
I.J. Information Engineering and Electronic Business, 2010, 1, 1-8
Published Online November 2010 in MECS (http://www.mecs-press.org/)

A Novel Fixed-Point Simulation Library for the
Design of FPGAs

Bingyang Liu, Xiaojun Zhang, Zhenchao Chang, Jing Liu
National Digital Switch System Engineering & Technological R & D Center

450002 ZhengZhou, HeNan, China
E-Mail: liubingyang1985@126.com

Abstract—Fixed-point simulation is extremely important in
the design of fixed-point FPGAs. Float-point simulation is
used to verify the arithmetic, while the fixed-point
simulation is adopted to evaluate the performance and
verify the implementation. The design of high-precision
system based on FPGAs must focus on the fixed-point
simulation to reduce the error acceptable even to zero.
Basing on the analysis of fixed-point simulation approaches,
especially the approach with MATLAB Fixed-Point Toolbox,
we propose a novel fixed-point simulation library consisting
of four modules. The library works under VC environment
and its basic definition module imitates operating principle
of MATLAB Fixed-Point Toolbox. The aim of library is to
assit setting up fixed-point simulation conveniently, easily
and quickly. Finally, simulation shows effect of the library.

Index Terms -fixed-point simulation, library, zero error, float-
point to fixed-point conversion

I. INTRODUCTION
Concerned with the cost of area and speed, fixed-point

arithmetic is generally adopted during the design of
FPGAs (Field Programmable Gate Array). The process
of FPGA fixed-point design is approximately divided
into three proportions as shown in Fig.1, while
establishing the fixed-point model is extremely
important and highly difficult. In recent years, some
software programs have appeared which can
automatically generate Verilog/VHDL(Hardware
Description Language) codes. All of these software
programs can generate target codes according to fixed-
point simulation codes, which shows the importance of
fixed-point simulation. Reference [1] shows that in a
recent survey conducted by AccelChip Inc., 53 percent of
the respondents identified float-point to fixed-point
conversion as the most difficult aspect of implementing
an algorithm on an FPGA. The main two problems of
fixed-point simulation are errors and cycles, each of
which would be analyzed below.

Figure 1. The process of FPGA fixed-point design

A. Error problem
Reference [2~5] shows that in recent years, there

are many methods to research compiling fixed-point
simulation codes, most of which just analyze and
research the error between float-point output and
fixed-point output, while missing the error between
fixed-point output and FPGA output. At present, most
systems today consist of certain components, thus if
an error appears between any component of a fixed-
point simulation model and a FPGA model,
accumulated errors of entire system, especially high-
precision demand system (such as area of radar,
navigation, speech recognization) can not be ignored,
because great errors make the simulation nonsensical
to simulate [6].

So, it is important to establish fixed-point
simulation model with acceptable errors, even zero
error.

Causes for errors between fixed-point output and
FPGA output list below:

1) Different scaling or bit-width. Different bit-
width/scaling may process different accuracy.

2) Different operation rules. In addition and
subtraction operations, whether type cast
input values to the result type before
operating on the values or not should be
concerned. So as the multiplication
operations.

3) Different implement approach. For example,
the division implementation uses CORDIC in
FPGA code, on the contrary, the fixed-point
simulation just magnifies dividend. Thus,
there must be some errors.

B. Cycle problem
As is known ， IT(Information Technology)

industry always pursues speed and short development
cycle. Fixed-Point simulation often takes long time,
sometimes even longer than compiling Verilog code.
To ease FPGA development, manufacturers provide
library which includes abundant IP(intellectual
property) cores. However, no IP core function library
is provided to help set up fixed-point simulation
model. Programmers have to compile the code
according to IP core, which usually takes long time
and directly leads to low productivity.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

2 A Novel Fixed-Point Simulation Library for the Design of FPGAs

This paper is organized as follows. Section Ⅱ mainly
introduces background of fixed-point simulation,
describes existent fixed-point simulation methods and
analyzes their merits and demerits. Section Ⅲ mainly
describes fixed-point simulation approaches with
MATLAB Fixed-Point Toolbox which is the same as the
basic rules of the library proposed in this paper. Section
Ⅳ mainly describes the library’s specification and
section Ⅴ details the components of the library.
Section Ⅵ provides simulation between library,
MATLAB and VC, then an analysis of the simulation
results is list. Finally, section Ⅶ draws conclusions and
offers hints for further studies.

Ⅱ. BACKGROUND
There are many fixed-point simulation methods. Based

on the generation form, it can be separated into two
categories: manual compiling and code generation tools.

A. Manual Compiling
As one of the popular programming languages, the C

language is widely applied in fixed-point simulation.
However, it has many disadvantages:

1) Integer data type bit-width is 8,16,32,64, while
data bit-width of FPGA is variable. Therefore, C
language can't reflect overflow or precision loss of FPGA
code.

2) C language is incapable of expressing data more
than 64bits. If the data exceeds the range, the only
solution is to define structural body. Therefore, it is
greatly inconvenient.

3) There is no genuine fixed-point data type in C
language. All data expressed by C language is magnified,
and the scaling must be annotated. Therefore, it is
difficult to comprehend the code.

4) Lack of fixed-point operation rules. It is
inconvenient that different scaling operands must be
shifted to the same scaling before addition and
subtraction. Similarly, both operands must be forced to
change data type before multiplication.

Recently, there are several fixed-point simulation
methods such as Catapult C of Mentor and Impulse C of
Impulse which define extended set of C to compile fixed-
point simulation, but because of function shortage, they
are not widely applied.

B. Code generation tools
In reference [7], AccelDSP Synthesis Tool includes

automated floating-point to fixed-point conversion, where
the floating-point MATLAB model is analyzed during
simulation to determine the dynamic range of the input
data and constants.

However, the disadvantages are obvious. Firstly, it
lacks in transplantation because fixed-point simulation
codes generated must work based on the function library
of AccelDSP; Secondly, the code generated is difficult to
comprehend, and it is impossible to amend and fix.
Thirdly, only a few arithmetic conversions are supported.
So do other similar tools.

Ⅲ. MATLAB FIXED-POINT TOOLBOX
MATLAB Fixed-Point Toolbox offers plenty of fixed-

point functions and operation rules and so on. It makes
fixed-point simulation more easy and free.

Firstly, we can define bit-width freely as FPGA data
definition with Fi function.

Secondly, operation rules can be easily defined with
Fimath attribution. By setting a series of parameters, the
code shows the same mechanism as FPGA.

Thirdly, it is convenient to change data type such as the
conversation between binary, octonary, decimal and
hexadecimal. Therefore, data observation, record and
analysis will be easy.

Last, MATLAB itself is a powerful comprehensive
tool to process and analyze errors.

A. MATLAB Fixed-Point Toolbox introduction
Numerictype and Fimath parameters which are known

as setting of Fi function are usually used in MATLAB
fixed-point simulation process.

Fi function is used to construct a fixed-point numeric
object. You can use it as the way of a = (, , ,)fi v s w f , it
returns a fixed-point data with value , signed property
value

v
s , word length , and fraction lengthw f . For

example, constructs a fixed-point data
scaling S3.28 of π. Repeating setting is avoided because
of the transmissibility of Numerictype.

(,1,32,fi pi 28)

Fimath is used to define operation rules and rounding
rules. Option setting comes as follows [8]:

• CastBeforeSum: to enable or disable type casting
of input values for addition and subtraction
operation. “1” for enable and “0” for disable.

• OverflowMode：an overflow-handing mode. The
default is “saturate”. “Saturate” is used for
saturatation to the maximum or minimum value
of the fixed-point range on overflow, while
“wrap” means wrap on overflow. This mode is
also known as overflow of two’s complement.

• RoundMode: Rounding option. The default is
“nearest”, which means round toward nearest.
Ties round toward positive infinity. “Ceil” means
round toward positive infinity, while “fix” means
Round toward zero. “Floor” means round toward
negative infinity.

B. General steps of MATLAB fixed-point simulation
and method

General steps of MATLAB fixed-point simulation:
1) Establish a float-point simulation model;
2) Range analysis of each step and variable;
3) Compile fixed-point simulation codes and

establish a fixed-point simulation model;
4) Compare errors between fixed-point and float-

point output, then adjust and confirm the word-width of
variable.

References [3~5,9,10] concentrate on step 2 and 4 to
research on how to analyze range and precision faster and
better. However, Step 3 is also important because errors
will be generated when mistakes appear in the fixed-point

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

javascript:showjdsw('jd_t','j_')

 A Novel Fixed-Point Simulation Library for the Design of FPGAs 3

conversion process, even though the scaling is totally
right. The key is operation rules and overflow handling.
The details show as following:

1) In the option of CastBeforeSum setting, “0”
behaves as ASIC or FPGA implementations, while “1”
imitates DSP chips.

2) RoundMode option should be set to “floor” to
model FPGA or ASIC(Application Specific Integrated
Circuit).

3) According to FPGA code, set
ProducMode/SumMode option to “SpecifyPrecision” to
specify scaling of output toensure precision.

4) Multiplication-accumulator unit is widely used in
DSP area and others. Overflow maybe occurs during
accumulation, and the precision is difficult to handle,
making the fixed-point simulation difficult to realize. To
solve the problem, it is necessary to analyze the range and
then confirm the scaling of output. The result will be the
same as FPGA output when setting OverflowMode to
“wrap”.

5) Avoid complex arithmetic implementation such as
division and other operations by predigestion and
conversation.

With options and methods above, the absolute error
between fixed-point simulation and FPGA will be zero.

Ⅳ. A NOVEL FIXED-POINT SIMULATION LIBRARY FOR THE
DESIGN OF FPGAS

However, MATLAB Fixed-Point program runs very
slow in speed and low in efficiency. For example, ten
frames of MATLAB fixed-point MFCC computation
time is amazingly around one hour while VC fixed-point
time is only thirteen seconds. So, most researchers tend to
use C language to realize the fixed-point simulation.
What is more, there is no integrated IP core function to be
frequently used in MATLAB environment, which
increases the difficulty of fixed-point simulation and
makes the precision uncertain. As a result, the design
period of FPGA would be extended.

The initial idea of building up this library is to combine
speediness of C/C++ and convenience of MATLAB. The
main target of the library proposed is to simplify the
fixed-point modeling flow via integrating the definition
of fixed-point, definition of algorithm, determination of
dynamic range, optimized methods of bit-width and
function of common IP core. It aims to shorten modeling
period and increase modeling precision, which is of great
significance in IC industry which has a highly
requirement of timeliness. More frankly speaking, the
idea of the library is to solve the time-consuming and
error-prone problem in fixed-point simulation during
hardware design by combining merits of C/C++ and
MATLAB, plus optimal analysis methods and a common
IP core module. It can provide some options according to
different requirements on implement methods, precision
and bit-width.

The library can be divided into four functional
modules, as shown in Fig.2. The basic definition library
module provides basic definition of fixed-point and

operation rules. The dynamic range analysis module is
mainly used to determine

Figure 2. Parts of Library

the dynamic range of variables. Basing on the dynamic
range analysis module, we can define the initial bit-width
of variables. The initial fixed-point model will be
established with combining the IP core functions. During
the process of design, bit-width needs to be optimized
according to the error and precision demand. Because the
library can be applied to different phases of FPGA design,
instruction of its application during different phases can
be specified as follows:
A. Prime Phase of FPGA Design

This phase covers the whole design flow based on
application arithmetic of FPGA implementation. Work
can be done as follows: Firstly, setting up floating-point
model and verifying the arithmetic. Secondly, dynamic
range of variables is analyzed by using the dynamic range
analysis library, and the initial scaling is defined. Thirdly,
the corresponding function library in the IP core is
transferred to replace the model’s IP core with functions
in the library, and an initial fixed-point simulation model
is established. Fourthly, error between floating-point and
fixed-point model is calculated. While error satisfies the
user’s requirements, fixed-point model is established
completely. Then, the corresponding IP core need to be
chosen according to the established fixed-point model,
and so does the scaling. While the error dissatisfies the
user’s requirements, scaling has to be adjusted in the
optimizing bit-width model. At the same time, other
arithmetic for implementation in the IP core function
library is selected. And then, the error between the
adjusted fixed-point model and the original floating-point
model need to be calculated. These steps need be
repeated until the error meets user’s requirements. The
flow chart of this process is shown in Fig.3.

B. Verification Phase of FPGA Design
During this phase, FPGA program is already compiled

and fixed-point model needs verifying. Firstly, we
should scale the variable according to the FPGA program.
Secondly, the implementation of the arithmetic needs to
be fulfilled and the fixed-point model needs to be
established by replacing the IP core used in the program
with corresponding functions in the relevant IP core
library. Then, the results of the new model should be
compared with that of the original program to see
whether they are the same. If not, the underlying
overflow and timing problems should be found by

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

4 A Novel Fixed-Point Simulation Library for the Design of FPGAs

returning to the before-mentioned steps. Verification is
completed by numbers of iterations. The flow chart of

this process is shown in Fig.4.

Float-Point
Model

Range
Analysis

 Scaling

Dynamic
Range

Analysis

IP core
Function
Module

Arithmetic
Implement

Fixed-Point
Model

Beyond Error
Demand?

Basic
Definition
Module

Yes

No

Bandwidth
Adjustment

Bit-width
Optimization

Finally Fixed-
Point Model

START

END
Figure 3. Prime Phase of FPGA Design

Figure 4. Verification Phase of FPGA Design

Ⅴ. COMPONENT OF LIBRARY
The library can be available when putting header file

into the project.

A. Basic Definition Module
During this phase, according to the corresponding

floating-point value and the definition of scaling and sign
bit, a fixed-point number is confirmed, which is stored in
the computer in the form of a series of sequential binary
digits as shown in (1).

8, 4,1 3.1415926FP a< > =
(1)

It represents that fixed-point variable “a” is signed, its
scaling is Q8.4，and the value is 3.1415926. In fact, it’s
a struct body filled with some parameters.

The algorithm in this module imitates MATLAB Tool
Box and is defined by fully combining the FPGA
algorithm. Now, it is only available for FPGA type,
because its truncation is floor and its overflow handling is
wrap. For example, operands would not be converted into
the output type before manipulation. In the inner
operation, their bits are shifted to achieve the same
scaling, an intermediate variable is needed and then
truncated to output. But from outside, only a simple “+”
operation is needed to be executed.

As is shown in Fig.5(a), an addition between two
operands “a” and “b”, the corresponding scaling of signed
numbers “a” and “b” are S3.4 and S2.2. The steps of
addition can be partitioned as follows.

Firstly, the scaling of “b” needs to be changed into
S2.4 by shifting its significant bits. Secondly, “a” is
added with “b” to get an signed number with a scaling of
S4.4,Thirdly，the result of the second step is given to “c”.
Considering the scaling of “c” is Q7.2, the trail two bits
of “c” is truncated.

During the process of operation, the operating principle
of FPGA is fully considering about overflow mechanism.
When the result is overflowed, the final output is attained
by intercepting corresponding bits of the result directly.
As shown in Fig.5(b), the scaling of “c” is S2.2, but the
result is overflowed. According to the principle, the
middle five bits are directly intercepted as the final output.
The first bit of “c” is recognized as the sign bit, and the
overflow marker is set to 1.

B. Dynamic Range Analysis Module
Dynamic range analysis module plays an important

role in the scaling of variables. Analyzing the dynamic
range precisely can avoid overflow, which is of great help
to the latter verification work. This model is used to
analyze the dynamic range of variables. Three approaches
are provided as follows:
1) Simulation approach

This method can be applied under the condition that
the dynamic range of the input variables is already known.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

 A Novel Fixed-Point Simulation Library for the Design of FPGAs 5

(a) No overflow occurs (b) Overflow occurs

Figure 5. Addition of two operators

Initial value is regarded as the minimum value input, and
step is set to the incremental change according to the
practical condition. Increasing operation will not stop
until the maximal value of input is reached, then the test
sequence is formed. The dynamic range of the variable
and output can be found from the input of the test
sequence. In this process, while the step is made shorter,
the precision of dynamic range will be higher, but the test
speed will be much slower.
2) Analytical approach

It defines scaling of input variables according to their
range, and then defines scaling of other variables based
on the scaling of input variables and operation rules of
analytical approach. This approach is suitable for plenty
of area and precision sensitivity. Operation rules of
analytical approach are shown in Fig.6.

The fixed-point number is consist of two parts,
IB(Interger Bit-width) and FB(Fraction Bit-width). The
basic rules of analytical approach are divided into two
parts. When addition between two inputs with
QIB1+FB1.FB1 and QIB2+FB2.FB2 respectively occurs,
the scaling of output
is

,
while the scaling of multiplication output is

.

{max{ 1, 2} 1 max{ 1, 2}}.max{ 1, 2}Q IB IB FB FB FB FB+ +

{ 1 2 1 2}.{ 1 2}Q IB IB FB FB FB FB+ + + +
3) Extreme value theory approach

The approach results from extreme value theory
introduced in reference [11]. Extreme value theory is

used to define the range of a signal. The theory extract M
groups with N samples in each group. And then the max
N and min N samples were extracted to calculate the
mean and standard deviation. According to extreme value
theory, maximum and minimum are converged to
Gumbel distribution. Maximum is got by (2).

max
1ln(ln())

r

x
P

μ σ= −

(2)

Where maxx is maximum, is percentage against
overflow which is defined by the user. Generally, it is
99.9999999% while the possibility of overflow is
0.0000001%.

rP

μ and σ represent mean and variance of
Gumbel distribution. We can get them with (3):

6 ,s Xσ μ
π

= = −σλ (3)

Where s and X represents the standard deviation and
sample mean respectively. λ is the Euler’s constant
(0.5772). Analogically, the minimum is shown in (4).

min
1ln(ln())

1 r

x
P

μ σ= −
−

 (4)

Figure 6. Operation rules of analytical approach

Then the range of signal is between [min max,x x]，the
IB of it is generated accordingly. It shows as (5).

2 max minlog (max{ , }) 1signalIB x x= ⎡ ⎤ +⎣ ⎦ (5)
Extreme value theory approach is suitable for area

sensitivity and short development cycle user. It is default
approach option.

C. Width optimum module
The module mainly resolves optimum of FB. Error is

generally decided by FB while no overflow occurs.
Theoretically, the more FB, the higher precision with less
error. However, area of resource and computation is
limited, while the relationship of error and FB is
nonlinear. The aim of module is to decrease FB and
minish the area of resource and computation while
regarding demand of precision.

At present, only a coarse width optimum function
widthopti is available. If the output is beyond the demand
of error, it just increases intermediate variable with one
bit once. And it adjusts intermediate variable to decrease
bits according to result of range analysis module until the
output is below the demand.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

6 A Novel Fixed-Point Simulation Library for the Design of FPGAs

D. IP core function module
The most difficult step of fixed-point simulation is how

to describe the scheme to correspond with hardware
implementing. In the design of FPGA, manufacturer
provides users with abundant IP core to shorten design
cycle and decrease difficulty of development. However,
there is no IP core function library during the design of
fixed-point simulation. The user needs to write the code
themselves, and usually it is the most time-consuming
part. This part increases the difficulty of simulation and
affects the schedule of FPGA design. Furthermore, if it is
not in accordance with IP core, great inconvenience will
occur during test and validation. For example, cordic
scheme IP core is chosen to calculate division in the
design of FPGAs while the user just expands the width of
dividend to deal with division. Obviously, error will
certainly occur and break the essence of fixed-point
simulation.

However, with the module the paper proposed in this
paper, users just need to choose the function according to
design of FPGAs. It is very convenient to decrease the
possibility of error between fixed-point simulation and
FPGA implement.

At present, a few simple common IP core functions
such as trigonometric function, logarithm and exponent
are available. Later on, more complex IP core functions
will be added into the module.

Ⅵ. EXAMPLE OF APPLICATION
This section introduces two examples to compare with

different methods including C, MATLAB and our library.
Then, this section analyzes the result and summarizes the
conclusion.

A. A look-up table method on logarithm
1) Arithmetic description

FPGA code has been compiled. The linear fitting
method is introduced in reference [12] to implement the
Logarithmic 2 module. It divides (1,2] span into 128
segments, while each segment corresponds to a slope and
a bias. Computation begins with shifting input to (1,2]
span, then the section is chosen correspondingly to get
the result. The implementation method consists of
multiplication, shift operations, and accumulation, which
is highly representative.

Scaling of input is S13.19, while scaling of output is
S5.26 by range analysis. Slopes and bias are generated by
function polyfit of MATLAB and stored into LUT(Look
Up Table) with the scaling of S0.31 and S1.31.
Comparison among MATLAB, VC and our library are
introduced below.
2) Result analysis

With a 12 by 250 matrix of FPGA output as input code
above, the result is generated. Analysis of the error result
with FPGA result is shown in Fig.7.

As shown in Fig.7 (a), the absolute error between
MATLAB fixed-point simulation and FPGA is zero. On
the contrary, errors of VC fixed-point simulation with the
same word-width and implement approach can not be
ignored as fig.7 (b). Causes of errors generated are

operation rules and rounding rules, and they are not the
same as FPGA. Though it is faster in C language, errors
are not affordable. Therefore, the approach proposed
above with MATLAB Fixed-Point Toolbox is deserved
and is greatly helpful to the design of FPGAs.

(a) MATLAB fixed-point simulation error with FPGA

(b) VC fixed-point simulation error with FPGA

(c) Error between Library simulation and FPGA

Figure 7. Error of LOG2 module

TABLE I.
SUM OF VARIABLE IN A SINGLE LOGARITHM COMPUTATION

Approach Sum of Variable
Library 364bits

MATLAB 374bits

TABLE II. RUNNING TIME OF EACH APPROACH

Method Running time of 250*24
MATLAB 73 seconds

VC less than 2 seconds
Library 16 seconds

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

javascript:void(0)

 A Novel Fixed-Point Simulation Library for the Design of FPGAs 7

The error demand between FPGA and float-point is
.With the error demand, error of library simulation

result is also zero error, as shown in Fig.7 (c). But the
sum of variable width of the library and MATLAB is
shown in Table 1.

310−

Cause of difference between two methods is the
scaling of the second variable when extending the bit-
width from 32 to 43. With the range analysis module of
library, the bit-width of variable is set to 41 bits. With the
analysis above, FPGA code can be modified by changing
bit-width of the register. At last, area is saved with
assistance of the library. What’s more, running time is
also considered and listed in Table.2.

From Table 2, we know that VC runs fastest. However,
it introduces error with FPGA, while MATLAB takes a
long time to simulate. Our library is a better choice in that
it takes a shorter simulation time than MATLAB and
realizes zero error with FPGA.

Figure 8. Error of LOG2 module

TABLE III.
SUM OF VARIABLE IN A SINGLE LOGARITHM COMPUTATION OF LIBRARY

Error demand Sum of Variable
410− 396bits
310− 364bits

Figure 9. Error of LOG2 module

Fig.8. shows error between fixed-point and float-point
simulation, it’s at level. While error requirement is

, library approach adjusts bit-width of intermediate
variable and output. The sum of variable in a single
logarithm computation is shown in Table 3.The error is
shown as Fig.9.

310−

410−

B. IP core of square root
This example adopts square root based on IP core of

cordic and shows the process and performance of library
and MATLAB.

Reference [13] introduces the principle of square root.
Square root implement adopts IP core of cordic which
works on vector rotation model. Vector rotation takes a
vector (x, y) and rotates it over an angle ρ to a new
position (x’, y’), while maintaining the magnitude, as
shown in Fig.10. Equation (6) shows how to calculate
square root by cordic:

2 2
0 0

1 0
0

0

2

0

tanh

1 2 .8282

n n

n

n

i
n

n

x A x y
y

y
z z

x

A

−

−

= −

=

= +

= − ≈∏

(4)

Figure 10. Vector rotation

Figure 11. Error percentage of square out module

Figure 12. Error between FPGA and our library

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

8 A Novel Fixed-Point Simulation Library for the Design of FPGAs

A 94 by 250 matrix of FPGA output is the input matrix.
Scaling of input is S64.32, while output is S15.17. With
the library, we just call function of cordic_squareroot
with the parameter of input. However, we need to
compile it in MATLAB according to IP core specification.
Because our input has a large dynamic range, we
introduce error percentage between cordic and float-point
shown in Fig.11.

Theoretically, the error of our library and FPGA IP
core should be zero error. According to our simulation,
the error of our library and FPGA IP core is shown in
Fig.12.

From the Fig.12, there are two errors in 94 by 250
output while others are zero error. With analyzing, we
find that if the input is larger than 2^31(2147483648), it’s
been recognized as a sign number and lead to mistake.
Therefore, our library needs to improve.

Ⅶ. CONCLUSION AND FUTURE WORK
Resulting in zero error with FPGA output, fixed-point

simulation with powerful MATLAB Toolbox is
convenient. However, its demerits are obviously.
Therefore, this paper proposes a novel fixed-point
simulation library for the design of FPGAs. Four modules
of library provide plenty of tools to assist fixed-point
simulation easily and quickly. Simulation shows
comparison between MATLAB and library.

However, there are a lot of elements to add into the
library. Firstly, IP core function library needs more
function; Secondly, width optimum module is still coarse
and the function to adjust bit-width is less efficient and
time-consuming; Thirdly, there should be some DSP
options to add into the basic definition module.

REFERENCES
[1] Tom Hill, Floating-Point to Fixed-Point MATLAB

Algorithm Conversion for FPGAs, DSP Journal, 2006:5.
[2] Kyungtae Han, Alex G.Olson, Brian L.Evans, “Automatic

Floating-Point to Fixed-Point Transformations,” Fortieth
Asilomar Conference on Signals, Systems and Computers,
2006. ACSSC '06. pp.79-83.

[3] Linsheng Zhang, Yan Zhang, Wenbiao Zhou, “Floating-
point to Fixed-point Transformation using Extreme Value
Theory,” 2009 Eigth IEEE/ACIS International Conference
on Computer and Information Science, 2009, pp 271-276.

[4] W. Sung and K. Kum, Simulation-based word-length
optimization method for fixed-point digital signal
processing systems”, IEEE Trans. Signal Process, vol.43,
no.12, pp.3087-3090, Dec. 1995.

[5] K. I. Kum and W. Sung, Combined word-length
optimization and high-level synthesis of digital signal
processing systems, IEEE Trans. Computers, vol. 20, no. 8,
pp. 921–930, Aug.2001.

[6] Chungen Liu, “Floating computation-programming
principle, implementation and application,” 2008, in
press．

[7] Thomas Hill, “AccelDSP Synthesis Tool Floating-Point to
Fixed-Point Conversion of MATLAB Algorithms
Targeting FPGAs,” XILINX WP239(v1.0) April 19,2006.

[8] The Mathworks Company, Fixed-Point ToolboxTM 3
User’s Guide, 2010.3

[9] W. G. Obsborne, R. C. C. Cheung, J. G. F. Coutinho,
W. Luk, “Automatic accuracy-guaranteed bit-width
optimization for fixed and floating-point systems,” Proc.
FPL2007, pp. 617–620, Aug. 2007.
[10] D.U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer,

“Accuracy-guaranteed bit-width optimization”, IEEE
Trans. Comput. -Aided Design Integr. Circuits Syst.,
vol.25,no.10,pp. 1990–2000, Oct.2006.

[11] Laurens de Haan, Ana Ferreira, “Extreme Value Theory:
An Introduction”. Springer. 2010

[12] Qian Gao, “Design and Implementation of Feature
Extraction Unit for Speaker Recognition System,”
Zhengzhou： National Digital Switch System Engineering
& Technological R&D Center, 2008.

[13] The Synphony Company, Synphony HLS User Guide. 2009.

Bingyang Liu was born in Weihui, China,
in 1985. He received the B.S. degree of
automation in 2004. He is currently
studying for a M.S degree in
communication and information system
from National Digital Switch System
Engineering &Technological R & D Center.

He has worked on the design and implement of FPGAs on
speech recognization at NDSC, Zhengzhou. From 2008 to 2010,
he participated in the project of Henan Province Science and
Technology Bureau on speech recongnization and EV-DO data
transmission. His research interests are in the general areas of
high performance computer, digital signal processing and
communication.

Xiaojun Zhang was born in Henan, China,
on July 23, 1969. He received the M.S. of
communcation in 2000. From 2000 to 2005,
he participated in the high-performance
digital program-controlled switches project
at NDSC. He worked on circuit-swithced
network subsystem design, FPGAs design,

 and high-speed communications problems. Presently he is
engaged in research on high-speed dedicated cryptographic chip,
multimedia processing ASIC design and many-core processing
techniques at NDSC. He is coauthor of the book “ Modern SoC
Design Technology (Publishing House of Electronic Industry,
2009). He is member of National Digital Switching System
Engineering &Technological R&D Center.

Zhenchao Chang was born in Handan,
China, in 1987. He received the B.S. degree
in electrical engineering and computer
science from the University of Yanshan,
Qinhuangdao. He is currently a graduate
student in National Digital Switch System
Engineering & Technological R & D Center.
His research interests are in the areas of
communication, electronic design and
hardware design.

Copyright © 2010 MECS I.J. Information Engineering and Electronic Business, 2010, 1, 1-8

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4176490
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4176490
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Laurens%20de%20Haan
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Ana%20Ferreira

	I. Introduction
	A. Error problem
	B. Cycle problem
	Ⅱ. Background

	A. Manual Compiling
	1) Integer data type bit-width is 8,16,32,64, while data bit-width of FPGA is variable. Therefore, C language can't reflect overflow or precision loss of FPGA code.
	2) C language is incapable of expressing data more than 64bits. If the data exceeds the range, the only solution is to define structural body. Therefore, it is greatly inconvenient.
	3) There is no genuine fixed-point data type in C language. All data expressed by C language is magnified, and the scaling must be annotated. Therefore, it is difficult to comprehend the code.
	4) Lack of fixed-point operation rules. It is inconvenient that different scaling operands must be shifted to the same scaling before addition and subtraction. Similarly, both operands must be forced to change data type before multiplication.

	B. Code generation tools
	Ⅲ. Matlab fixed-point toolbox

	A. MATLAB Fixed-Point Toolbox introduction
	B. General steps of MATLAB fixed-point simulation and method
	1) Establish a float-point simulation model;
	2) Range analysis of each step and variable;
	3) Compile fixed-point simulation codes and establish a fixed-point simulation model;
	4) Compare errors between fixed-point and float-point output, then adjust and confirm the word-width of variable.
	1) In the option of CastBeforeSum setting, “0” behaves as ASIC or FPGA implementations, while “1” imitates DSP chips.
	2) RoundMode option should be set to “floor” to model FPGA or ASIC(Application Specific Integrated Circuit).
	3) According to FPGA code, set ProducMode/SumMode option to “SpecifyPrecision” to specify scaling of output toensure precision.
	4) Multiplication-accumulator unit is widely used in DSP area and others. Overflow maybe occurs during accumulation, and the precision is difficult to handle, making the fixed-point simulation difficult to realize. To solve the problem, it is necessary to analyze the range and then confirm the scaling of output. The result will be the same as FPGA output when setting OverflowMode to “wrap”.
	5) Avoid complex arithmetic implementation such as division and other operations by predigestion and conversation.
	Ⅳ. A novel fixed-point simulation library for the design of fpgas

	A. Prime Phase of FPGA Design
	B. Verification Phase of FPGA Design
	Ⅴ. Component of library

	A. Basic Definition Module
	B. Dynamic Range Analysis Module
	C. Width optimum module
	D. IP core function module
	Ⅵ. Example of application

	A. A look-up table method on logarithm
	B. IP core of square root
	Ⅶ. Conclusion and future work
	References

