
I.J. Information Engineering and Electronic Business, 2010, 1, 44-50
Published Online November 2010 in MECS (http://www.mecs-press.org/)

The Implementation of 3D Scene Walkthrough in
Air Pollution Visualization

Shigang Wang

Department of Computer Science and Technology, Shandong University, Jinan, China
wshg1986@gmail.com

Weitao Li

Department of Computer Science and Technology, Shandong University, Jinan, China
liandweitao@hotmail.com

Abstract—We present a practical and novel approach to
implement 3D scene walkthrough for air pollution
visualization. This approach includes volume rendering and
clipping methods, which are used to visualize large-scale air
pollution data. A new viewpoint-based volume clipping
method is used while rendering, which is fast and more
interactive than previous methods. We achieved expected
experimental results and our research could benefit
environment monitoring and many other applications
associated with pollution visualization.

Index Terms—pollution visualization; volume rendering;
volume clipping; 3D scene walkthrough

I. INTRODUCTION

In recent decades, both the government and
environmentalists have paid much attention to air
pollution control and environment monitoring.
Visualization of weather data makes air quality
monitoring intuitive, and helps people to make decisions
or forecast pollution more easily. 2D display of scientific
data can no longer satisfy the increasing requirement on
realistic and immersive observation of large-scale data
sets. Instead, with great development in graphics
processing units, rendering scientific data in 3D has
become more and more popular. However, scientific data
visualization in 3D is much more complex, especially
when the input data sets are large-scale. Consequently,
interactive rendering of large-scale data has been one of
the research focuses in scientific data visualization.

With the developments of virtual reality, people have
paid more and more attention on virtual 3D rendering.
Virtual 3D rendering has been widely used in game
industry and other high-tech affairs. However, virtual 3D
rendering haven't been introduced to many important
public service fields. Air pollution monitoring is very
crucial for cities, yet most air quality monitoring
departments in china still use 2D methods to display
meteorological data, which isn't intuitive at all and is lack
of interaction. Visualization of meteorological data that
allows 3D scene walkthrough could change this situation
and achieve high accuracy of rendering at the same time.

There are many methods for air pollution visualization.
In this paper, we choose to take advantage of direct

volume rendering where each point in space is assigned a
density for the emission and absorption of light and the
volume renderer computes the light reaching the eye
along viewing rays [1, 2]. Direct volume rendering is an
attractive technique because it can convey a great deal of
information in a single image by mapping the scalar data
values in a sample volume to color and opacity [3]. It is
especially suitable as we use large static data sets for
rendering.

Volume clipping most apparently shows the three
dimensionality and volumetric property of volume. It cuts
away selected parts of a volume and uncovers important
parts or details we should see as the viewpoint changes.
Most clipping methods are depth-based or importance-
driven; however, there are few specific and fast clipping
methods for 3D scene walkthrough in a volume.

In this paper, we concentrate on visualizing 3D
weather data through direct volume rendering, and solve
the rendering problem inside the volume with a novel
clipping method. The weather data are provided by the
Meteorological Department of Jinan and have been pre-
interpolated to get a smoother display. We first load air
pollution data into a visualization platform, and generate
a volumetric cube which covers the whole data set. By
combining texture-base volume rendering and viewpoint
based volume clipping, we proposed a fast and practical
method to visualize large-scale air pollution data and
integrated it into our visualization platform which can be
used for 3D scene walkthrough.

The main contributions of this paper are as follows:
1. We generate an effective method to map discrete

density values of points in a volume on to values
in the range between 0.0 and 1.0 such that the
system can display values out of the range.

2. We generate a novel volume clipping method
based on viewpoint for 3D scene walkthrough.
We create a new 3D texture as a container for the
volume with different sizes according to
transformations of viewpoint, and avoid changing
the volumetric data. Viewer could always see the
volume part in front of his viewpoint.

Structure of the remaining parts of this paper is as
follows. We reviews related work on fluid visualization
and volume rendering in section II. Section III overviews

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization 45

the whole system, shows how the air quality visualization
platform works and how the volume being rendered.
Then we describe how the volume clipping happens in
detail in section IV. In section V we present results of this
experiment and discuss the advantages and disadvantages
of our visualization of air pollution. We provide a brief
conclusion and an outlook on future work in section VI.

II. RELATED WORK

Too much attention has been paid on air pollution
simulation, and there are not plenty of good methods for
air pollution data rendering, especially for real-time
volume clipping in 3D scene walkthrough. This rendering
platform applied in our system takes advantage of a
program focusing on computational fluid dynamics (CFD)
provided by Quentin Froemke and some other scientists
[4], where ray casting is used for direct volume rendering
to get a nice and visual representation of fluid. Although
this program concentrates on multi-thread fluid
simulation, it provides a good structure for direct volume
rendering. In this paper, we improve the above mentioned
rendering platform to make it more suitable for air
pollutant rendering, and propose an efficient method for
loading large scale static data. Fig.1 shows how the CFD
platform working, this platform simulates the diffusion of
air pollution.

Figure 1. The volume cube being rendered in the 3D environment.

View from top side.

Most previous clipping methods employ plane or
combination of planes to clip volume. Although they are
generally fast, the clipping results are coarse. Instead, we
employ changing 3D textures for clipping, and get much
better results without reducing clipping speed.

Daniel Weiskopf introduces two basic approaches to
volume clipping [5]. The first one is depth-based and uses
the depth structure of the clip object to clip. In the second
one, a clip object is voxelized and represented by an
additional volume data set. Clip regions are specified by
marking corresponding voxels in this volume. Both
approaches have some problems for 3D scene
walkthrough, and we employ viewpoint-based volume
clipping to solve them.

III SYSTEM OVERVIEW

 This system is a visualization platform and can load
static weather data, and can display 3D visualization
effect of the data. It can be divided into two parts
logically, the visualization platform part and the volume
rendering part:

A. Visualization Platform
This platform is based on DirectX 3D which plays a

crucial role in visualization and game developing. It
provides a nice camera system so that the scene can
automatically adjust while the viewpoint and the view
direction changing. The transformation is interactive and
accurate, which is important and necessary in 3D scene
walkthrough.

The main function of this platform is to load air
pollution data and provide basic support for volume
rendering. Besides, this platform provides interface to
load terrain. Terrain with information of height and
texture could make the visualization more realistic. And
as our research carrying on, we could load real terrain of
city to show how the air pollution influencing the city
clearly and intuitive.

We use a simple method to read the weather data into a
data array, and record the maximum and minimum
pollution densities, and then calculate the density range
for later usage. An Array3D structure that is actually a 1D
array is used to load 3D weather data [4]. This structure
can help us visit density of each point in the volume by
index and make the rendering go on smoothly.

The source density values range from a very small
value such as 0.00000001 to a much larger value such as
7.7850485, which can’t be displayed by the platform. So
we generate a brief mapping method to transform these
values into values range from 0.0 to 1.0 so the platform
can render the volume with these values successfully. We
map source density value sourced into final density value

finald , and is the minimum source value recorded
and range is the range of the source density values. The
mapping formula is as follows:

mind

minsource
final

d dd
range

−
= (1)

B. Volume Rendering
Direct volume rendering is based on the premise that

the data values in a volume are themselves a sufficient
basis for creating an informative image. What makes this
possible is a mapping from the numbers which comprise

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

46 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization

volume data to the optical properties such as opacity and
color that compose a direct volume rendered image. This
critical role is performed by Transfer Functions. Our
proposed approach can be classified as a data-driven
method. We propose such a method to automatically
visualize volume data, providing the user a visual
overview of a volume[6].

After loading data successfully, we get to the step of
volume rendering. This program uses ray casting method
to implement direct volume rendering, which is texture-
based. After successfully loaded, the volumetric data is
copied into a 3D texture, which is used in a pixel shader
[4]. The texture is rendered as a cube at the position of
the volume in the 3D scene. For each visible pixel, a ray
is cast from the camera to this pixel on the cube. The
corresponding point in the 3D texture is found and
sampled and the ray marches through the texture at a
fixed step size, accumulating the density data as it goes.

We create a 3D texture as a container for the volume
and initialize it with the volume size and volumetric data,
then the system renders the texture and the volume
rendering implemented. Fig.2 and Fig.3 shows the
volumetric cube being rendered while the system is
running. The bright yellow air masses are air pollution
areas, and the color of the pollution area is deeper as the
pollution is more serious. The background bellow is the
terrain picture of Jinan city. As we mainly focus on the
visualization of pollution, we just take a plain map of
Jinan as the background.

Figure 2. The volume cube being rendered in the 3D environment.

View from top side.

Figure 3. The volume cube being rendered in the 3D environment.
View from front side.

C. Terrain Rendering
Terrain geometry is an important component of

outdoor graphics environments, as used for instance in
movies, virtual environments, cartography, and games[7].
Height field terrain rendering and editing is an important
aspect of GIS, outdoor virtual reality applications such as
flight simulators and 3D-games. Such scenes may contain
thousands of polygons and although modern graphics
cards allow the display of many thousands of polygons at
real-time frame rates, many applications have models
with geometric complexities that, by far, exceed the real-
time capabilities[8]. In this part, we implement the real-
time rendering of terrain height-fields.

When rendering terrains that utilize high resolution
texture maps, texture memory management can quickly
become the performance bottleneck. We present a system
that computes a small working set of texture maps for
each frame to be rendered. Utilizing frame coherence and
a simple recurrence relation, the algorithm computes the
texture resolutions necessary to render the scene,
requiring only a few arithmetic operations per polygon[9].

In this platform, we use level-of–detail(LOD) control
to approach terrain rendering. A hierarchy of mesh
refinement operations is used to adapt the surface
tessellation. The LOD algorithms are view-dependent,
and they adaptively refine and coarsen the mesh based on
the deviation in pixels between the mesh and the original
terrain. Also we use texture clip maps to handle huge
texture maps.

Terrain rendering is one important part of 3D scene
walkthrough, yet as we mainly focus on volume
rendering we just take it as a non-core approach and just
have a brief introduction. Fig.4 shows the texture of
terrain we used in this platform.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization 47

Figure 4. The terrain texture used in the 3D rendering

IV. VOLUME CLIPPING
Volume clipping is crucial for 3D scene walkthrough,

and it should be real-time and accurate, so we try to
generate an efficient method for clipping. The main
volume clipping idea is to create a new 3D texture, the
size and location of which change every time the
viewpoint changes, and then load corresponding weather
data into the 3D texture and render them.

First we develop a method to judge whether the
viewpoint inside the volume cube. If it’s outside, there is
no need to clip. If it’s inside, then we must clip the
volume to cut away volume parts behind the viewpoint
and create a new 3D texture. The location of the volume
cube is fixed in the coordinate of the rendering scene, so
we can judge by comparing the viewpoint’s coordinate
with coordinates of eight vertexes of the cube. The cube’s
origin and size of each dimension are initialized before
reading the source weather data.

A. No Clipping Condition
If the viewpoint is outside the cube, we create a 3D

texture with the same origin and size as the volume cube.
Then we load the whole volume data into the 3D texture,
set the transformation and scaling matrixes, and render
the texture.

B. Clipping Condition
As the viewpoint is inside the cube, the clipping

happens and we mainly change the size and location of
the 3D texture to implement clipping. We determine
which side of the volume cube should be clipped by
comparing dimensions of the three axis components of
view direction, and choose the axis that has the biggest
dimension as the clipping direction. The clipping

direction also varies depending on whether the choosing
direction is negative.

There are six situations of the clipping as there are six
clipping directions of the volume cube. The most
important part for clipping is to determine the new size of
the 3D texture for the volume cube according to
viewpoint.

1) The first two situations happen when the x-axis
component of the view direction has the largest
dimension: We apply a float variable xd to help find the

location of the clipping plane. xc is the x-axis

component of the viewpoint’s coordinate, xo is the x-
axis component of the cube origin’s coordinate, and

xdelta is the x-axis component of scaling variable while
rendering.

x x
x

x

c od
delta
−

= (2)

a) If the direction of the x-axis component is
negative, then we cut away the volume part off the cube
origin: The clipping plane must be in front of the
viewpoint so we can completely see the clipped volume
part. We use an int variable 0.01⎥⎦ to mark
the location of the clipping plane in the volume. After a
3D texture with a new x-axis dimension

x xt d= −⎢⎣

xt created, only
the x-axis component of the scaling matrix is changed.

b) Else as the direction of the x-axis component is
positive, we just cut away the volume part towards the
cube origin: Int variable 1⎥⎣ ⎦ is used

to mark the clipping plane, and

x x xt D d= ⎢ − + ⎥⎢⎣ ⎦

xD is the x-axis
dimension of the original volume. The transformation and
scaling matrixes should both be changed, as the clipped
cube has a new origin.

2) The second two situations happen when the y-axis
component of the view direction has the largest
dimension:

 y y
y

y

c o
d

delta
−

= (3)

a) When the direction of the y-axis component is
negative, 0.01y yt d⎢ ⎥= −⎣ ⎦ is the new y-axis dimension

of the new 3D texture need to be created, and only the
scaling matrix need reset.

b) When the direction of the y-axis component is
positive, we create the 3D texture with

1y y yt D d⎢ ⎥⎢ ⎥= − +⎣ ⎦⎣ ⎦ as its y-axis dimension, both the

transformation and scaling matrix need reset.
3) If the z-axis component of the view direction has

the largest dimension, the last two situations happen:

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

48 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization

 z z
z

z

c od
delta
−

= (4)

a) If the direction of the z-axis component is
negative, we create a new 3D texture with z-axis
dimension 0.01⎥⎦ , and then reset the z-axis
dimension of the scaling matrix.

z zt d= −⎢⎣

Else as the direction of the z-axis component is
positive, is the z-axis dimension

of the new 3D texture, and both the two matrixes need
reset.

1z z zt D d= ⎢ − + ⎥⎢ ⎥⎣ ⎦⎣ ⎦

C. Trigger mechanism
 As the system running, a 3D scene is generated and the
air pollution is rendered in a volume cube. As viewers
take mouse actions such move or click the mouse, the
mouse monitor will send messages to the program. Once
mouse actions inform the system that viewpoint is inside
the volume cube, clipping happens. Else as the viewpoint
is outside of the volume cube, the platform just renders
the whole volume cube.

V. RESULTS AND DISCUSSION

 Our program is implemented in C++ using DirectX
3D for rendering. This program has been performed on a
2.33GHz Core Duo PC with 2GB of ram and an ATI
Radeon HD 2600 PRO graphics board with 256 MB local
video memory. We have got a sequence of satisfactory
experimental results and make the program have a
opportunity to be used in applications of air pollution
visualization. The experimental data are atmospheric
pollution space-time quantitative prediction of pollutants
concentration data files. They cover 79 square
kilometers’ area of Jinan city, and divide the troposphere
into 12 layers according to height. The time resolution of
the data files is one hour, and our data file contains data
of 24 hours. The file contains three kinds of
meteorological data and concentration data of six
pollutants which are , , , ,

and . We only use the as the pollutant of our
experiment.

69×

CO2SO 2NO

2SO
NO 10PM

3O

Direct volume rendering and ray casting methods are
used to implement air pollution rendering. Supported by
these methods, we make the visualization of air pollution
with features of translucent and realistic. Volume
clipping method is used to achieve interaction between
viewer and the pollution volume. This method helps
implement 3D scene walkthrough in this scene.

A. Experimental Results
We generate two kinds of air pollution rendering

scenes. The first kind is with terrain and sky background,
and it shows how the visualization platform works. The
second kind of experimental results are used to describe
how the volume clipping happens, and we remove the

terrain and sky background so as to make the clipping
process clearer.

Figure 5. The visualization system: (a)Looking at the pollution volume
from far away;(b)Getting into the pollution volume and looking forward.

Fig.4a shows what we firstly see when the system is

running. The background below is the terrain texture of
Jinan city, and the yellow translucent light group is the air
pollution volume. The brighter the area is, the more
serious the area is polluted. As we get into the volume,
we got Fig.4b which shows the inside of the pollution
volume and it’s clipped to cut away volume part behind
the viewpoint.

To get a clearer impression of how the volume cube is
clipped, we let the system only display the volume cube.
Then we use a sequence of figures to show how the
clipping process happening in Fig.5, Fig5a shows the
whole volume cube in front of viewpoint, and our
viewpoint moved forward from Fig.5c to Fig.5d in
sequence, we can see the clipping happen clearly.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization 49

Figure 5. The clipped figure sequences as the viewpoint moving
forward.

B. Discussion
The main advantage of our volume rendering approach

is that it can load large volume data sets fast and display
them interactively, and we generate a simple and
practical method to map discrete and irregular volumetric
data into a data range that our system can effectively
render. Also we implement 3D scene walkthrough via a
novel volume clipping method based on viewpoint. The
main advantage of our volume clipping approach is that
it is dynamical, simple, fast, and different from those
clipping methods mainly change the volumetric value to
achieve clipping. We concentrate on changing the 3D
texture of the volumetric data according to the user’s
viewpoint, and avoid changing the pre-loaded volumetric
data. Both approaches make this program practical for
fluid rendering based on volumetric data sets, especially
for visualization of air pollution.

The main disadvantage of our approaches is that the
implementation is preliminary and need to be accelerated.
This system can’t display the volume in high detail,
which mainly caused by the sparse density of our weather
data and the ray tracing method for rendering. If the
volumetric data are too large, there would be time delay
while rendering. The clipping method need to change the
3D texture, reload data and reset the transformation and
scaling matrixes every time the viewpoint changes, which
may make the result disappointing if the application
needs to be highly interactive.

VI. CONCLUSIONS
We have presented a system with a proper volume

rendering approach and a novel volume clipping method
for air pollution visualization in this paper. The system
could load large data sets and render the volumetric data
with moderate interaction, and clip the volume based on
viewpoint to implement 3D scene walkthrough. The
volume rendering and clipping are fast, so we could use
these methods to achieve high interaction while
implementing real-time 3D scene walkthrough.

 However, when rendering large volume data, the
rendering may have delay. The volume clipping is fast,
yet simple, and the clipping may lack fidelity under some
situations. In future work, we will make the system more
practical and accelerate the volume rendering for better
interaction.

ACKNOWLEDGMENT

Shigang Wang wishes to give thanks to Froemke
Quentin from Intel for his explanations and advices on
the visualization platform.

REFERENCES

[1] S.Guthe, M.Wand, J.Gonser, and W.Straßer, “Interactive
Rendering of Large Volume Data Sets,” Visualization,
2002. VIS 2002. IEEE, pp. 53 - 60, November 2002

[2] Hon-Cheng Wong, Un-Hong Wong and Zesheng Tang,
“Direct Volume Rendering by Transfer Function”,
Information, Communications and Signal Processing, 2009.
ICICS 2009. 7th International Conference, pp. 1-4,
December 2009

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

50 The Implementation of 3D Scene Walkthrough in Air Pollution Visualization

[3] J.Wilhelms,A.Van Gelder, P.Tarantino, and J.Gibbs,
“Hierarchical and Parallelizable Direct Volume Rendering
for Irregular and Multiple Grids,” in Visualization '96.
Proceeding, pp. 57 – 63, november 1996

[4] Q.Froemk, “Multi-Threaded Fluid Simulation for Games,”
intel.com, June 2009.

[5] D.Weiskopf, K.Engel andT.Ertl, “Interactive Clipping
Techniques for Texture-Based Volume Visualization and
Volume Shading,” Visualization and Computer Graphics,
IEEE Transactions, vol. 9, pp. 298-312, September 2003.

[6] Hon-Cheng Wong, Un-Hong Wong, Zesheng Tang,
“Direct Volume Rendering by Transfer Function
Morphing”, Information, Communications and Signal
Processing, 2009. ICICS 2009. 7th International
Conference, pp.1-4, December 2009

[7] Frank Losasso, Hugues Hoppe, "Geometry clipmaps:
terrain rendering using nested regular grids", ACM
Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2004, Volume 23 Issue 3, August 2004

[8] Bent Dalgaard, Larsen Niels, Jørgen Christensen, “Real-
time Terrain Rendering using Smooth Hardware Optimized
Level of Detail”, Journal of WSCG, Vol.11, No.1,
WSCG'2003, February, 2003

[9] Jonathan Blow, "Terrain rendering at high levels of detail",
Game Developers Conference, March 2000

Shigang Wang, born in Shandong province, china, in 1986.

Now is a postgraduate student in Shandong University, Jinan,
China, from 2009 to 2012. Major in computer science and
technology, research on computer aided geometric design.
Obtained the bachelor of engineering of Shandong University in
2009, majored in software engineering from 2005 to 2009.

Weitao Li, doctor graduate student, majored in computer

science and technology of Shandong University.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 44-50

	I. Introduction
	II. RELATED WORK
	III SYSTEM OVERVIEW
	A. Visualization Platform
	B. Volume Rendering
	C. Terrain Rendering
	IV. Volume Clipping
	A. No Clipping Condition
	B. Clipping Condition
	1) The first two situations happen when the x-axis component of the view direction has the largest dimension: We apply a float variable to help find the location of the clipping plane. is the x-axis component of the viewpoint’s coordinate, is the x-axis component of the cube origin’s coordinate, and is the x-axis component of scaling variable while rendering.
	a) If the direction of the x-axis component is negative, then we cut away the volume part off the cube origin: The clipping plane must be in front of the viewpoint so we can completely see the clipped volume part. We use an int variable to mark the location of the clipping plane in the volume. After a 3D texture with a new x-axis dimension created, only the x-axis component of the scaling matrix is changed.
	b) Else as the direction of the x-axis component is positive, we just cut away the volume part towards the cube origin: Int variable is used to mark the clipping plane, and is the x-axis dimension of the original volume. The transformation and scaling matrixes should both be changed, as the clipped cube has a new origin.

	2) The second two situations happen when the y-axis component of the view direction has the largest dimension:
	a) When the direction of the y-axis component is negative, is the new y-axis dimension of the new 3D texture need to be created, and only the scaling matrix need reset.
	b) When the direction of the y-axis component is positive, we create the 3D texture with as its y-axis dimension, both the transformation and scaling matrix need reset.

	3) If the z-axis component of the view direction has the largest dimension, the last two situations happen:
	a) If the direction of the z-axis component is negative, we create a new 3D texture with z-axis dimension, and then reset the z-axis dimension of the scaling matrix.

	C. Trigger mechanism
	V. Results and Discussion

	A. Experimental Results
	B. Discussion

	VI. Conclusions
	Acknowledgment
	References

