
I.J. Information Engineering and Electronic Business, 2018, 1, 39-47
Published Online January 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2018.01.06

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

Novel Design of 32-bit Asynchronous (RISC)

Microprocessor & its Implementation on FPGA

Archana Rani
Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India

Email address: Archana.bhatia.pec@gmail.com

Dr. Naresh Grover
Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India

Email address: dean.academics@mriu.edu.in

Received: 20 July 2017; Accepted: 12 September 2017; Published: 08 January 2018

Abstract—As the efficiency and power consumption

plays an important role in electronic system design, an

asynchronous design is used to reduce such challenges

faced in synchronous architectures. The asynchronous

processors have a number of advantages, especially in

SoC (System on chip) including reduced crosstalk

between analog and digital circuits, ease of integrating

multi-rate circuits, ease of component reuse and less

power consumption as well. This paper deals with the

novel design and implementation of such type of

asynchronous microprocessor by using VHDL on Xilinx

ISE tool wherein it has the capability of handling even I-

Type, R-Type and Jump instructions with multiplier

instruction packet. Moreover, it uses separate memory for

instructions and data read-write that can be changed at

any time.

Index Terms—Asynchronous design, Processor, VHDL,

MIPS, Synthesis & Simulation, Instruction data path,

EDA Tools

I. INTRODUCTION

Now- a- days computers are evolving using RISC

(Reduced Instruction Set Computer) Architecture

replacing stack architecture with the intention to displace

the hypothetical, emulated computer by a real one.

Instruction Set Architecture (ISA) design is the concept

of CISC (Complex Instruction Set Computer) that

emphasize more on each instruction using a wide range of

addressing modes and number of operands in various

locations in its Instruction Set. This leads to execution

time to vary as instructions are not of fixed length, hence

demanding a very complex Control Unit, which occupies

a large area on chip. While on the other side, the RISC

Processor has less number of Instructions. The fixed

instruction length with more general purpose registers to

support load-store architecture and simplified addressing

modes. This makes individual instruction to execute

faster in order to achieve a net gain in performance and

an overall simpler design with less silicon consumption.

The choice of an RISC has become more obvious with

the increase in size and complexity of modern processors

and software. The hardware designer has a substantial

amount of freedom for design by making use of FPGA

being much more aware of availability of resources and

of its limitations than the software developer.

Before commencing the design of an asynchronous

processor we have to first focus on the architecture of

Asynchronous processor as well as the various steps

involved in such designs in terms of the program cycle.

This paper presents processor architecture design, its

implementation followed by processor instruction set,

data path flow for fetching unit, Register type, I-type and

load /store type instruction flow. Thereafter this paper

illustrates control unit design of processor that shows the

controlling of signals for different units in processor

design. Further, a complete internal structure is shown

followed by features of novel processor architecture. In

the end, results have been shown using implementation

windows. The complete design has been written using

VHDL and then simulated and synthesized by XILINX

ISE tool.

A. Processor Architecture

The asynchronous processor internal operation is

segmented into five pipeline stages and in each of them

the operations of the tasks will be performed in the

normal cycle of an instruction, i.e. search of the

instruction (identified with the IF block), decoding of The

instruction (identified with the ID block), execution of the

operation (identified with the EX block), memory access

(identified with the MEM block) and storage of the

operation result (identified with the WB block) [24].

The first stage is Instruction Fetch that comprises of

Instruction Memory, Program Counter, and Instruction

Register. In this stage, a program counter will extract the

next instruction from a location in program memory. It

updates the program counter value with the next

instruction location sequentially or the location

determined by a branch. The second stage is instruction

decoding which comprises of register file and the

extender (sign & Zero). This stage determines the values

40 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

on which the control lines should be set as per the

instruction. The third stage is the instruction execution

stage, where ALU and necessary parts will come into

action. In this stage, the instruction is actually sent to the

ALU and branch locations are also calculated. The fourth

stage is Memory execution stage for accessing of data

from system memory. Finally, in Write back stage the

values/data written back to the register(s).

Fig.1. Processing Stages

B. Instruction Set Format

The Asynchronous Processor has fixed width

instructions (32- bit). There are 3 instruction types: I-type

(Immediate), R-type (Register), J-type (Jump). Fig. 2

shows the format of I-type and R-type instructions. [23]

Opcode RS RT Address/immediate

 6 5 5 16

Fig.2. (a) I-Type Instruction

Opcode RS RT RD Shift Function

6 5 5 5 5 6

Fig.2(b). R-Type Instruction

MIPS (Microprocessor without Interlocked Pipeline

Stages) are load/store architecture, meaning that all

operations are performed on values found in local

registers. The main memory is only accessed through

load (copy value from memory to local register) and store

(copy value from local register to memory) instructions.

The fields in the MIPS instructions are the followings:

 OPCODE – 6-bit operation code

 RS – 5- bit specifier for source register

 RT – 5- bit specifier for target register

 RD – 5- bit specifier for destination register

 Address/immediate – 16-bit signed immediate

used for logical and arithmetic operands,

load/store address offsets

 Shift – 5-bit shift amount

 Function – 6-bit code used to specify functions

II. INSTRUCTION IMPLEMENTATION

Every instruction propagates in a specified sequence

such as fetch, decode, execution & write back. There are

three types of instruction(s) in processor/controller based

system. These are I-Type, R-Type and Jump type

instruction. The different type of instruction data paths

has been depicted in figures 3, 4, 5 and 6.Figure 3 shows

the data path for the fetching process. It depicts the flow

of the various path involved in fetching. The figure 4 and

5 shows the register/memory pattern follows during the

Register/Immediate type instruction execution. And at

last figure 6 depicts the overall combined path flow for

all type of instruction execution data path.

A. Fetch Data path Flow

Figure 3 shows the Fetching of an instruction from

memory. The PC (Program Counter) always indicates the

location of the instruction to execute. The location is

basically an Internal ROM where all instruction (to be

executed) are stored at different locations. Once the PC

fetches an instruction from its current value, the PC

address automatically advances by 4. The order of the PC

can be changed by the occurrence of the instruction

stored in the memory block.

Fig.3. Fetch Data path

B. Register Type Data path Flow

The register type instruction(s) is the instruction

involved with the data to be communicated to and fro

from the internal (general purpose registers)/external

registers (RAM). After being fetched, the instruction is

bifurcated into fields i.e. Opcode (Store/shift/Add etc.),

source and destination register location/data with some

controlling signals named register write or read registers.

Then the data or value of the specified register location

will propagate through ALU for different operations to be

performed.

Fig.4. R-Type Data path Flow

Instruction

ALU Operation

Add

Read Reg1

Read Reg2

Write Reg Read

Data1

 Read

Data2

Write Data

Add

+

Address

 Memory

 Memread

PC

 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA 41

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

C. Load/Store Datapath Flow

Figure 5 shows the data path flow for the immediate

instructions to load and store at various location, these

locations may be any general purpose or any memory

locations that can be addressed randomly.

Fig.5. Load/Store Datapath Flow

D. Multiple Instruction Datapath Flow

Fig.6. processing paths for all instructions

Table 1. Action for all instructions

Step R-Type Actions Memory reference Actions

Fetch IR= Memory[PC]

PC= PC+4

Decode A= Reg[IR(25-21)]

B= Reg[IR(20-16)]

Execution ALUout= A op B ALUOut = A=

Sign_extend(IR[15-0])

Memory Reg[IR(15-11)]=

ALUOut

Load:MDR=

Memory{ALUOut}

Or

Store: Memory{ALUOut}=B

Write

Back

 Load Reg[IR(20-16)]=MDR

Table 1 shows all actions necessary for the execution

of an instruction (of any type) during each stage(s). To

differentiate the type of instruction we had design one

control unit which takes care of overall operation

execution cycle.

E. Control Unit Design

The design of control unit has been divided into

various states through which it is going to generate the

control signals for other components in the design, based

on the current state and on the instruction code.

Following are the control signals:

MemRead: if 1, read from memory;

MemWrite: if 1, write to memory;

RegDst: if 1, the destination number for the Write

register comes from the Rd field; if 0, it comes from Rt

field;

RegWrite: if 1, the general-purpose register selected

by the Write register number is written with the value

of the Write data input;

AluSrcA: (ALU Source A) if 1, the operand is A

register; if 0, the operand is PC;

MemtoReg: if 1, it comes from Memory data register

(MDR) and if 0, the value fed to the register file Write

data input comes from ALUOut;

IRWrite: if 1, write instruction is performed in IR;

PCWrite: if 1, update the PC;

The control unit is basically the part of our 32-bit

asynchronous processor. The complete designs of

processor architecture have been distributed into small

units. Proposed design has various sub modules which

are basically named as ALU control unit, RAM / ROM

blocks, PC unit, Shift, Add, Multiplier units for various

arithmetic and logical instruction. In the end, interfacing

module for all the sub units is designed. As each unit has

their own significance, the major role played by the

control unit is to command/control the overall operation.

Hence more emphasis has been given to this unit.

F. Processor Architecture

This section deals with the complete internal structure

of our 32-bit Asynchronous Processor. All the various

stage(s) required for an instruction processing is been

identified by the call out(s) box(es). Figure 7 shows the

internal architecture of Asynchronous processor, In this

processor, fetching the instruction pointed by the

Program counter goes to the next unit called decoder

which generates the different values of the memory

location, as per the instruction fetched from the previous

unit. During this control unit has been designed in order

to synchronize the various other units such as ALU, data

memory or general purpose registers to properly execute

the desired instruction. There are other units named as

ALU, data memory, and some multiplexers to complete

the execution cycle. The entire major units have been

discussed previously.
.

42 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

Fig.7. Internal Structure of the Processor

III. FEATURES OF NOVEL PROCESSOR

The 32-bit asynchronous processor has the capability

of handling all types of instructions i.e. I-Type, R-Type,

Jump Instructions and also multiply instructions packet.

The multiplied result is stored until is needed irrespective

of other instructions follows.

The proposed processor is using separate memory for

instructions and Data. The capacity of instruction

memory i.e. ROM is of 8192*32 in which 8192 are

representing the locations where instructions are to be

stored with 32-bit data. The structures of instructions are

as per ISA (instruction set Architecture). For all stages,

there is only one clock cycle needed, while the data

memory has the capacity of 64K. Both memories are

functioning in falling pulse. The other pulses are used for

developing the necessary functions just like pipelining in

order to make our processor core faster and much flexible.

All I-type instructions are part decoded in the first

stage and all R-type instructions are part decoded in ALU

control unit. This reduces the complexity in main control

unit. The complete processor core is designed in Xilinx

ISE 14.x tool.

The so far studied processor architectures do not

contain all instruction in a single architecture especially

(Jump & Multiply instructions). Also while designing the

whole processor core much more attention is given to

design the proposed processor in such a way to optimize

the core for much better results in terms of Area, Power

or Delay.

IV. DESIGN IMPLEMENTATION

The complete processor has been implemented on the

Xilinx ISE tool. All the coding have been done in VHDL

and simulated or verified by the XILINX ISIM. The

following windows come from Xilinx simulator for

various instructions Stored in Instruction memory. Figure

8 shows the project settings i.e. the target family Virtex-6,

with device name XC6Vlx240T.

Fig.8. Project setting window in Xilinx ISE

A. Instruction Memory Window

Figure 9 shows the various instructions written into

internal memory. From which PC fetches the instruction

to be executed. In figure 10 the table shows the complete

structure of the mnemonics for asynchronous processor

instruction. The order of instruction execution can be

changed as per the designers or consumer requirement.

Although once written in Instruction memory the order of

 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA 43

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

the execution of instruction will be as per the order of the

mnemonics appears. The Instruction memory is also

known as code memory /ROM where all the instructions

are going to be stored permanently. The overall execution

of any instruction is always been started by the

code/instruction memory. In the below figure we have

shown some instruction mnemonics although we can

store /provide various instruction up to 32 KB i.e. 8192

memory location available and on each location one can

store up to 32 bit of data. Also, we are having 32*32

register for temporary storage of the output or any general

purpose work. This is shown in figure 10.

Fig.9. Instruction Memory inferred in Xilinx ISE Tool.

Memor

y Addr

Instruction Instruction Field

OP

-

opc

ode

RS

Sour

ce

regi

RT R

T

d

Sha

mt

Fun

c

00 Sw

$s1,100($s2

)

101

011

1110

0

01001 000000000110010

0

04 Lw

$s1,100($s2

)

100

011

1110

0

01001 000000000110010

0

RS-Source register, RT-Destination register, RTD-Destination register,

Shamt-Shift amount, Func- Function

Fig.10. Mnemonics of Instruction

B. Register Bank Window

Figure 11 shows the internal register bank

arrangements of the designed processor. By default, all

the values in registers are (in 32-bit Binary)

"0000000000000000000000000000". We kept some

values during the operation of addition and subtraction so

that we never get zero as an output. There are thirty-two,

32-Bit registers to temporary hold the data. These

registers can be used in any type of addressing modes i.e.

Immediate, Register Direct or Indirect addressing modes.

The values in the corresponding registers will

automatically update once the instruction will be fetched

and executed.

Fig.11. Register Bank inferred in Xilinx ISE tool

V. SIMULATION RESULTS

The simulation is carried out on Xilinx ISIM tool and

results are shown in this section. Figure 12 shows the

result with initial conditions i.e. Rst='0'. So that the

processor comes into its initial state with the initial values

in all types of the registers.

Fig.12. Simulation with initial Condition i.e. Rst=’0’.

Figure 13 & 14 shows the simulation result for loading

of a number from memory to a register. The instruction

for this is 8F890064

(10001111100010010000000001100100b), where

100011b is the Opcode, 11100 is source location, 01001b

is Destination register location and rest is the immediate

address from where data to be read. The instruction

works as:

44 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

Rt = mem [rs(data)+64h] where rt= 1001b or 9(h/d),

Rs =11100b or 1ch or 28d in register bank and having

zero value. So the resultant address from where data to be

fetched would be 64h+0h= 64h. The content of this 64h

will be loaded into the 9 register in register bank.

Hex code: 8F890064, LW $s1, 100($s2) Load word

Fig.13. Register bank updated Value

Fig.14. Load data from memory

Figure 15, shows the simulation for the instruction to

store some number from register to memory location.

“AF890060”, is the mnemonics for this instruction. This

will perform the storing the number from the specified

location i.e. 1001 (9) to the address hold by the rs and

constant value. The yellow marker shows this happening

in the simulation cycle.

mem [rs+60h]= rt where rt= 1001b or 9(h/d),

Rs =11100b or 1ch or 28d in register bank and having

zero value. Since Rt holds the value 30303030H, now

this value is going to be written in the memory location.

Hex Code: AF890060 SW $s1, 96($s2) Store word

Fig.15. Storing of an immediate number

Fig.16. Addition of values from register bank

 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA 45

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

Figure 16 shows the simulation output of the Addition

operation of the values stored into internal register bank.

The opcode for this instruction is 2538820. The register

location(s) are marked by blue color in the simulation

diagram.

Fig.17. Subtraction of values from register Bank

The above figure shows the complete summary of our

implemented design, which carries the information(s)

about the number of resources i.e. inferred

gates/FFs/dedicated LUTs, has been used by the

implemented designed. Through this information, we can

also put some extra efforts in the direction of optimizing

our design for the best possible result.

Fig.18. Device Utilization Summary

A. Overall processor Simulation Results

Figure(s) 19 and 20 are showing the overall processor

results. While initializing the processor with rst =’1’.

Our processor starts fetching the instruction from ROM/

Instruction memory which contains the Store, Load word

and Addition and Subtraction operation. Due to large

simulation signals we had divided our simulation

windows in two halves. The first half i.e. figure 19 shows

the signals like clk, rst, Aluop, Alusw, AlusrcA, IRwrite

etc. These signals are basically coming from the control

Unit to bind the overall instruction execution. For

simplicity we had taken out Bus_r(31:0) for the final

output. Although we can verify these data into the

internal memory location(s) or Register Memory Window.

Fig.19. Overall Processor Simulation result (1)

46 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

Fig.20. Overall Processor Simulation result (2)

The instr(31:26) signal shows the process of opcode

fetching from Instruction memory, it starts from 8F,

i.e.opcode for the loading of data into the memory, the

next is AF for storing the data from memory, then 02 for

Addition and so on. On every clock pulse the new

instruction will be fetched and update automatically the

instr(31:26) signal. This signal in simulation waveform is

highlighted by the color RED.

The immed_addr(15:0) signal shows the immediate

value for the use of ALU operations. This signal is

highlighted by Yellow color in simulation waveform. The

intermediate Bus (31:0) is showing the data output from

the ALU after completion of any instruction. This is

highlighted by the color white. At last the output from A

showing by ALU_OUT(31:0) highlighted by the color

Purple.

VI. CONCLUSION

The 32-bit fully functional asynchronous processor has

been designed using VHDL. A fully asynchronous

processor has been implemented that is comprised of five

stages. The work can be potentially improved by reducing

I and R-type instructions. The functional simulation

shows that proposed processor executes all the various

instructions efficiently. The proposed design being an

open core is more advantageous as compared to the

existing commercial microprocessor for better

understanding of internals of the asynchronous

microprocessor.

FUTURE SCOPE

The design of this 32-bit asynchronous microprocessor

implemented using FPGA can be further optimized to

reduce its power and area by using any of the following

optimization techniques Technology mapping & Logic

Optimization.

REFERENCES

[1] Afreen Tashfia., Minhaz. Uddin Md Ikram, Aqib. AI

Azad, and Iqbalur Rahman Rokon," Efficient FPGA

Implementation of Double Precision Floating Point Unit

Using Verilog HDL", International Conference on

Innovations in Electrical and Electronics Engineering

(ICIEE'20 12), October 2012, Dubai (UAE).

[2] Aneesh, R.; Jeju, K. "Design of FPGA based 8-bit RISC

controller IP core using VHDL", India Conference

(INDICON), 2012 Annual IEEE, On page(s): 427 – 432

[3] Anjana R & Krunal Gandhi, “VHDL Implementation of a

MIPS RISC Processor”, August 2012, International

Journal of Advanced Research in Computer Science and

Software Engineering, pp 83-88

[4] Bhosle Preetam, Hari Krishna Moorthy, "FPGA

Implementation of Low Power Pipelined 32-bit RISC

Processor", Proceedings of International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), ISSN: 2278-3075, Vol-I, Issue-3, August 2012.

[5] Ferdous, T. "Design and FPGA-based implementation of a

high-performance 32-bit DSP processor", Computer and

Information Technology (ICCIT), 2012 15th International

Conference, on page(s): 484 – 489

[6] Grover Naresh, Dr. M.K. Soni, “Reduction of Power

Consumption in FPGAs - An Overview”, I.J. Information

Engineering and Electronic Business, 2012, 5, 50-69

 Novel Design of 32-bit Asynchronous (RISC) Microprocessor & its Implementation on FPGA 47

Copyright © 2018 MECS I.J. Information Engineering and Electronic Business, 2018, 1, 39-47

[7] Grover Naresh, Dr. M.K. Soni, “Design of FPGA based

32-bit Floating Point Arithmetic Unit and verification of

its VHDL code using MATLAB”, I.J. Information

Engineering and Electronic Business, 2014, 1, 1-14

[8] Indu, Arun Kumar, “Design of Low Power Pipelined

RISC Processor”, International Journal of Advanced

Research in Electrical & electronics & instrumentation

Engineering, vol.2, no.3, pp.3747-3756, August 2013.

[9] Kathuria Jagrit, M. Ayoubkhan, Arti Noor, "A Review of

Clock Gating Techniques", MIT International Journal of

Electronics and Communication Engineering vol 1, no. 2,

August 2011.

[10] Kumar B. Rajesh, Ravisaketh, and Santha Kumar, 2014,

"Implementation of A 16-bit RISC Processor for

Convolution Application", Research India publications, pp

441-446.

[11] Li Li and Ken Choi “SeSCG: Selective Sequential Clock

Gating for Ultra - low-Power Multimedia Mobile

Processor Design,” IEEE EIT Conference, May 2010.

[12] MD. Shabeena Begum, M.Kishore Kumar, "FPGA based

implementation of 32-bit RISC processor", International

Journal of Engineering Research and Applications

(IJERA), pp 1148-1151

[13] Mohammad Imran, Ramananjaneyulu, "FPGA

Implementation of a 64-bit RISC Processor Using VHDL",

Proceedings of International Journal of Reconfigurable

and Embedded Systems(IJRES), ISSN:2089-4864, Vol-l,

No.2, July 2012.

[14] Purna Addanki Ramesh, Ch.Pradeep,"FPGA Based

Implementation of Double Precision Floating point

Adder/Subtractor Using Verilog", Proceedings of

International Journal of Emerging Technology and

Advanced EngineeringISSN-2250-2459, Vol-2, issue 7,

July 2012.

[15] Ramkumar B. and Harish M Kittur "low power and Area-

Efficient Carry Select Adder" IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 20, no.2,

2012, pp. 371-75.

[16] Ravindra J., T.Anuradha,"Design of Low Power RISC

Processor by Applying Clock gating Technique",

International Journal of Engineering Research and

Applications, ISSN2248-9622, Vol-2, Issue-3, May-Jun-

2012

[17] Sakthikumaran Samiappa , S. Salivahanan, V.S,kanchan.

Bhaskaran, "16 bit RISC Processor Design For

Convolution Application " IEEE - International.

Conference on Recent Trends in Information technology

pp.394 - 397, June 2011.

[18] Sidheeq Aboobacker.V.M,"Four Stage Pipelined 16-bit

RISC on Xilinx Spartan 3AN FPGA", Proceedings of

International Journal of Computer Applications, ISNN:

0975-888, Vol-48, June 2012.

[19] Tina G Galani, Riya Saini and R.D.Daruwala,"Design and

Implementation of 32-bit RISC Processor using Xilinx",

international Journal of Emerging Trends in Electrical and

Electronics(IJETEE), ISNN:2320-9569, Vol- 5, issue I,

July-20 13.

[20] Trivedi Priyanka, Rajan Prasad Tripathi "low Power

pipelined RISC processor: A Review," IJSRD vol.2, no.4,

pp. 526-528, July 2014.

[21] Uma R., " Design and Performance analysis of 8 bit RISC

Processor Using Xilinx Tool", International Journal of

Engineering Research and Application, vol.2, no.2, pp.

53-58, April 2012.

[22] Ritpurkar Sagar P., Prof. Mangesh N. Thakare, Prof.

Girish D. Korde," Review on 32-bit MIPS RISC

Processor using VHDL", IOSR Journal of Electrical and

Electronics Engineering (IOSR-JEEE), PP 46-50

[23] Xiao Li, Longwei Ji, Bo Shen, Wenhong Li, Qianling

Zhang, "VLSI implementation of a High-performance 32-

bit RISC Microprocessor", Communications, Circuits and

Systems and West Sino Expositions, IEEE 2002

International Conference on, Volume 2, 2002,pp.1458 –

1461.

[24] Wikipedia

https://en.wikipedia.org/wiki/Asynchronous_circuit

http://www.alteraforum.com/forum/forum.php

[25] MIPS Instruction set architecture

https://classes.soe.ucsc.edu/cmpe110/Spring11/lectures/04

_MIPS_ISA%20.pdf

[26] MIPS Architecture

https://en.wikipedia.org/wiki/MIPS_architecture

Authors’ Profiles

Ms. Archana Rani Bhatia is a Ph.D. A

scholar from Manav Rachna International

University, Faridabad. Had completed

Post Graduation in Electronics Product

Design and Technology from Punjab

Engineering College Chandigarh in 2008

and did Graduation in Electronics and

Communication Engineering, with sound

working experience over 6.6 years in various electronic works,

related to Teaching, Research & Industry side.

Prof. (Dr.) Naresh Grover did his B.Sc

(Engg.) in 1984 and M.Tech in

Electronics and Communication

Engineering in 1998 from REC

Kurukshetra (Now NIT Kurukshetra). He

has a rich experience of 33 years in

academics. He has authored two books on

Microprocessors and is a co-author of a

book on Electronic Components and Materials. His core area of

interest is Microprocessors and Digital System Design.

Presently he is Dean-Academics at Manav Rachna International

University, Faridabad.

How to cite this paper: Archana Rani, Naresh Grover," Novel Design of 32-bit Asynchronous (RISC) Microprocessor

& its Implementation on FPGA", International Journal of Information Engineering and Electronic Business(IJIEEB),

Vol.10, No.1, pp. 39-47, 2018. DOI: 10.5815/ijieeb.2018.01.06

https://en.wikipedia.org/wiki/Asynchronous_circuit
http://www.alteraforum.com/forum/forum.php
https://classes.soe.ucsc.edu/cmpe110/Spring11/lectures/04_MIPS_ISA%20.pdf
https://classes.soe.ucsc.edu/cmpe110/Spring11/lectures/04_MIPS_ISA%20.pdf

