
I.J. Information Engineering and Electronic Business, 2010, 2, 38-45
Published Online December 2010 in MECS (http://www.mecs-press.org/)

Knowledge Template Based Multi-perspective
Car Recognition Algorithm

Bo Cai , Feng Tan*, Yi Lu, Dengyi Zhang
School of Computer, Wuhan University, Wuhan 430072, Hubei, China

E-mail:tanfeng@whu.edu.cn

Abstract-In order to solve the problem due to the
vehicle-oriented society such as traffic jam or traffic
accident, intelligent transportation system(ITS) is raised and
become scientist’s research focus, with the purpose of giving
people better and safer driving condition and assistance. The
core of intelligent transport system is the vehicle recognition
and detection, and it’s the prerequisites for other related
problems. Many existing vehicle recognition algorithms are
aiming at one specific direction perspective, mostly
front/back and side view. To make the algorithm more
robust, our paper raised a vehicle recognition algorithm for
oblique vehicles while also do research on front/back and
side ones. The algorithm is designed based on the common
knowledge of the car, such as shape, structure and so on.
The experimental results of many car images show that our
method has fine accuracy in car recognition.

Index Terms—template matching, line extraction, vehicle
detection, Fourier descriptors, Chain code, Round rate,
Circumference ratio

I. INTRODUCTION

With the acceleration of the trend of
automobile-oriented society, traffic safety problem has
already become people’s primary concerns. Although
many measures have been adopted to alleviate the traffic
pressure such as traffic jam or traffic accident, the actual
effect can hardly be impressive. In recent years, in order to
decrease the number of accidents, many researches have
been made to develop a driver assistant system which will
give drivers some advises or necessary warning at on-road
situation.

In our paper, we propose different vehicle detection
solutions for cars with different direction perspective,
respectively front/back, side and oblique.

For the front-view/back-view car, we use the
horizontal structures to generate the hypothesis area, and
then use the symmetry to verify the area.

 For side car, we use foreground/background
separation, canny operator and image pyramid to extract
the single-edged contour for the ROI, and then extract
corresponding features for similarity matching. Those ROI
with high similarity with the vehicle class are accepted.

For oblique car, we use template matching to generate
the vehicle hypothesis, and then extract the line features
from each sub-part of the designed template. The line
features are then formed to be a feature vector to do the
verification through comparing the Haursdorff distance of

the feature vector between the given sample and the
vehicle cluster.

We have a review of the related work in Section 2 with
the introduction of our proposed algorithm in Section 3, 4,
5. The conclusion and future work are in Section 6.

Ⅱ. RELATED WORK

 Many related vehicle detection research has been
done in recent years. Most of the proposed approach can
roughly be divided into three types: motion based, model
based and appearance based.

 In [1], Z.kim adopts CDT for image segmentation to
avoid computational redundancy. Afterwards lines
extracted from the CDT result are used to generate the
hypothesis with four simple texture features to verify. In
[2], they use BMA(Block Matching Algorithm) to detect
the vehicle and also estimate the motion. In [3], Sun et al
use optimized Gabor filter to extract the features and then
use them to train the SVM classifier. In [4], geometric
model with its energy function including information of
shape, symmetry of the vehicle and the shadows is defined.
Then genetic algorithm is adopted to find the global
minimum energy value which denotes the possible
location of a vehicle. In [5], they improve the symmetrical
detection step by analyzing both gray-scale and
horizontal/vertical lines.

While many of them have a good performance with
real-time application or non-real-time application, they are
either only suitable for one perspective of the vehicle or
just computational expensive. For [4], their algorithm is
computational expensive due to the GA algorithm they use.
The same problem goes with BMA algorithm. For [1] [5],
their algorithm mostly deals with the front or back side of
the vehicle and depends on the horizontal/vertical line
feature based hypothesis generation algorithm, which may
not be robust with other perspective.

To solve these problem, we propose integrate vehicle
detection solutions for cars with different direction
perspective, respectively front/back, side and oblique.

Ⅲ. FRONT/ BACK CAR DETECTION

 A car comprises a large number of horizontal
structures when viewed approximately from the front or
back, such as window, bumper, and fascia. Firstly we use
canny operator to fetch the edge of the image, afterward
four horizontal lines are detected: the top line, the window

* Contact author: tanfeng@whu.edu.cn

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

 Knowledge Template Based Multi-perspective Car Recognition Algorithm 39

line, the bumper line and the bottom line, then the
hypothesis is generated. At last we use symmetry to verify
the hypothesis. The image of the front or rear of a car
shows a high degree of symmetry about a vertical axis. If
the hypothetical region satisfies the symmetry, then we
think the area is a car, otherwise we discard this area.

According to the method introduced above, our paper
picks 50 images with the size 150*100 as the test samples.
Parts of the result are shown in Table I.

TABLE I. THE RESULT OF THE FRONT/BACK VIEW CAR

Ⅳ. SIDE CAR DETECTION

For side cars, our car detection approach is also
divided into two stages in order to be robust and reliable.
The first stage generates hypotheses of location and width
of potential cars, through the detection of pairs of wheels.
The second stage checks the presence of a car behind each
hypothesis with template detection.

According to statistics by a large number of side cars
observed, we find that two wheels and the contour of the
cars can always exist in the image. So we use this shape

information knowledge to construct the deformable
template from a prototype as show in Figure 1.

Figure 1. The template of the side car(Red is the main part of the

template)

The template is composed by two wheels and the
contour of the car. Two wheels are one of the most
important parts of the side view car. The contour can be
divided into the top line, two oblique lines about windows,
and the bottom line between two wheels. Other lines can
be gotten by the car's structure. This template fits most
cars and its size is determined by the matching results.

Since the template has been constructed, now our
approach of the side car detection is described as follows.
We detect pairs of wheels and a bottom line between two
wheels to generate the hypothesis areas to reduce the
computation. Then, in the hypothesis area, we find the top
line, and then two slope lines are detected. At last, we
construct the car model. When all of these steps are
finished, we think a car is detected. The specific process
will be introduced in the remainder of this section.

(a) (b)

(c) (d)

 (e)

Figure 2. the steps of hypothesis: (a) original image (b) edge image

(c) wheel detection (d) wheels and a horizontal line (e) hypothesis

generation area

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

40 Knowledge Template Based Multi-perspective Car Recognition Algorithm

A. Hypothesis Generation: detecting two wheels
A car hypothesis is generated from two wheels

detection. Every side view car has two wheels in the image
and all car wheels are round. Because of a wheel is a circle,
we can find wheels by detecting circles. Circles are
detected by Hough transform. However, this method
would detect all circles some of which may not be the
wheels .To address this problem, when finding for circles,
some rules are used to filter the circles to extract wheels.

First, a car has two wheels from one side viewing.
They have the same size and exist in the same horizontal
line in the image. At most of the time they do not appear at
the top of the image. Second, between two wheels there
exists a horizontal line. If this line can be extracted then
we can assure these two circles are the wheels. When the
two wheels are extracted, we can estimate the rough width
of the car in the image according to the distance between
two wheels. The height of a car is about two-thirds and the
width is about three-fifths of the distance between two
wheels. Then by this knowledge the bounding boxes of the
hypotheses can be generated.

All the steps of the algorithm about hypothesis
generation are shown in figure 3.

B. Line segments extraction Based On Line Fitting

 To make a preparation for the following template
matching procedure, we should first extract the line
segments included in the edge image. The traditional line
extraction algorithm such as Hough transform can roughly
pick out some relatively long line segments included in the
edge image, but the accuracy can hardly satisfy some
practical application especially when some short line
segments are required. Thus, in order to extract line
segments more comprehensive and accurate, our paper
raised a line extraction algorithm based on line fitting.

Firstly, we have a brief introduction of the line fitting
algorithm based on least squares. Assuming

(i=1...N) is a set of data points in
two-dimensional space, for any given line in the
space , we record the vertical

distance between and the given line as the
deviation from the point to the line. The theory of the line
fitting algorithm based on Least squares is that a and b
correspond to the slope and intercept of that when the sum
of squares of the deviation from each point in the data set
to the given line reaches its minimal. The details of the
steps to find a and b are as follows.

),(ii yx

y baxxf +==)(
),(ii yx

Find the sum of squares of the deviation:
2

1

(
N

i i
i

)E y ax b
=

= − −∑ (1)

Find the partial derivative of the sum of squares of the
deviation to the slope a:

2

1 1
2()() 2 ()

N N

i i i i i
i i

E y ax b x ax b y
a = =

∂
= − − − = + −

∂ ∑ ∑ (2)

Find the partial derivative of the sum of squares of the
deviation to the intercept b:

1

2 (
N

i
i

E ax b y
b =

∂
= + −

∂ ∑)i
 (3)

Let E
a

∂
∂

 and E
b

∂
∂

 be 0, then we get:

() / () /ib iy N a x N= −∑ ∑ (4)
2 2[()] / [(i i i i i ia N x y x y N x x= − −)]∑ ∑ ∑ ∑ ∑ (5)

With the basic idea of the line fitting algorithm based
on Least squares, our line extraction algorithm is as
follows:

(1) From the upper left corner of the hypothesis area,
with the sequence of left to right and up to bottom, to
locate a pixel whose value is non-zero.

(2) If a non-zero pixel is located, then check the
eight-neighborhood of it. If there exists a non-zero point,
we set it to the current point and again check if its
eight-neighborhood has a non-zero pixel. We repeat the
operation until four non-zero points are visited.

(3) Then, we put all the four non-zero points into a
empty point array and use line fitting algorithm to
calculate the slope of the line fitted by the point array. The
last point in the array is set to be the current point.

(4) Check the eight-neighborhood of the current point,
if a non-zero point is found, add it to the array and
recalculate the slope of the line fitted by the changed point
array.

(5) If the difference between the slope of the new fitted
line and that of the previous one is larger than a predefined
threshold, we exclude the new added point from the point
array; Otherwise, we set the new added point to be the
current point and repeat (4) until the eight-neighborhood
of the current point does not have any non-zero pixel.
Then the final line we extracted is defined by the first and
the last point in the array. The experiments on some
images are shown in the Figure 4.

C.Verification:kownledge-based template detection

With the line extraction algorithm above, we can now
verify the car hypothesis by detecting templates among the
extracted line segments in the hypothesis area using the
shape knowledge. Steps are as follows:

Step 1: For each detected oblique line, if two lines
meet the following requirements, we consider them as the
window lines and record them as and . (1)The
endpoints of the two lines are basically at the same level.
(2)The length of the two lines is nearly the same. (3)The
slope of the oblique lines total about 180 degree.

1s 2s

Step 2: Above and , we find a horizontal line

recorded as which meets the requirement that the x
coordinate of two endpoints of the line should be in the
middle of and .

1s

2s

2s

1h

1s
Step 3: If and are all found, then we construct

the contour of the car according to the template. At last, a
car is detected.

11 , sh 2s

With the above algorithm, we pick some images to
show the results of the steps in Figure 3. We can find that
the three separate lines can always be detected, thus we

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

 Knowledge Template Based Multi-perspective Car Recognition Algorithm 41

can construct the template based on these three separate
lines and two wheels. The final results of the experiments
will be shown in Figure 4. and analyzed in the next.

(a)

(b)

(c)

(d)

(e)

Figure 3. the steps of verification: (a) original image (b) hypothesis

(c) edge (d) line detection (e) three lines extraction（the rough lines）

The whole system has been implemented in Matlab
and C++. We have tested our method on static images
collected from various sites on the World Wide Web. We
show the results obtained in Table 1 for different test
sample sets.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4. some examples of car detection

In our tests, we found that our method has 90.7%
average success rate in detecting cars. There are some
instances that we can not detect. Such as some of the cars

whose roof is oval not horizontal can not be detected by
our algorithm. This problem will be solved in the future
work. Example results of detected cars are shown
in Figure 4. As in Figure 4. The algorithm is able to detect
cars in side view from background and the template
outlines the contour of the cars very well.

TABLE II. .Detetion results for different test sample sets.

sets 1 2 3
Number of observed cars 50 100 150

Hypothesis Generation 46 90 144
Hypothesis verification 45 88 141

Detection rate 90% 88% 94%

Ⅴ. OBLIQUE CAR DETECTION

The existing car recognition algorithm mainly based on
the front/back and side vehicles, and most of them can not
be applied to detect oblique vehicles which classify as
front-oblique and back-oblique ones. In order to enhance
the robustness of our car recognition algorithm, our paper
proposed an oblique car detection algorithm based on
template matching. The algorithm is also composed of HG
and HV steps.

A. Hypothesis generation
Some existing hypothesis generation method base on

template matching mostly take use of the
horizontal/vertical lines in the edge image. This strategy
may perform well for front/back and side vehicles, but will
not be robust for oblique ones. In our paper, we construct
two templates for front-oblique and back-oblique ones
respectively. The template is formed by both horizontal
lines and oblique lines and can be dynamically changed.
To make a preparation for the following template
matching procedure, we should first extract the line
segments included in the edge image. The traditional line
extraction algorithm such as Hough transform can roughly
pick out some relatively long line segments included in the
edge image, but the accuracy can hardly satisfy some
practical application especially when some short line
segments are required.

Template matching

With the line extraction algorithm above, we can now
generate the vehicle hypothesis by matching templates
among the extracted line segments.

To design the template that will fit most vehicle, we
firstly divide vehicles into several groups considering their
perspectives. For different perspectives, we design
different templates based on their visual features in the
edge image. The template is formed by several line
segments and is dynamically changed according to the size
of the vehicle in the image. As for the front/back and side
ones, there have been various of approaches, so our paper
focus on the front-oblique and back-oblique ones which is
seldom studied with our knowledge.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

42 Knowledge Template Based Multi-perspective Car Recognition Algorithm

Front-oblique Templete Matching
For the edge image of the front-oblique car, we assume

that some lines can always be detected: the separate line
between the front board and the road, the separate line
between the side board and the road, the separate line
between the front board and the front window, the separate
line between the front window and the roof. The
procedures for the template matching are illustrated in
Table VIII.

TABLE III. PROCEDURES FOR FRONT-OBLIQUE TEMPLATE MATCHING

Raw image Edge
image

Line
extraction

Separate
lines

From the result we can figure out that, in most cases,

the described four separate lines can be detected. Thus, we
can construct the template as Figure 5. :

Figure 5. Front-oblique template structure

With the template shown above, now the hypothesis
can be generated by the following steps (The test images
are all 150*100):

Step 1: From the bottom of the image to the top of it,
we check detected horizontal lines in each row for one
with 15-30 pixels in length (the range can be changed
according to the size of the vehicle in the given image). If
a horizontal line that meets this requirement is found, we
record it as and turn to Step 2. 1h

Step 2: For each detected oblique line, if it meet the
following requirements, then we consider it as the separate
line between the side board and the road and record it as

.(1) The y coordinate of the lower vertex of this oblique

line should not be bigger than that of .(2) The x
coordinate of the lower vertex of this oblique line should
not be smaller than that of the right vertex of and the
difference should not be bigger than 30 pixels (if the
vehicle is toward its left); The x coordinate of the lower

vertex of this oblique line should not be bigger than that of
the left vertex of and the difference should not be
bigger than 30 pixels (if the vehicle is toward its right). (3)
The slope of the oblique line should be less than 30
degree.

1s

1h

1h

1h

2h

2

1h

h

Step 3: In the region which is 10–40 pixels in the top
of the , find a horizontal line which meet the following
requirement and has the lowest y coordinate and record it
as : (1) The length of the horizontal line is bigger than
10. (2) The difference of the x coordinate between the left
vertex of and that of should be less than 20 (3)
The difference of the x coordinate between the right vertex
of and that of should be less than 20. Then we

record the vertical difference between and as

.

1h

2h

1h

set

h

3h

1h

3h

h

2h

2h
off

3h

1h

h

1h

2h

1s

off

2h

3h

Setp 4: In the region which is 10–30 pixels in the top

of the , find a horizontal line which meet the following
requirement and has the lowest y coordinate and record it
as : (1)The length of the horizontal line is bigger than
10 and less than 30. (2) The absolute value of the vertical
difference between the and should be bigger

than 5 and less than the . (3) For vehicles
whose body towards its left, the x coordinate of the left
vertex of should be 5-20 pixels bigger than that of

, and the x coordinate of the right vertex of should

be 5-20 pixels bigger than that of . For vehicles whose
body towards its right, the x coordinate of the left vertex of

 should be 5-20 pixels less than that of , and the x

coordinate of the right vertex of should be 5-20 pixels

less than that of .

2

3h
/1.5

2h

3

set

h

3h

2

h
Step 5: Adjust , , and according to the

designed template. For example, extend and to
make them intersect, adjust the x coordinate of the two
vertexes of and to make the x coordinate of their
corresponding vertex equal and so on.

2h 1s

1 2

According the algorithm introduced above, our paper
pick 100 images with the size 150*100 as the test samples.
Parts of the result that a correct vehicle hypothesis is
generated are shown in TABLE IV. .

From the test result, we find that in the following two
cases, our algorithm doesn’t work well: (1) the color of the
car body is black. (2) The vehicle is at certain angle with
the camera. The example is shown in TABLE V. .

From the two examples above, we can find out the
reason why the mismatch happens under the two
conditions. When the color of the car body is black, the
separate line between the car body and the shadow is weak
and is very difficult to be detected. So the separate line we
actually detect is always the separate line between the

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

 Knowledge Template Based Multi-perspective Car Recognition Algorithm 43

shadow and the road. This separate line can sometimes be
a curve but not a horizontal line. So under this condition,
we may not be able to locate vehicle through our proposed
method.

TABLE IV. DETECT RESULTS OF FRONT-OBLIQUE CARS

TABLE V. CANNOT BE DETECTED IMAGE

Raw image Edge image Mismatch reason

The color of the
car body is black

The vehicle is at
certain angle with

the camera

When the vehicle is at certain angle with the camera,
the separate line between the car body and the shadow or
the separate line between the shadow and the road is
oblique line. So the above algorithm can not locate the
vehicle.

 Back-oblique template matching

After examine many back-oblique cars, we find out
that the template designed for front-oblique may not be
suitable. Because the height of the rear of the vehicle may
be a little higher than that of the front of the car, the
situation will be a little bit difficult. Thus, we design a
template that is more general but not as accurate.

Considering images of back-oblique cars, we can find
that three separate lines can always be found: the separate
line between the vehicle window and its top and the
separate line between two wings of the vehicle window
and the car body. To demonstrate our assumption, we test
several images to check whether or not the three separate
lines can be found. Parts of the results are shown
in TABLE VI.

TABLE VI. PROCEDURES FOR BACK-OBLIQUE TEMPLATE MATCHING

Raw image Edge
image

Line
extraction

Separate
Lines

From the above result, we can find that the three

separate lines can always be detected, thus we can design
the template based on those three separate lines. The
template is shown in Figure 6. :

Figure 6. Back-oblique template structure

Since the template has been constructed, now we can
introduce our template matching strategy for back-oblique
cars. The details are as follows:

Step 1: From all the extracted oblique lines, Find a pair
that meet all the following requirements and record them
as , here is in the left side of : (1) the sum

of the angle between and horizontal axis and the angle

between and horizontal axis should be bigger than
130 degree but less than 200 degree, while both of the two
angles should be bigger than 20 degree but less than 160
degree. (2) The difference between the y coordinate of the
upper vertex of and that of should be less than 15
pixels, and so does the lower vertex. (3) The difference of
x coordinate of the upper vertex of and that of

should be less than 20 pixels.

1 2,s s 1s

1s

2s

1s

1s

2s

2s

2s
Step 3: After locating the oblique line pair

corresponding to the separate line between the two wings
of the vehicle window and the vehicle body, now we
should find the separate line between the vehicle window
and the vehicle roof. From all the extracted horizontal
lines, if any one of them meets the following requirements,
we consider it to be the needed one and record it as : (1)

The difference between the y coordinate of and that

of the upper vertex of should be less than 15 pixels.

1h

1h
 :

1 2,s s

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

44 Knowledge Template Based Multi-perspective Car Recognition Algorithm

(2) The x coordinate of the left vertex of should be

bigger than that of the upper vertex of and the x

coordinate of the right vertex of should be less than

that of the upper vertex of .

1h

1s

1h

2s
Step 4: Extend 1s , and 1h to ake them intersect

with each other. Make the y coordinate of the lower vertex
of 1s , 2s equal and connect them with a horizontal line.
Generate a rectangle whose height is 1.5 times bigger than
the vertical length of 1s , 2s with the widt htly larger
than the horizontal distance between the lower vertex of

1s and 2s .

2s m

h slig

TABLE VII. RESULTS OF BACK-OBLIQUE DETECTION

B. Hypothesis verification
The features we used to verify a vehicle hypothesis

generated by template are called template features. The
template features are composed of the line features
extracted from every sub-parts in the template. Here the
line features are the number of meaningful lines for each
sub-part.

Take the front-oblique car as example, its
corresponding template are formed by three sub-parts: the
front window(the blue part), the front board(the green part)
and the side board(the pink part) respectively.

Now, we can decide the meaningful line features in
each sub-parts. For the front board of the vehicle, because
of the existence of license plate, lights and grille, there
should be a lot of horizontal line segments. For the front
window, when there is nobody in the driving room, there
are barely any edges in this area; when the driving room is
not empty, although some edges are existed, but they are

meaningless and disorganized. For the side board,
considering the appearance of it, there should be several
lines parallel to the edge line of the side board. To
demonstrate the rationality of the template features, we
have several images for test. Parts of the result are shown
in TABLE VIII. :

TABLE VIII. PROCEDURES FOR FRONT-OBLIQUE HYPOTHESIS

VERIFICATION

Raw image Extracted
lines

Template
matching

Template
features

From the result we can figure out that, for

front-oblique template, there is certain relationship
between the number of meaningful lines in each sub-parts
of the template. A vehicle hypothesis can be verified only
when the line features for each sub-part satisfy the
relationship.

As for back-oblique template, since it is composed of
two parts: the pink part and the green part in Figure 6. .
For pink part, it corresponds to the back window and the
side window; there will be several lines parallel to the two
wings (or have a very close slope). For the green part, it
corresponds to the side board and the back board; there
will be several horizontal lines as the existence of lights,
license plate and so on. What’s more, the horizontal lines
will be in one side of the green part. Parts of the
experimental result are shown in Table XIV.

TABLE IX. PROCEDURES FOR BACK-OBLIQUE HYPOTHESIS

VERIFICATION

Raw image Extracted
lines

Template
matching

Template
features

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

 Knowledge Template Based Multi-perspective Car Recognition Algorithm 45

C. Vehicle classification
After the template features have been extracted, now

we should pick a classifier to train the test set. In our paper,
we use fuzzy clustering to find the clustering center, and
then adopt Hausdorff distance to find the similarity
between the test sample and the cluster. If the distance is
less than a predefined threshold, we will consider the test
sample as a member of the cluster. We pick 50 hypothesis
generated by the above algorithm which include cars for
test., the corresponding result is shown in Table X. The
recognition result can be divided into four categories: TT,
TF, FT and FF. Here, TT means considering a true
detection as a true one; TF means considering a true
detection as a false one; FT means considering a false
detection as a true one; FF means considering a false
detection a false one.

TABLE X. DETECTION RESULT

 numbe

r

T

T

T

F

F

T

F

F

Detectio

n rate

Misse

d rate

Positiv

e test

sample

s

50 44 6 / / 88% 12%

Ⅵ. CONCLUSION AND FUTURE WORK

In a word, our paper raises a way to detect vehicles at
different perspective. For vehicles with different
perspective, our paper gives different solution. For
front/back vehicle, we take use of the symmetrical feature
of the vehicle while for side vehicles, we describe a
side-view car detection algorithm based on template
detection. The template is constructed according to car
shape knowledge. The algorithm can roughly be divided
into two stages, hypothesis generation and hypothesis
verification. For oblique vehicle, we use template
matching method to generate the hypothesis. The template
is dynamically changed according to the real size of the
potential vehicle in the given image. After the hypothesis
is generated, we use line features within each sub-parts of
the template to do the verification.

Since the template matching method is based on the
line extracting result, our paper addressed a line extraction
algorithm that has better result than many existing ones.
The algorithm is based on line fitting method. For each
step, a point is considered a member of the current line if
the slope of the current line generated by line fitting is
similar to that of the last one. Here the similarity is
decided by a predefined threshold.

For further research, considering the drawback of our
algorithm, we will do some improvement at the following
aspects: (1) Taking video information into consideration,
so that we can estimate the size of the vehicle in the image
through camera calibration and therefore decide the
template parameters (length of the separate line, the

distance between each lines, etc) automatically according
to it. (2) Adding some local features and some other
template features to enhance the verification, such as
wheels, lights, license plate and so on. (3) Make the
template more flexible so that it can also work for the
cases we described before. For example, let the template
can accept an oblique line as the separate line between the
car body and the shadow.

REFERENCE

[1] Z.Kim. Realtime Obstacle Detection and Tracking Based
on Constrained Delaunay Triangulation, IEEE Intelligent
Transportation System Conference, pp.548-553,2006

[2] Zehang Sun, George Bebis and Ronald Miller. On-road
Vehicle Detection Using Evolutionary Gabor Filter
Optimization. IEEE transactions on ITS. 2005

[3] Luigi Di Stefano, Enrico Viarani. Vehicle Detection and
Tracking Using the Block Matching Algorithm. Proc. of
3rd IMACS/IEEE. 1999

[4] J.M.Collado, C.Hilario. Model Based Vehicle Detection for
Intelligent Vehicles. IEEE Intelligent Vehicles Symposium.
2004

[5] M.Bertozzi , A.Broggi, A.Fascioli. Stereo Vision-based
Vehicle Detection.IEEE INTELLIGENT VEHICLES
SYMPOSIUM. 2000

[6] Yi Lu, Bo Cai, Dengyi Zhang. Contour based car
recognition algorithm. CNMT2009

[7] Zehang Sun, George Bebis and Ronald Miller. On-road
vehicle detection: a review. IEEE Trans. Pattern Analysis
and Machine Intelligence, vol.28, no.5.2006

[8] Ronan O’Malley, Martin Glavin. Vehicle Detection at
Night Based on Tail-Light Detection. National University
of Ireland,Galway.

[9] Marie-Pierre Dubuisson Jolly. Vehicle Segmentation and
Classification Using Deformable Templates. IEEE
transactions on pattern analysis and machine intelligence,
Vol 18, No.3 1996

[10] Bo Cai, Dongru Zhou. Content based video classification
and retrieval [D].Wuhan University 2003.10(in Chinese)

Bo Cai received his Ph.D. in computer
application from the Wuhan University.
His research interests are in the areas of
image processing and video information
processing. His research group develops
novel analytical methods for video, such as
the clustering and similarity algorithm of

video shots, browse and retrieval method of video
database and text region extraction algorithm in digital
videos, vehicles and objects detection algorithm in digital
videos.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 2, 38-45

	I. Introduction
	Ⅱ. Related work
	Ⅲ. Front/ Back Car Detection
	Ⅳ. Side Car Detection
	Ⅴ. Oblique Car Detection
	A. Hypothesis generation
	Template matching
	Front-oblique Templete Matching
	 Back-oblique template matching
	B. Hypothesis verification
	C. Vehicle classification
	Ⅵ. Conclusion and future work
	Reference

