
I.J. Information Engineering and Electronic Business, 2018, 4, 25-32
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2018.04.04

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

Statistical Analysis on Result Prediction in Chess

Paras Lehana
Department of Computer Science and Engineering, Jaypee Institute of Information Technology,

Noida, 201304, India

Email: paras.lehana@gmail.com

Sudhanshu Kulshrestha, Nitin Thakur and Pradeep Asthana
Department of Computer Science and Engineering, Jaypee Institute of Information Technology,

Noida, 201304, India

Email: sudhanshu.kulshrestha@jiit.ac.in, {nitinthakur5654, pradeepasthana25}@gmail.com

Received: 13 November 2017; Accepted: 19 January 2018; Published: 08 July 2018

Abstract—In this paper, authors have proposed a

technique which uses the existing database of chess

games and machine learning algorithms to predict the

game results. Authors have also developed various

relationships among different combinations of attributes

like half-moves, move sequence, chess engine evaluated

score, opening sequence and the game result. The

database of 10,000 actual chess games, imported and

processed using Shane’s Chess Information Database

(SCID), is annotated with evaluation score for each half-

move using Stockfish chess engine running constantly on

depth 17. This provided us with a total of 8,40,289 board

evaluations. The idea is to make the Multi-Variate Linear

Regression algorithm learn from these evaluation scores

for same sequence of opening moves and game outcome,

then using it to calculate the winning score of a side for

each possible move and thus suggesting the move with

highest score. The output is also tested with including

move details. Game attributes are also classified into

classes. Using Naïve Bayes classification, the data result

is classified into three classes namely move preferable to

white, black or a tie and then the data is validated on 20%

of the dataset to determine accuracies for different

combinations of considered attributes.

Index Terms—Chess, SCID, Chess Engine, PGN,

Machine Learning, Linear Regression, Naïve Bayes

I. INTRODUCTION

Chess Engines with ever increasing high computational

power can now evaluate moves to more depth in less time.

However, most of the initial moves and opening

combinations have already been played since the

invention of Chess. With more than 9.3 million chess

games data available [1], we can make Chess Engines

learn from the previously played games and the game

outcomes, thereby increasing its efficiency wherever

needed as per the capacity of underlying hardware and

computing resource. Board evaluations for each half-

move have been done with a depth of 17 for all games.

This much depth would take only few seconds in

calculating board evaluations on most of the personal

computers while winning scores could be fetched using

past data. The depth can be adjusted according to the

computational power of the computer. This produces the

value of parameters for our algorithm faster and hence,

the final decision factor is generated immediately without

going deep into the search tree. Our approach for

predicting the game winning probabilities is based on

generating a linear relation between the taken response

variable of game result and different set of predictor

variables like evaluation and winning score of moves.

Decision for playing which of the possible next moves

could be made faster in Versus Computer games

especially in fast modes like Bullet Chess.

Using different attributes related to a particular game,

for example move sequence, move number, game result,

opening move classification, half-moves played by white

or black and the corresponding engine evaluations, a set

of relations between these could be developed. Using the

classification and statistical relationship among attributes,

a sequence of best opening moves can be classified for

both white and black. These relations could help chess

players and engines to develop more winning strategies

accordingly.

We have used 10,000 annotated games in Portable

Game Notation (PGN) format and created three different

datasets of 10-moves, 15-moves and 20-moves to analyse

the effect of increasing the number of moves considered

in each game on accuracy and relationship.

The regression model indicates a high dependency of

past game outcomes on result prediction. Board

evaluations doesn’t seem to be playing a major role in

predicting the game outcomes while move sequence

number becomes a fair predictor variable whenever used.

Thus, past data can play a significant role in suggesting

moves and could be incorporated in chess playing and

statistical tools. The classification model provided the

highest accuracy of 66.91% when two attributes namely

opening sequence and winning score are considered in

the 20-moves dataset. The evaluation scores didn’t affect

the accuracies much here as well. Since the winning score

variable comes to be a significant predictor, we used

winning score as the deciding factor for initial moves

mailto:paras.lehana@gmail.com
mailto:sudhanshu.kulshrestha@jiit.ac.in
mailto:nitinthakur5654@gmail.com
mailto:pradeepasthana25@gmail.com

26 Statistical Analysis on Result Prediction in Chess

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

with frequency threshold of 10 games and played 20

versus-computer games being on each side. After the

threshold, the games were made to be finished by the

same engine on both sides.

Section II describes the current research work done on

similar approaches; basics and nomenclature of chess so

that the reader could relate with the terminology used in

the text; and the brief description of the tools used by the

authors. Section III explains the project implementation

in sequential order of usage. It also explains the usage of

dataset, engine evaluation score, text-processing and then

the implementation of machine learning algorithms over

the dataset. The Section IV mentions about the generated

results and their implication with the project. Section V

presents the conclusion of our current research work.

II. RELATED WORKS

This section discusses about the related works and

background study the authors have referred to before and

during the project. Additionally, this section includes

basics and nomenclature regarding chess and the software

and hardware tools used by the authors to evaluate and

generate results.

A. Research Work

Garry Kasparov, former World Chess Champion,

mentions in [2] that there are 1040 number of legal chess

positions while the number of different possible games is

10120. As described in [3], the possible chess positions

after white’s first move is only 20 while it grows to 400

after black’s first move. After just 6 moves, there are

91,32,484 total possible board positions. Thus, it’s not

practically possible to make any chess tool learn about

the results of every possible combination of chess games.

This makes chess a great domain of research for Artificial

Intelligence (AI) and Machine Learning.

As described in Section I, the proposed algorithm is

rather a very general implementation while there have

been plenty of research work done on similar approaches.

In [4], NeuroChess learns to play chess from the final

outcomes of games using temporal difference learning [5],

inductive neural network and a neural network version of

explanation-based learning [6]. The model is trained

using a database of 1,20,000 expert games before making

NeuroChess learn an evaluation function. On using the

same search engine NeuroChess won approximately 13%

of all games against GNU-Chess [7], however, it still

played incredibly poor openings which are usually

responsible for a lower positional or tactical benefit for

future moves. While discovering a great research

direction for chess, the author also mentions that the level

of play still compares poorly to GNU-Chess and human

chess players and that NeuroChess still faces problems

like limitation of training time. It spends most of its time

computing board evaluations. Another machine learning

technique, reinforcement learning, is used in [8] on the

results of high-level database games.

The huge chess database available online [1] provided

us with a considerable fraction of possible and legal

expert games and this could be made a huge dataset for

learning algorithms. Hence, we have also referred to

different approaches to predict moves that use past data

of chess games. A three-layer Convolutional Neural

Network (CNN) in [9] is used to make predictions using

20,000 games from Free Internet Chess Server. In chess

frame, search space tree of chess increases exponentially

with progression in game which make chess engine to

take more time for board evaluations on same depths.

CNN reduced the intractable class space in chess by

square root by breaking down the task in a piece-selector

CNN and a move-selector CNN. Using 8:2 training to

validation ratio, the piece selector network produced

38.3% accuracy while the move-selector network

performed at 52.20%, 29.25%, 56.15%, 40.54%, 26.52%

and 47.29% for the pawn, rook, knight, bishop, queen,

and king respectively. The model was played against

Sunfish Chess Engine drawing 26% games. Author

mentions that the model is adept at characterizing short-

term piece captures.

Playing the game of chess has two broad approaches

namely tactical and positional game-play. The former one

is based on employing tactics based on short-term

opportunities which is generally an open board gameplay

in chess and is mainly employed by chess engines by

searching game trees to depths typically between 20 and

30 moves with move variations. Positional play, usually a

closed game in chess, requires judgement more than

calculations and human play is a combination of both

since humans have some intuition about better board

positions too. A proposed supervised machine learning

technique in [10] used a total of 10,75,137 board

positions from 6200 games to model the board as network

of interacting pieces. The learning was made to identity

elements of positional play and predict game outcomes

which could be incorporated in chess engines to improve

their performance. The results depict the classification

accuracy to be better than the engine baseline for low

evaluation scores, x, with the intercepting occurring on x

= 0.35. This demonstrated that engine might lack

important positional insights and that there is a great

scope for AI in chess engines.

Most of the previous research work is based on making

a program learn chess and thus, building a chess playing

tool whereas our main focus lies on predicting values in

interest of a human player or incorporating this in

addition to the existing chess engines.

B. Chess – Basics & Nomeclature

Chess is a two-player strategy board game played on

an 8x8 grid chessboard [11] initially having a total of 16

pieces of 6 types on each side. A ply refers to one turn

taken by one of the players and is referred as a half-move

in chess.

There are several types of chess notations [12] to

record and describe moves and related game data. Among

these, algebraic chess notation [13] is widely used. It is

now a standard notation recognized by World Chess

Federation (FIDE) as mentioned by the federation in [14].

It is based on a system of coordinates to uniquely identify

 Statistical Analysis on Result Prediction in Chess 27

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

each square on the board. The pieces other than pawns

are named as K, Q, R, B, and N for king, queen, rook,

bishop and knight respectively. The moves are

represented by the piece notation concatenated with the

coordinate of destination square. The vertical squares or

files from white’s left are labelled a through h while the

horizontal rows of ranks are numbered 1 to 8 starting

from white’s side. Thus, for example, Nf3 indicates a

move by knight to square f3. The captures are indicated

by an ‘x’ inserted immediately before the destination

square, for example, in Bxf3. If there are more than one

identical piece which can move to the same square, the

moving piece is identified by the inserting file of

departure, rank of departure or both in descending order

of preference and depending upon the situation, for

example, in Ngf3 which indicates that the knight on file g

is moved to f3. Castling is indicated by using uppercase

letter O as O-O for kingside and O-O-O for queenside.

Checks are depicted by ‘+’ appended after the move

notation. End of the game or result is indicated by 1-0 for

white win, 0-1 for black win and ½-½ for a draw.

Sequence of moves with annotations like evaluation

scores or comments are written with move numbers for

white and followed by ellipsis (…) for black while the

comments and annotations are enclosed in braces, for

example, in the notation 1. e4 {King’s opening} 1. … e5.

Chess games are often stored in computer files using

Portable Game Notations (PGN) which uses the same

algebraic notation with additional markings and this

plain-text format is computer-processible and supported

by many chess programs. Refer to [15] for an example of

a game recorded using PGN format. Annotation symbols

[16] like ‘??’ for blunder, ‘?’ for mistake, ‘?!’ for dubious

move, ‘!?’ for interesting move, ‘!’ for good move and

‘!!’ for brilliant move may be used while annotating a

PGN file.

Elo rating system is widely used in chess to calculate

an estimate of strength of a player [17,18] and is adopted

by FIDE. The rating ranges from 2500+ is for most of the

Grandmasters (GM) and World Champions, 2400-2500

for International Masters (IM), 2200-2400 for FIDE

Masters (FM) and Candidate Masters (CM), 1200-2000

for Class D/C/B/A players while rating below 1200 is for

novices.

C. Tools Used

For extracting and processing chess games, we used

Shane’s Chess Information Database (SCID) by Shane

Hudson [19] on Windows, which is an open source multi-

platform application, written in Tcl/Tk and C++, for

analyzing huge databases of chess games. While we have

imported the Example.si4 database of 1,27,811 games

from ScidBase, we have used a newer tool based on it,

Steven Atkinson’s SCID vs. PC [20], which has

improved interface and additional features like capability

to run engine on pre-defined depth or time.

Analysis and annotations are done using Universal

Chess Interface (UCI) based Stockfish [21], which is the

strongest open source chess engine and is among the top

engines ever. Chess engine performance is directly

dependent upon system specifications on which it is

running, so we used an ASUS ROG G751JY [22] gaming

laptop having 24 GB RAM, Intel Core i7-4710HQ CPU

and NVIDIA GeForce GTX 980M GPU which was made

running continuously with little cool-up breaks for more

than a week on Stockfish.

AutoIt v3 [23], a freeware BASIC-like scripting

language for windows automation, is used to stimulate

few keystrokes over SCID wherever needed for the

development phase only and is not used in the final

implementation code.

Notepad++ [24] and Bash Scripting [25] with sed [26]

are used for text-processing. The output of Stockfish is

converted from PGN format to text one and then is

streamlined and organized for further processing. For

example, each line of the output is made to consist of no

more than one half-move and at least one evaluation

score should follow the corresponding move in the same

line. Every line in the output is also made to end with a

carriage return followed by a line feed in order to process

the file line-by-line [27, 28, 29].

Python [30], an open-source high-level powerful

language, is used to extract data elements from the text

file and write it to an excel sheet using the xlsxwriter

library [31]. Another GNU project, R language [32] is

used to implement machine learning techniques like

Linear Regression and Naïve Bayes and to generate

corresponding tables and graphs. The bar graphs are

generated using Excel. Excel is also used to perform few

calculations on the datasets and derive more attributes to

be used accordingly.

III. OUR PROJECT

This section elaborates the process of generating the

dataset and then calculating corresponding results in

sequential manner. Authors have extracted the PGN data

from SCID along with board evaluations with Stockfish

engine. Then the dataset is parsed using Python and

parameters are collected in an Excel sheet. Finally, the

mentioned Machine Learning algorithms are applied over

the dataset and results are produced.

A. Dataset

We have used the first 10,000 games in the SCID

ScidBase Example.si4 database. The games are purely

random with no filters or sorting applied. Filtered

database like a specific rating range, player or opening

could also be applied before fetching for generating

condition-based statistics. In our case, the randomly

selected games produced variation of moves and game

related attributes in the dataset and hence would provide

an “overall picture” when fed to machine learning

algorithms. Considering the number of games and the

total number of half-moves played in each of them

summed up give us 8,40,289 total board positions. A

board position or setup is technically the picture of the

chessboard just after a ply including the initial one.

28 Statistical Analysis on Result Prediction in Chess

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

B. Evaluation Score

The games are then batch annotated from 1 to 10,000

out of the 1,27,811 in the database. The annotations by

Stockfish appended the evaluation scores of a move just

after the half-move notation in the format 1. e4 {[%eval

0.00]} 1. … e5 to make it easy to process the score

afterwards. The engine was constantly run on depth 17 i.e.

engine annotated the calculated score not going beyond

17 half-moves in the tree to search and calculate the

board evaluations. Board evaluations or evaluation scores

indicates the situational advantage at a particular instance

in respect of white’s perspective in numerical format. A

positive number indicates that the white is comparatively

in a better position while a negative number means the

black side looks in better position. The number is

numerically related to the material evaluation of different

chess pieces as 1 for pawn, 3 for a knight or bishop, 5 for

a rook and 9 for a queen. Besides the material advantage,

the score also includes the factor of positional and tactical

advantage. For example, an evaluation of +1.8 roughly

means white has an advantage of equivalent of 1.8 pawns

worth of material than black. The database is then

exported as whole to a 121 MB PGN file.

C. Text-processing

The PGN file is then converted to a text format before

removing invalid UTF-8 characters. Using bash

programming and Notepad++, it is then text-processed to

make it more program-friendly, for example, by adding

carriage return following a line feed to the end of each

line, making each line containing no more than one half-

move, appending evaluation score in the same line as of

the move and removing invalid blank lines finally. The

games after the 10,000th one are then deleted to generate

a 26 MB text file which is our final source for generating

the data points for machine learning algorithms. Using

Python with the ‘xlsxwriter’ library, data points namely

move number, move tree, current move, evaluation score,

opening classification, player ratings and the game result

is fetched to an excel sheet. Here and in chess, openings

are the sequence of initial moves and those which are

considered standard are classified in the Encyclopedia of

Chess Openings (ELO) [33,34,35]. As the moves were

taken from hundreds of thousands of games between

masters since 1966, opening moves among them are still

employed by most of the players and almost every game

played now initiates with an opening already defined.

Players choose to play among these since theories and

deep analysis over these openings gives them an insight

of tactical or positional advantage. Our idea is to make

our algorithm learn from the outcomes and board

evaluation of these initial moves and then suggest a single

or sequence of moves for new chess games. Since we are

interested in finding the relationships between the set of

initial moves in the database, we have generated different

datasets according to pre-defined number of half-moves,

i.e. 10, 15, 20. Most of the openings half-moves range

from 10 to 20 and on an average, the number of moves

with exactly the same move tree decreases beyond 15

half-moves from where the move search tree shrinks to a

constant or very less move frequencies which having no

considerable variation would not be suitable for our

learning algorithms. Although we have used Excel

formulas and VBA scripting for calculating more of the

derivable attributes mentioned further, Tcl could also be

used to interact with SCID vs. PC by following the

programmer’ reference provided on [36]. We produced

various dataset related to each combination of

classification, further described in results.

D. Machine Learning

The generated Comma Separated Values (CSV) files

from Excel are then fed to machine learning algorithms

accordingly. Some of the fundamental attributes existing

in anyone of the datasets are briefly described as:

 Move number: The number denotes the current

sequence number of the played move by one side.

When we say that we are using a 20-move dataset or

that the engine is running on depth 20, we mean

about the total number of half-moves or ply whereas

the attribute in the dataset denotes the move

sequence corresponding to a side. Note that the PGN

format also doesn’t mention half-moves. Move

classification is also used in another column that

appends letter ‘a’ for white’s ply and ‘b’ for black’s

ply to the numerical move number.

 Move details: It denotes the move details with the

move number in algebraic notation. The move detail

can be only about the current move or can contain

previous move sequences too. For the former one,

we implement the Markov Decision process [37] i.e.

the algorithm only considers about the current move

and not the past ones. Although, this is a very

general approach and can be a conflicting attribute

for some cases, it is still the most optimal one. The

latter one considers all of the previous moves that

made it to the current move which grows

sequentially with the move numbers since all of the

previous moves are appended before the current

move. This approach finds exact move sequences

and is a more specific case for the evaluations but

requires more space and time for computations.

 ECO: Chess Opening classification by Encyclopedia

of Chess. The classification is based on the moves

played that correspond to one of the openings

defined in the ECO.

 ELO: FIDE Elo rating of the player on one side

according to the move classification.

 Result: The game outcome – 0 for black win, 1 for

white win and 0.5 for draw.

 Evaluation score: Pre-computed move evaluation

score by Stockfish engine running on depth 17.

 Winning score: The winning score is calculated by

calculating the weighted sum of the number of

games won and/or draw by playing a move divided

by the total number of moves in consideration. The

total number of moves can be either accounted from

 Statistical Analysis on Result Prediction in Chess 29

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

the whole database of ScidBase or only the

considered subset.

There are also derived attributes in the Excel sheet that

are calculated from the basic ones. They are mentioned as

per usage in Section IV. These datasets are accordingly

used in the techniques as per the implementation. The

implementation for each of the technique is briefly

described as follows:

 Multi-variate Linear Regression: For this technique,

mainly two classes of datasets are used. First one is

the additionally generated 1002-move dataset

extracted from the first 183 games in ScidBase for

experimental basis. The move details in this dataset

doesn’t contain the previous move sequence but

only the current move, hence, implements Markov

decision process. Also, the winning score is

extracted from the ‘Tree Search’ of SCID which is

calculated with respect to the total number of

games in the database i.e. 1,27,811. The second

class consists of three datasets of 10,000 games

generated by code with move sequences restricted

to 10, 15 and 20 half-moves in each game. The

different sets of attributes are compared with

respect to their p-values and indicated significance.

A comparison for features like standard error and

confidence value between the result all of these

datasets is also generated.

 Naïve Bayes Classification: Different combinations

of attributes are analyzed and the comparisons

between all of the sets are made. The validation is

done on 20% of the datasets in each of the three

datasets mentioned above. Accuracies for each

combination are compared. The same set of three

datasets is used here as well but new discrete

attributes are derived from the initial ones to make

classifications possible. The derived attributes are

described in Section IV in relation with the

implementation.

IV. RESULTS

This section describes and interprets the result

generated through the implemented techniques. Results

are sub-divided corresponding to the different machine

learning techniques used.

A. Multi-variate Linear Regression

Considering the basic set of 1002 moves, a relationship

between the game outcome and the numerical variables

like move number, evaluation score and winning score is

developed. This model, as mentioned before, follows

Markov Decision process and only considers the current

state of the game. Considering winning score (win_score)

and evaluation score (eval) only as predictor variables, p-

value for winning score comes to be around zero (2e-16)

on 997 degrees of freedom. The residuals depict the error

between actual and predicted values in Fig. 1. The

equation of the generated relation is

1.017448

0.004601 0.012608

* _

*

result win score

eval

 (1)

with R2
= 0.2349.

Fig.1. Residuals vs Fitted (with no move number)

This denotes that past data for outcomes of games with

similar subset of move sequences do have a strong

statistical relationship with current game result, at least,

in the ScidBase dataset. Also, the prediction for draw is

very much accurate for this dataset while the prediction

values for white win has a large standard error than the

black win. On using the same dataset on single predictor

value of winning score, the graph comes out to be similar

as Fig. 1 and there’s only a difference of 0.0002 in R2.

When move number (move_no) is added as a predictor

variable, the p-value for this variable comes out to be

0.00995 which indicates that the relationship is fairly

dependent on the move sequences too. Again, the residual

error is least for draws. The equation is now given by

0.999787

0.011369

0.007488 0.006512

* _

*

* _

result win score

eval

move no

 (2)

with R2
= 0.2349 which indicates the slope coefficient of

evaluation score is negative which should not be the case

as for a positive change in result, evaluation score should

increase with respect to white side. This could mean that

in spite of deep evaluation scoring by computers, the

game outcomes have a considerable probability for

favoring the opposite side too. On removing the eval

variable from this now increases the p-value of move_no

variable to 0.0129 and R2 is again only reduced by 0.0005

to 0.2282. We get the p-value for eval when it is the only

predictor variable as 0.662 which is very large in order to

reject the null hypothesis. On adding move_no with eval

now, we get R
2
 = 0.005185 and the residual graph as

depicted in Fig. 2.

30 Statistical Analysis on Result Prediction in Chess

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

Fig.2. Residuals vs Fitted (with eval and move_no)

The second class of dataset consists of complete move

sequences and winning score is now calculated with

respect to the dataset only. The formula for calculating

winning score, win_score, for a move is the weighted

sum of number of games with white win, nwhite, and with

draw, ndraw, on playing the exact move sequence divided

by the total number of games with the same move

sequence and is given by (3) as:

0.51* *

_
white draw

white draw black

n n
win score

n n n

 (3)

On using winning score as the single predictor variable

in 10-moves dataset it was observed that the residuals are

minimum for fitted values between 0 to 0.2 (black win)

and 0.8 to 1.0 (white win). Also, the prediction values

corresponding to draw (0.5) are again good. The graph is

no different from this when another predictor variable,

eval, is added. Same is the case with further adding

move_no with also no change in residual standard error

and R-squared. With eval as the only predictor variable,

R2 = 0.001261. Here again adding move_no gives no

change. On processing regression on 15-moves and 20-

moves data-set, the residuals were seen getting closer to

zero in either side of the game result (black and white win)

with increasing in the limit of considered moves while a

more linear relation is being developed in the draw region

as depicted in Fig. 3 for 20-moves.

The variable change in residual standard error and R-

squared is similar to the 10-move case. A comparison

between these values is also depicted in Fig. 4 and Fig. 5

where W,WE, WEM, E, EM denotes the combination of

predictor variables used as W for winning score, E for

evaluation score, M for move number. The 20-moves

dataset consisted of 2,16,315 number of rows i.e. the

algorithm learnt through these number of board positions.

Beyond these number of moves, the dataset would have

moves with very low number of similar moves, hence,

less variation.

Fig.3. Residuals vs Fitted (20-moves)

B. Naïve Bayes Classification

The classification using different combinations of

attributes is tested for their accuracies. The validation is

done on 20% of the dataset. Some new attributes are

defined and derived from the existing ones for this

classification. Since techniques based on classification

uses discrete data elements, attributes like evaluations

and winning score are modified accordingly. The derived

variables namely eval_bin and win_bin can now be

classified into three classes numerically similar to the

result. The value for the variable eval_bin is derived

using eval and is calculated as follows:

Fig.5. R-squared

Fig.4. Residual Standard Error

 Statistical Analysis on Result Prediction in Chess 31

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

0, 0

_ 0.5, 0

1, 0

eval

eval bin eval

eval

 (4)

while variable win_bin is calculated using win_score as:

0, win_score 0.5

_ 0.5, win_score 0.5

1, win_score > 0.5

win bin

 (5)

The accuracies of result prediction for the validation

set are compared for different combinations of attributes

and different datasets. Some of them are depicted in Fig.

6. Here W refers to win_bin, E to eval_bin, D to move

sequence and C to ECO classification while M refers to

the same as move_no. The accuracies for 20-moves

dataset are higher for all combinations but the

combinations of (win_bin, eval, ECO, move_no) and

(eval, move_no). The latter one produced the same

accuracy for each dataset. Removing or adding eval

didn’t affect the accuracies in most cases. 20-moves

dataset produced most of the accuracies above 60% while

all the datasets were able to produce more than 50%

accuracy in almost every combination. The highest

accuracy of 66.91 is achieved when ECO and win_score

are used for classification. Just like the regression

technique, this also indicates the significance of past data

in prediction.

Fig.6. Accuracies of classification

V. CONCLUSION

The results indicated a high significance of winning

scores in predicting the outcomes of games. Other

attributes like move number and opening classification

performed fairly as well. By using move number and

move sequences in classification, they remove the

ambiguity of considering different game trees that lead to

same current move. Variable associated with ECO can be

used to classify different openings one of which could

possibly be followed. The dataset was observed to

provide better classification accuracies when increasing

the limit on number of half-moves considered in each

game. We have used only a small fraction of total

available game database and we assume that accuracies

can be further improved with using larger database for the

described techniques. More precise classifications can

also be developed with larger datasets and more number

of different attributes. Chess engines of the current

generation also consider opening and theory books for

faster board evaluation. However, on devices with low

computational power and memory, the proposed

regression techniques can take decisions immediately

once learning is done since post learning, it only needs to

predict the outcome using numerical scores which are

very efficiently solved even by common computers.

Cloud computing can also be used to learn and classify

data and to predict results or suggest moves afterwards.

As mentioned in the introduction section, following the

winning score approach in the versus-computer game,

white won 20% of the games drawing the rest while black

tied in 20% of another game set losing the rest. Once the

frequency threshold (the minimum number of past games

that have to be in record for following the approach, here

10) is reached, the game was finished by same engine

strength on both sides and the outcome was noted. Due to

first move advantage [23] for white in chess, white has a

winning score of 54.95% as calculated from a huge

database mentioned in [24]. Considering this theory, the

winning scores as a significant parameter for determining

outcome performed well on black side too. This way the

decision for the next move is taken immediately at least

for the initial moves. A significant amount of time on the

side of implementation is also reduced and the residual

time can be used in mid-games or end-games in time-

bound matches. In faster versions of gameplays like

Bullet Chess which lasts for few minutes only, optimal

move prediction in less time is required more than

determining the best move which takes considerable

amount of time. Winning score can determine the optimal

move immediately while saving the remaining for later

complex board positions. Since the implemented

algorithm in this paper is much generalized with respect

to chess trees and gameplay, we would be working on

complex implementations on similar approach proposed

here.

REFERENCES

[1] About page of Chess-DB.com, biggest online chess

database https://chess-db.com/public/about.html accessed

on April 2017

[2] The Chess Master and the Computer by Garry Kasparov,

The New York Review of Books

http://www.nybooks.com/articles/2010/02/11/the-chess-

master-and-the-computer/ accessed on April 2017

[3] Mathematics and chess, Chess.com

https://www.chess.com/chessopedia/view/mathematics-

and-chess accessed on April 2017

[4] Thrun, Sebastian. "Learning to play the game of chess."

Advances in neural information processing systems 7

(1995).

[5] Sutton, Richard S. "Learning to predict by the methods of

temporal differences." Machine learning 3.1 (1988): 9-44.

[6] Tadepalli, Prasad. "Planning in games using

approximately learned macros." Proceedings of the sixth

32 Statistical Analysis on Result Prediction in Chess

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 4, 25-32

international workshop on Machine learning. Morgan

Kaufmann Publishers Inc., 1989.

[7] GNU Chess, Sponsored by Free Software Foundation

https://www.gnu.org/software/chess/ accessed on April

2017

[8] Mannen, Henk. "Learning to play chess using

reinforcement learning with database games." CKI

Scriptieserie (2003).

[9] Oshri, Barak, and Nishith Khandwala. "Predicting moves

in chess using convolutional neural networks."

[10] Bagadia, Sameep, Pranav Jindal, and Rohit Mundra.

"Analyzing Positional Play in Chess using Machine

Learning." (2014).

[11] Algebraic notation in chess, Wikipedia

https://en.wikipedia.org/wiki/Algebraic_notation_(chess)

accessed on April 2017

[12] Laws of Chess for competitions starting from 1 July 2014

till 1 July 2017, World Chess Federation

https://www.fide.com/fide/handbook.html?id=171&view=

article accessed on April 2017

[13] Standard: Portable Game Notation Specification and

Implentation Guide, Andreas Saremba and Marie-Theres

Saremba

http://www.saremba.de/chessgml/standards/pgn/pgn-

complete.htm accessed on April 2017

[14] [PDF] Analysis Symbol in Chess, Shatranj US

http://www.shatranj.us/files/AnalysisSymbols.pdf accessed

on April 2017

[15] Elo, Arpad (1978), The Rating of Chessplayers, Past and

Present, Arco, ISBN 0-668-04721-6

[16] SCID project on SourceForge http://scid.sourceforge.net/

accessed on April 2017

[17] SCID vs. PC project on SourceForge

http://scidvspc.sourceforge.net/ accessed on April 2017

[18] ASUS ROG G751JY product page

https://www.asus.com/ROG-Republic-Of-Gamers/ROG-

G751JY/ accessed on April 2017

[19] Python library for xlsxwriter, Read the Docs

http://xlsxwriter.readthedocs.io/ accessed on April 2017

[20] Encyclopedia of Chess Openings, Chess Informant

http://www.chessinformant.org/eco-encyclopedia-of-

chess-openings accessed on April 2017

[21] Programmer’s reference, SCID vs. PC

http://scidvspc.sourceforge.net/doc/progref.html accessed

on April 2017

[22] Givan, Bob, and Ron Parr. "An introduction to Markov

decision processes." Purdue University (2001).

[23] First move advantage in chess, Wikipedia

https://en.wikipedia.org/wiki/First-

move_advantage_in_chess accessed on April 2017

[24] Chess statistics

http://www.chessgames.com/chessstats.html accessed on

April 2017accessed on April 2017

The project guide and codebase are publicly available at

https://github.com/paras-lehana/chess-stats-ml

Authors’ Profiles

Paras Lehana was born in Sadhaura,

Yamuna Nagar district, Haryana, India on

April 11, 1996. In 2014, he completed his

Higher Secondary (Non-Medical stream

with Computer Science) from Kendriya

Vidyalaya No. 2 Jammu, JK, India. He is

currently pursuing his final semester of

Bachelor of Technology in Computer

Science and Engineering from Jaypee Institute of Information

Technology, Noida, UP, India. He is currently offered by

IndiaMart for Associate Software Programmer role. He has

worked in major projects with technologies like IoT, Machine

Learning, Cloud Computing and Application Development.

Sudhanshu Kulshrestha was born in Agra

district, Uttar Pradesh, India on July 30,

1987. After formal school education, he

completed his Bachelor of Technology

(Computer Science) graduate degree from

Uttar Pradesh Technical University in 2009.

He then completed his Master of

Technology (Computer science with

specialization in Digital Communication) from Indian Institute

of Information Technology, Gwalior, India in 2011. He started

his professional career as Systems R&D Engineer for Infosys’

R&D division, where he worked for 2 years. Later he joined

research and teaching career in 2013. He has active interest in

Machine Learning Applications, Database Management

Systems, Computer Networks, and Cloud Computing.

Nitin Thakur was born in Kangra,

Himachal Pradesh on January 27, 1996. He

completed his Bachelor of Technology in

Computer Science and Engineering from

Jaypee Institute of Information Technology

Noida, UP, India in 2018. He is currently

recruited as Software Development

Engineer in a startup, Tolexo based in

Noida, India.

He has worked in major projects with technologies like

Android Development, IoT, Machine Learning and Advanced

Databases.

Pradeep Asthana was born in Varanasi,

Uttar Pradesh, India on July 18, 1995. He is

currently pursuing Bachelor of Technology

in Computer Science and Engineering from

Jaypee Institute of Information Technology,

Noida, UP, India. He has interest in

technologies like Machine Learning and

Mobile App Development.

How to cite this paper: Paras Lehana, Sudhanshu Kulshrestha, Nitin Thakur, Pradeep Asthana," Statistical Analysis on

Result Prediction in Chess", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.10,

No.4, pp. 25-32, 2018. DOI: 10.5815/ijieeb.2018.04.04

