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Abstract—In this paper, authors have proposed a 

technique which uses the existing database of chess 

games and machine learning algorithms to predict the 

game results. Authors have also developed various 

relationships among different combinations of attributes 

like half-moves, move sequence, chess engine evaluated 

score, opening sequence and the game result. The 

database of 10,000 actual chess games, imported and 

processed using Shane’s Chess Information Database 

(SCID), is annotated with evaluation score for each half-

move using Stockfish chess engine running constantly on 

depth 17. This provided us with a total of 8,40,289 board 

evaluations. The idea is to make the Multi-Variate Linear 

Regression algorithm learn from these evaluation scores 

for same sequence of opening moves and game outcome, 

then using it to calculate the winning score of a side for 

each possible move and thus suggesting the move with 

highest score. The output is also tested with including 

move details. Game attributes are also classified into 

classes. Using Naïve Bayes classification, the data result 

is classified into three classes namely move preferable to 

white, black or a tie and then the data is validated on 20% 

of the dataset to determine accuracies for different 

combinations of considered attributes. 

 

Index Terms—Chess, SCID, Chess Engine, PGN, 

Machine Learning, Linear Regression, Naïve Bayes 
 

I.  INTRODUCTION 

Chess Engines with ever increasing high computational 

power can now evaluate moves to more depth in less time. 

However, most of the initial moves and opening 

combinations have already been played since the 

invention of Chess. With more than 9.3 million chess 

games data available [1], we can make Chess Engines 

learn from the previously played games and the game 

outcomes, thereby increasing its efficiency wherever 

needed as per the capacity of underlying hardware and 

computing resource. Board evaluations for each half-

move have been done with a depth of 17 for all games. 

This much depth would take only few seconds in 

calculating board evaluations on most of the personal 

computers while winning scores could be fetched using 

past data. The depth can be adjusted according to the 

computational power of the computer. This produces the 

value of parameters for our algorithm faster and hence, 

the final decision factor is generated immediately without 

going deep into the search tree. Our approach for 

predicting the game winning probabilities is based on 

generating a linear relation between the taken response 

variable of game result and different set of predictor 

variables like evaluation and winning score of moves. 

Decision for playing which of the possible next moves 

could be made faster in Versus Computer games 

especially in fast modes like Bullet Chess.  

Using different attributes related to a particular game, 

for example move sequence, move number, game result, 

opening move classification, half-moves played by white 

or black and the corresponding engine evaluations, a set 

of relations between these could be developed. Using the 

classification and statistical relationship among attributes, 

a sequence of best opening moves can be classified for 

both white and black. These relations could help chess 

players and engines to develop more winning strategies 

accordingly. 

We have used 10,000 annotated games in Portable 

Game Notation (PGN) format and created three different 

datasets of 10-moves, 15-moves and 20-moves to analyse 

the effect of increasing the number of moves considered 

in each game on accuracy and relationship.  

The regression model indicates a high dependency of 

past game outcomes on result prediction. Board 

evaluations doesn’t seem to be playing a major role in 

predicting the game outcomes while move sequence 

number becomes a fair predictor variable whenever used. 

Thus, past data can play a significant role in suggesting 

moves and could be incorporated in chess playing and 

statistical tools. The classification model provided the 

highest accuracy of 66.91% when two attributes namely 

opening sequence and winning score are considered in 

the 20-moves dataset. The evaluation scores didn’t affect 

the accuracies much here as well. Since the winning score 

variable comes to be a significant predictor, we used 

winning score as the deciding factor for initial moves 
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with frequency threshold of 10 games and played 20 

versus-computer games being on each side. After the 

threshold, the games were made to be finished by the 

same engine on both sides. 

Section II describes the current research work done on 

similar approaches; basics and nomenclature of chess so 

that the reader could relate with the terminology used in 

the text; and the brief description of the tools used by the 

authors. Section III explains the project implementation 

in sequential order of usage. It also explains the usage of 

dataset, engine evaluation score, text-processing and then 

the implementation of machine learning algorithms over 

the dataset. The Section IV mentions about the generated 

results and their implication with the project. Section V 

presents the conclusion of our current research work. 

 

II.  RELATED WORKS 

This section discusses about the related works and 

background study the authors have referred to before and 

during the project. Additionally, this section includes 

basics and nomenclature regarding chess and the software 

and hardware tools used by the authors to evaluate and 

generate results. 

A.  Research Work 

Garry Kasparov, former World Chess Champion, 

mentions in [2] that there are 1040 number of legal chess 

positions while the number of different possible games is 

10120. As described in [3], the possible chess positions 

after white’s first move is only 20 while it grows to 400 

after black’s first move. After just 6 moves, there are 

91,32,484 total possible board positions. Thus, it’s not 

practically possible to make any chess tool learn about 

the results of every possible combination of chess games. 

This makes chess a great domain of research for Artificial 

Intelligence (AI) and Machine Learning.  

As described in Section I, the proposed algorithm is 

rather a very general implementation while there have 

been plenty of research work done on similar approaches. 

In [4], NeuroChess learns to play chess from the final 

outcomes of games using temporal difference learning [5], 

inductive neural network and a neural network version of 

explanation-based learning [6]. The model is trained 

using a database of 1,20,000 expert games before making 

NeuroChess learn an evaluation function. On using the 

same search engine NeuroChess won approximately 13% 

of all games against GNU-Chess [7], however, it still 

played incredibly poor openings which are usually 

responsible for a lower positional or tactical benefit for 

future moves. While discovering a great research 

direction for chess, the author also mentions that the level 

of play still compares poorly to GNU-Chess and human 

chess players and that NeuroChess still faces problems 

like limitation of training time. It spends most of its time 

computing board evaluations. Another machine learning 

technique, reinforcement learning, is used in [8] on the 

results of high-level database games. 

The huge chess database available online [1] provided 

us with a considerable fraction of possible and legal 

expert games and this could be made a huge dataset for 

learning algorithms. Hence, we have also referred to 

different approaches to predict moves that use past data 

of chess games. A three-layer Convolutional Neural 

Network (CNN) in [9] is used to make predictions using 

20,000 games from Free Internet Chess Server. In chess 

frame, search space tree of chess increases exponentially 

with progression in game which make chess engine to 

take more time for board evaluations on same depths. 

CNN reduced the intractable class space in chess by 

square root by breaking down the task in a piece-selector 

CNN and a move-selector CNN. Using 8:2 training to 

validation ratio, the piece selector network produced 

38.3% accuracy while the move-selector network 

performed at 52.20%, 29.25%, 56.15%, 40.54%, 26.52% 

and 47.29% for the pawn, rook, knight, bishop, queen, 

and king respectively. The model was played against 

Sunfish Chess Engine drawing 26% games. Author 

mentions that the model is adept at characterizing short-

term piece captures. 

Playing the game of chess has two broad approaches 

namely tactical and positional game-play. The former one 

is based on employing tactics based on short-term 

opportunities which is generally an open board gameplay 

in chess and is mainly employed by chess engines by 

searching game trees to depths typically between 20 and 

30 moves with move variations. Positional play, usually a 

closed game in chess, requires judgement more than 

calculations and human play is a combination of both 

since humans have some intuition about better board 

positions too. A proposed supervised machine learning 

technique in [10] used a total of 10,75,137 board 

positions from 6200 games to model the board as network 

of interacting pieces. The learning was made to identity 

elements of positional play and predict game outcomes 

which could be incorporated in chess engines to improve 

their performance. The results depict the classification 

accuracy to be better than the engine baseline for low 

evaluation scores, x, with the intercepting occurring on x 

= 0.35. This demonstrated that engine might lack 

important positional insights and that there is a great 

scope for AI in chess engines. 

Most of the previous research work is based on making 

a program learn chess and thus, building a chess playing 

tool whereas our main focus lies on predicting values in 

interest of a human player or incorporating this in 

addition to the existing chess engines. 

B.  Chess – Basics & Nomeclature 

Chess is a two-player strategy board game played on 

an 8x8 grid chessboard [11] initially having a total of 16 

pieces of 6 types on each side. A ply refers to one turn 

taken by one of the players and is referred as a half-move 

in chess. 

There are several types of chess notations [12] to 

record and describe moves and related game data. Among 

these, algebraic chess notation [13] is widely used. It is 

now a standard notation recognized by World Chess 

Federation (FIDE) as mentioned by the federation in [14]. 

It is based on a system of coordinates to uniquely identify 
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each square on the board. The pieces other than pawns 

are named as K, Q, R, B, and N for king, queen, rook, 

bishop and knight respectively. The moves are 

represented by the piece notation concatenated with the 

coordinate of destination square. The vertical squares or 

files from white’s left are labelled a through h while the 

horizontal rows of ranks are numbered 1 to 8 starting 

from white’s side. Thus, for example, Nf3 indicates a 

move by knight to square f3. The captures are indicated 

by an ‘x’ inserted immediately before the destination 

square, for example, in Bxf3. If there are more than one 

identical piece which can move to the same square, the 

moving piece is identified by the inserting file of 

departure, rank of departure or both in descending order 

of preference and depending upon the situation, for 

example, in Ngf3 which indicates that the knight on file g 

is moved to f3. Castling is indicated by using uppercase 

letter O as O-O for kingside and O-O-O for queenside. 

Checks are depicted by ‘+’ appended after the move 

notation. End of the game or result is indicated by 1-0 for 

white win, 0-1 for black win and ½-½ for a draw. 

Sequence of moves with annotations like evaluation 

scores or comments are written with move numbers for 

white and followed by ellipsis (…) for black while the 

comments and annotations are enclosed in braces, for 

example, in the notation 1. e4 {King’s opening} 1. … e5. 

Chess games are often stored in computer files using 

Portable Game Notations (PGN) which uses the same 

algebraic notation with additional markings and this 

plain-text format is computer-processible and supported 

by many chess programs. Refer to [15] for an example of 

a game recorded using PGN format. Annotation symbols 

[16] like ‘??’ for blunder, ‘?’ for mistake, ‘?!’ for dubious 

move, ‘!?’ for interesting move, ‘!’ for good move and 

‘!!’ for brilliant move may be used while annotating a 

PGN file. 

Elo rating system is widely used in chess to calculate 

an estimate of strength of a player [17,18] and is adopted 

by FIDE. The rating ranges from 2500+ is for most of the 

Grandmasters (GM) and World Champions, 2400-2500 

for International Masters (IM), 2200-2400 for FIDE 

Masters (FM) and Candidate Masters (CM), 1200-2000 

for Class D/C/B/A players while rating below 1200 is for 

novices. 

C.  Tools Used 

For extracting and processing chess games, we used 

Shane’s Chess Information Database (SCID) by Shane 

Hudson [19] on Windows, which is an open source multi-

platform application, written in Tcl/Tk and C++, for 

analyzing huge databases of chess games. While we have 

imported the Example.si4 database of 1,27,811 games 

from ScidBase, we have used a newer tool based on it, 

Steven Atkinson’s SCID vs. PC [20], which has 

improved interface and additional features like capability 

to run engine on pre-defined depth or time. 

Analysis and annotations are done using Universal 

Chess Interface (UCI) based Stockfish [21], which is the 

strongest open source chess engine and is among the top 

engines ever. Chess engine performance is directly 

dependent upon system specifications on which it is 

running, so we used an ASUS ROG G751JY [22] gaming 

laptop having 24 GB RAM, Intel Core i7-4710HQ CPU 

and NVIDIA GeForce GTX 980M GPU which was made 

running continuously with little cool-up breaks for more 

than a week on Stockfish. 

AutoIt v3 [23], a freeware BASIC-like scripting 

language for windows automation, is used to stimulate 

few keystrokes over SCID wherever needed for the 

development phase only and is not used in the final 

implementation code.  

Notepad++ [24] and Bash Scripting [25] with sed [26] 

are used for text-processing. The output of Stockfish is 

converted from PGN format to text one and then is 

streamlined and organized for further processing. For 

example, each line of the output is made to consist of no 

more than one half-move and at least one evaluation 

score should follow the corresponding move in the same 

line. Every line in the output is also made to end with a 

carriage return followed by a line feed in order to process 

the file line-by-line [27, 28, 29]. 

Python [30], an open-source high-level powerful 

language, is used to extract data elements from the text 

file and write it to an excel sheet using the xlsxwriter 

library [31]. Another GNU project, R language [32] is 

used to implement machine learning techniques like 

Linear Regression and Naïve Bayes and to generate 

corresponding tables and graphs. The bar graphs are 

generated using Excel. Excel is also used to perform few 

calculations on the datasets and derive more attributes to 

be used accordingly. 

 

III.  OUR PROJECT 

This section elaborates the process of generating the 

dataset and then calculating corresponding results in 

sequential manner. Authors have extracted the PGN data 

from SCID along with board evaluations with Stockfish 

engine. Then the dataset is parsed using Python and 

parameters are collected in an Excel sheet. Finally, the 

mentioned Machine Learning algorithms are applied over 

the dataset and results are produced. 

A.  Dataset 

We have used the first 10,000 games in the SCID 

ScidBase Example.si4 database. The games are purely 

random with no filters or sorting applied. Filtered 

database like a specific rating range, player or opening 

could also be applied before fetching for generating 

condition-based statistics. In our case, the randomly 

selected games produced variation of moves and game 

related attributes in the dataset and hence would provide 

an “overall picture” when fed to machine learning 

algorithms. Considering the number of games and the 

total number of half-moves played in each of them 

summed up give us 8,40,289 total board positions. A 

board position or setup is technically the picture of the 

chessboard just after a ply including the initial one. 
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B.  Evaluation Score 

The games are then batch annotated from 1 to 10,000 

out of the 1,27,811 in the database. The annotations by 

Stockfish appended the evaluation scores of a move just 

after the half-move notation in the format 1. e4 {[%eval 

0.00]} 1. … e5 to make it easy to process the score 

afterwards. The engine was constantly run on depth 17 i.e. 

engine annotated the calculated score not going beyond 

17 half-moves in the tree to search and calculate the 

board evaluations. Board evaluations or evaluation scores 

indicates the situational advantage at a particular instance 

in respect of white’s perspective in numerical format. A 

positive number indicates that the white is comparatively 

in a better position while a negative number means the 

black side looks in better position. The number is 

numerically related to the material evaluation of different 

chess pieces as 1 for pawn, 3 for a knight or bishop, 5 for 

a rook and 9 for a queen. Besides the material advantage, 

the score also includes the factor of positional and tactical 

advantage. For example, an evaluation of +1.8 roughly 

means white has an advantage of equivalent of 1.8 pawns 

worth of material than black. The database is then 

exported as whole to a 121 MB PGN file. 

C.  Text-processing 

The PGN file is then converted to a text format before 

removing invalid UTF-8 characters. Using bash 

programming and Notepad++, it is then text-processed to 

make it more program-friendly, for example, by adding 

carriage return following a line feed to the end of each 

line, making each line containing no more than one half-

move, appending evaluation score in the same line as of 

the move and removing invalid blank lines finally. The 

games after the 10,000th one are then deleted to generate 

a 26 MB text file which is our final source for generating 

the data points for machine learning algorithms. Using 

Python with the ‘xlsxwriter’ library, data points namely 

move number, move tree, current move, evaluation score, 

opening classification, player ratings and the game result 

is fetched to an excel sheet. Here and in chess, openings 

are the sequence of initial moves and those which are 

considered standard are classified in the Encyclopedia of 

Chess Openings (ELO) [33,34,35]. As the moves were 

taken from hundreds of thousands of games between 

masters since 1966, opening moves among them are still 

employed by most of the players and almost every game 

played now initiates with an opening already defined. 

Players choose to play among these since theories and 

deep analysis over these openings gives them an insight 

of tactical or positional advantage. Our idea is to make 

our algorithm learn from the outcomes and board 

evaluation of these initial moves and then suggest a single 

or sequence of moves for new chess games. Since we are 

interested in finding the relationships between the set of 

initial moves in the database, we have generated different 

datasets according to pre-defined number of half-moves, 

i.e. 10, 15, 20. Most of the openings half-moves range 

from 10 to 20 and on an average, the number of moves 

with exactly the same move tree decreases beyond 15 

half-moves from where the move search tree shrinks to a 

constant or very less move frequencies which having no 

considerable variation would not be suitable for our 

learning algorithms. Although we have used Excel 

formulas and VBA scripting for calculating more of the 

derivable attributes mentioned further, Tcl could also be 

used to interact with SCID vs. PC by following the 

programmer’ reference provided on [36]. We produced 

various dataset related to each combination of 

classification, further described in results. 

D.  Machine Learning 

The generated Comma Separated Values (CSV) files 

from Excel are then fed to machine learning algorithms 

accordingly. Some of the fundamental attributes existing 

in anyone of the datasets are briefly described as: 

 

 Move number: The number denotes the current 

sequence number of the played move by one side. 

When we say that we are using a 20-move dataset or 

that the engine is running on depth 20, we mean 

about the total number of half-moves or ply whereas 

the attribute in the dataset denotes the move 

sequence corresponding to a side. Note that the PGN 

format also doesn’t mention half-moves. Move 

classification is also used in another column that 

appends letter ‘a’ for white’s ply and ‘b’ for black’s 

ply to the numerical move number. 

 Move details: It denotes the move details with the 

move number in algebraic notation. The move detail 

can be only about the current move or can contain 

previous move sequences too. For the former one, 

we implement the Markov Decision process [37] i.e. 

the algorithm only considers about the current move 

and not the past ones. Although, this is a very 

general approach and can be a conflicting attribute 

for some cases, it is still the most optimal one. The 

latter one considers all of the previous moves that 

made it to the current move which grows 

sequentially with the move numbers since all of the 

previous moves are appended before the current 

move. This approach finds exact move sequences 

and is a more specific case for the evaluations but 

requires more space and time for computations. 

 ECO: Chess Opening classification by Encyclopedia 

of Chess. The classification is based on the moves 

played that correspond to one of the openings 

defined in the ECO. 

 ELO: FIDE Elo rating of the player on one side 

according to the move classification. 

 Result: The game outcome – 0 for black win, 1 for 

white win and 0.5 for draw. 

 Evaluation score: Pre-computed move evaluation 

score by Stockfish engine running on depth 17. 

 Winning score: The winning score is calculated by 

calculating the weighted sum of the number of 

games won and/or draw by playing a move divided 

by the total number of moves in consideration. The 

total number of moves can be either accounted from 
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the whole database of ScidBase or only the 

considered subset. 

 

There are also derived attributes in the Excel sheet that 

are calculated from the basic ones. They are mentioned as 

per usage in Section IV. These datasets are accordingly 

used in the techniques as per the implementation. The 

implementation for each of the technique is briefly 

described as follows: 

 

 Multi-variate Linear Regression: For this technique, 

mainly two classes of datasets are used. First one is 

the additionally generated 1002-move dataset 

extracted from the first 183 games in ScidBase for 

experimental basis. The move details in this dataset 

doesn’t contain the previous move sequence but 

only the current move, hence, implements Markov 

decision process. Also, the winning score is 

extracted from the ‘Tree Search’ of SCID which is 

calculated with respect to the total number of 

games in the database i.e. 1,27,811. The second 

class consists of three datasets of 10,000 games 

generated by code with move sequences restricted 

to 10, 15 and 20 half-moves in each game. The 

different sets of attributes are compared with 

respect to their p-values and indicated significance. 

A comparison for features like standard error and 

confidence value between the result all of these 

datasets is also generated.  

 Naïve Bayes Classification: Different combinations 

of attributes are analyzed and the comparisons 

between all of the sets are made. The validation is 

done on 20% of the datasets in each of the three 

datasets mentioned above. Accuracies for each 

combination are compared. The same set of three 

datasets is used here as well but new discrete 

attributes are derived from the initial ones to make 

classifications possible. The derived attributes are 

described in Section IV in relation with the 

implementation. 

 

IV.  RESULTS 

This section describes and interprets the result 

generated through the implemented techniques. Results 

are sub-divided corresponding to the different machine 

learning techniques used. 

A.  Multi-variate Linear Regression 

Considering the basic set of 1002 moves, a relationship 

between the game outcome and the numerical variables 

like move number, evaluation score and winning score is 

developed. This model, as mentioned before, follows 

Markov Decision process and only considers the current 

state of the game. Considering winning score (win_score) 

and evaluation score (eval) only as predictor variables, p-

value for winning score comes to be around zero (2e-16) 

on 997 degrees of freedom. The residuals depict the error 

between actual and predicted values in Fig. 1. The 

equation of the generated relation is 

 
1.017448

0.004601 0.012608

* _

*

result win score

eval



 
 (1) 

 

with R2 
= 0.2349. 

 

 

Fig.1. Residuals vs Fitted (with no move number) 

This denotes that past data for outcomes of games with 

similar subset of move sequences do have a strong 

statistical relationship with current game result, at least, 

in the ScidBase dataset. Also, the prediction for draw is 

very much accurate for this dataset while the prediction 

values for white win has a large standard error than the 

black win. On using the same dataset on single predictor 

value of winning score, the graph comes out to be similar 

as Fig. 1 and there’s only a difference of 0.0002 in R2. 

When move number (move_no) is added as a predictor 

variable, the p-value for this variable comes out to be 

0.00995 which indicates that the relationship is fairly 

dependent on the move sequences too. Again, the residual 

error is least for draws. The equation is now given by 

 

 

0.999787

0.011369

0.007488 0.006512

* _

*

* _

result win score

eval

move no





 

 (2) 

 

with R2 
= 0.2349 which indicates the slope coefficient of 

evaluation score is negative which should not be the case 

as for a positive change in result, evaluation score should 

increase with respect to white side. This could mean that 

in spite of deep evaluation scoring by computers, the 

game outcomes have a considerable probability for 

favoring the opposite side too. On removing the eval 

variable from this now increases the p-value of move_no 

variable to 0.0129 and R2 is again only reduced by 0.0005 

to 0.2282. We get the p-value for eval when it is the only 

predictor variable as 0.662 which is very large in order to 

reject the null hypothesis.  On adding move_no with eval 

now, we get R
2
 = 0.005185 and the residual graph as 

depicted in Fig. 2. 
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Fig.2. Residuals vs Fitted (with eval and move_no) 

The second class of dataset consists of complete move 

sequences and winning score is now calculated with 

respect to the dataset only. The formula for calculating 

winning score, win_score, for a move is the weighted 

sum of number of games with white win, nwhite, and with 

draw, ndraw, on playing the exact move sequence divided 

by the total number of games with the same move 

sequence and is given by (3) as: 

 

 
0.51* *

_
white draw

white draw black

n n
win score

n n n




 
            (3) 

 

On using winning score as the single predictor variable 

in 10-moves dataset it was observed that the residuals are 

minimum for fitted values between 0 to 0.2 (black win) 

and 0.8 to 1.0 (white win). Also, the prediction values 

corresponding to draw (0.5) are again good. The graph is 

no different from this when another predictor variable, 

eval, is added. Same is the case with further adding 

move_no with also no change in residual standard error 

and R-squared. With eval as the only predictor variable, 

R2 = 0.001261. Here again adding move_no gives no 

change. On processing regression on 15-moves and 20-

moves data-set, the residuals were seen getting closer to 

zero in either side of the game result (black and white win) 

with increasing in the limit of considered moves while a 

more linear relation is being developed in the draw region 

as depicted in Fig. 3 for 20-moves. 

The variable change in residual standard error and R-

squared is similar to the 10-move case. A comparison 

between these values is also depicted in Fig. 4 and Fig. 5 

where W,WE, WEM, E, EM denotes the combination of 

predictor variables used as W for winning score, E for 

evaluation score, M for move number. The 20-moves 

dataset consisted of 2,16,315 number of rows i.e. the 

algorithm learnt through these number of board positions. 

Beyond these number of moves, the dataset would have 

moves with very low number of similar moves, hence, 

less variation.  

 

Fig.3. Residuals vs Fitted (20-moves) 

 

 

B.  Naïve Bayes Classification 

The classification using different combinations of 

attributes is tested for their accuracies. The validation is 

done on 20% of the dataset. Some new attributes are 

defined and derived from the existing ones for this 

classification. Since techniques based on classification 

uses discrete data elements, attributes like evaluations 

and winning score are modified accordingly. The derived 

variables namely eval_bin and win_bin can now be 

classified into three classes numerically similar to the 

result. The value for the variable eval_bin is derived 

using eval and is calculated as follows: 

 

Fig.5. R-squared 

 

Fig.4. Residual Standard Error 
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0,      0

_ 0.5,   0

1,      0

eval

eval bin eval

eval




 
 

                   (4) 

 

while variable win_bin is calculated using win_score as: 

 

0,      win_score 0.5

_ 0.5,   win_score 0.5

1,      win_score > 0.5

win bin




 



              (5) 

 

The accuracies of result prediction for the validation 

set are compared for different combinations of attributes 

and different datasets. Some of them are depicted in Fig. 

6. Here W refers to win_bin, E to eval_bin, D to move 

sequence and C to ECO classification while M refers to 

the same as move_no. The accuracies for 20-moves 

dataset are higher for all combinations but the 

combinations of (win_bin, eval, ECO, move_no) and 

(eval, move_no). The latter one produced the same 

accuracy for each dataset. Removing or adding eval 

didn’t affect the accuracies in most cases. 20-moves 

dataset produced most of the accuracies above 60% while 

all the datasets were able to produce more than 50% 

accuracy in almost every combination. The highest 

accuracy of 66.91 is achieved when ECO and win_score 

are used for classification. Just like the regression 

technique, this also indicates the significance of past data 

in prediction. 

 

 

Fig.6. Accuracies of classification 

 

V.  CONCLUSION 

The results indicated a high significance of winning 

scores in predicting the outcomes of games. Other 

attributes like move number and opening classification 

performed fairly as well. By using move number and 

move sequences in classification, they remove the 

ambiguity of considering different game trees that lead to 

same current move. Variable associated with ECO can be 

used to classify different openings one of which could 

possibly be followed. The dataset was observed to 

provide better classification accuracies when increasing 

the limit on number of half-moves considered in each 

game. We have used only a small fraction of total 

available game database and we assume that accuracies 

can be further improved with using larger database for the 

described techniques. More precise classifications can 

also be developed with larger datasets and more number 

of different attributes. Chess engines of the current 

generation also consider opening and theory books for 

faster board evaluation. However, on devices with low 

computational power and memory, the proposed 

regression techniques can take decisions immediately 

once learning is done since post learning, it only needs to 

predict the outcome using numerical scores which are 

very efficiently solved even by common computers. 

Cloud computing can also be used to learn and classify 

data and to predict results or suggest moves afterwards. 

As mentioned in the introduction section, following the 

winning score approach in the versus-computer game, 

white won 20% of the games drawing the rest while black 

tied in 20% of another game set losing the rest. Once the 

frequency threshold (the minimum number of past games 

that have to be in record for following the approach, here 

10) is reached, the game was finished by same engine 

strength on both sides and the outcome was noted. Due to 

first move advantage [23] for white in chess, white has a 

winning score of 54.95% as calculated from a huge 

database mentioned in [24]. Considering this theory, the 

winning scores as a significant parameter for determining 

outcome performed well on black side too. This way the 

decision for the next move is taken immediately at least 

for the initial moves. A significant amount of time on the 

side of implementation is also reduced and the residual 

time can be used in mid-games or end-games in time-

bound matches. In faster versions of gameplays like 

Bullet Chess which lasts for few minutes only, optimal 

move prediction in less time is required more than 

determining the best move which takes considerable 

amount of time. Winning score can determine the optimal 

move immediately while saving the remaining for later 

complex board positions. Since the implemented 

algorithm in this paper is much generalized with respect 

to chess trees and gameplay, we would be working on 

complex implementations on similar approach proposed 

here. 
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