170

                     
Table V 

INFLUENCE OF  ON  
  u =1 =0.5 =0 =‐0.5
0.1 0.0162 0.1172 0.6682 1.7032
0.5 0.0832 0.5926 2.8188 6.8208
1 0.1742 0.9458 4.6595 10.6720

1.5 0.2775 1.2856 5.9131 12.9486
2 0.3987 1.5750 6.8170 14.3939

2.5 0.5440 1.8317 7.5155 15.4040
3 0.7215 2.0672 8.0963 16.1899
4 1.2145 2.4839 9.0987 17.4879

4.5 1.5575 2.6388 9.5734 18.0926
 

Table VI First passage time  
  u b=2 b=3 b=4 b=5 b=6 
1 0.6939 0.6113 0.5808 0. 5683 0.5629
2 1 0.8810 0.8370 0.8190 0.8113
3  1 0.9501 0.9296 0.9209
4   1 0.9785 0.9693

 
Table VII: First passage time  

 u b=2 b=3 b=4 b=5 b=6 
1 0.3215 0.1374 0.0659 0.0336 0.0178
2 1 0.4275 0.2050 0.1046 0.0554
3  1 0.4796 0.2446 0.1296
4   1 0.5101 0.2703

 
Table VIII First passage time  

 u b=2 b=3 b=4 b=5 b=6 
1 0.6502 0.4850 0.4310 0.4023 0.3861
2 1 0.7967 0.7071 0.6579 0.6331
3  1 0.8844 0.8264 0.7912
4   1 0.9307 0.8924

 
Table IX First passage time  

 u b=2 b=3 b=4 b=5 b=6 
1 0.7467 0.6935 0.6786 0.6732 0.6715
2 1 0.9222 0.9021 0.8950 0.8926
3  1 0.9757 0.9680 0.9655
4   1 0.9921 0.9575
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