
I.J. Information Engineering and Electronic Business, 2009, 1, 9-16
Published Online October 2009 in MECS (http://www.mecs-press.org/)

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

Research on Fine-grained Job scheduling in Grid
Computing

Yeqing Liao

Wuhan University of Technology, Wuhan, China
Email: liaoyeqing@gmail.com

Quan Liu

Wuhan University of Technology, Wuhan, China
quanliu@whut.edu.cn

Abstract—Grid computing is the technology used in building
Internet-wide computing environment and integrating
distributed and heterogeneous resources. However, in Grid
environment, job scheduling is confronted with a great
challenge. This paper focuses on lightweight jobs scheduling
in Grid Computing. An Adaptive Fine-grained Job
Scheduling (AFJS) algorithm is proposed. Compared with
other fine-grained job scheduling algorithms based on
grouping, AFJS can outperform them according to the
experimental results. And some other related problems are
also illustrated.

Index Terms—Grid Computing, fine-grained jobs, job
scheduling, AFJS

I. INTRODUCTION

The growing popularity of the Internet/Web and the
availability of powerful computers and high-speed
networks at low-cost commodity components are
changing the way we do computing and use computers.
The interest in coupling geographically distributed
resources is also growing for solving large-scale
problems [18]. The word ‘grid’ was first coined in the
mid-1990s to denote a proposed distributed computing
infrastructure for advanced science and engineering
projects [1]. The concept of a computational grid is
intended to use high-performance network technology to
connect hardware, software, instruments, databases, and
people into a seamless web that supports a new
generation of computationally rich problem-solving
environments for scientists and engineers [2]. Resource
sharing therefore is the essence of grid computing. And
nowadays, around the issue of task scheduling in Grid
computing, a lot of researches have been carried on.

There are a wide range of heterogeneous and
geographically distributed resources in grid, such as
computational resource, storage resource, equipment
resource, and so forth. Grid resources are geographically
distributed across multiple administrative domains and

owned by different organizations. Resource management
and application scheduling are very complex due to the
large-scale heterogeneity presented in resources,
management policies, users, and applications
requirements in these environments.

Consequently, many researches are motivated in
different aspects of the job scheduling algorithm. One
motivation of grid computing is to aggregate the power of
widely distributed resources, and provide non-trivial
services to users [14]. But, there exist several applications
with a large number of lightweight jobs [3].

Sending some fine-grained jobs to a resource that can
support high processing capability is not economical
compared with sending a coarse-grained job. Unlike
coarse-grained job, the lightweight job just has few lines
of codes or very simple arithmetic expressions. Because
the overall processing time for each job includes job
scheduling time, job transmission time to a grid resource,
job executing time, and transmission time of output, fine-
grained jobs spend too much time in scheduling and
transmission. That means in the case of an application with
a large number of jobs with small scale processing
requirements, the total communication time between each
job and the resource seems to be more than the total
computation time of each job at the resource. Meanwhile, it
is wasteful to process a lightweight job with a highly
capable computer. The total overhead of fine-grained jobs
scheduling can be reduced by grouping the lightweight
jobs during the scheduling process for deployment over
the grid resources. Then we can schedule the coarse-
grained jobs which lightweight jobs grouped as in the
grid environment. Because of reducing transmission time
and increasing the cpu utilization, we can Significantly
enhance the efficiency of system. This paper mainly
focuses on fine-grained jobs scheduling in a grid, how
they are grouped into coarse-grained jobs, and how they
are allocated. An Adaptive Fine-grained Job Scheduling
(AFJS) algorithm is proposed. Numerical experiments
illustrate the efficiency of the proposed algorithm
compared with the algorithm in [3]. And several
important problems that brought by group algorithm in
lightweight jobs scheduling are also illustrated in this
paper.

Manuscript received January 11, 2009; revised June 22, 2009;
accepted July 25, 2009.

10 Research on Fine-grained Job scheduling in Grid Computing

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

The remainder of this paper is organized as follows.
The current task scheduling algorithm is surveyed in
section II. The AFJS algorithm is discussed in section III.
With the help of GridSim toolkit [6, 12], the simulation
of scheduling algorithm proposed in the paper is realized
in section IV. In section V, two important problems—
security and fault tolerant mechanism are illustrated. The
final section concludes the paper with discussion and
analysis of results.

II. RELATED WORK

At present, there are some famous resource scheduling
system and projects in the world, such as AppLeS,
Globus, Condor, Legion, Nimrod-G, etc. And a great
number of algorithms, approaches and tools have been
developed to bring grid resource management and job
scheduling issues to a more advanced level of efficiency
and usability. Scheduling problem is a NP-Complete
problem [10], which means that ordinary algorithms with
non-optimization are impractical. Current job scheduling
algorithms are mainly based on User-Directed
Assignment (UDA), Minimum Completion Time (MCT),
Minimum Execution Time (MET), Min-Min [7], Max-
Min [13], genetic algorithm (GA) [15], ant algorithm
(AA) [8], multi-Agent, computational economy model [4,
9,20], and so on. All of these algorithms are dedicated to
improve the Qos of grid computing. One of the most
important aspects of Qos is the jobs processing time. In
fine-grained jobs environment, jobs processing time is
also the first thing we should consider.

A scheduling optimization method should consider the
following two aspects, one is the application
characteristics, and the other is the resource
characteristics [11]. Taking into account the
characteristics of lightweight job, there are some
researches on the fine-grained job scheduling problem. In
[3], N. Muthuvelu, et al. presents a scheduling strategy
that performs dynamic job grouping activity at runtime
and gives out the detailed analysis by running simulations.
However, there are some defects in the scheduling
algorithm. First, the algorithm doesn’t take the dynamic
resource characteristics into account. Second, the
grouping strategy can’t utilize resource sufficiently,
especially when the million instructions (MI) of jobs are
quite different. And finally, it doesn’t pay attention to the
network bandwidth and file size. To solve the problems
mentioned above, an adaptive fine-grained jobs
scheduling algorithm is presented in this paper.
Numerical experiments illustrate the efficiency of the
proposed algorithm.

And some other problems should be reminded in fine-
grained job scheduling environment. First, due to the
characteristics of grouping algorithm, it is hard to prevent
injection attacks. Some malicious customs can submit
some fine-grained virus to damage the computing process
of the coarse-grained job which contains the virus.
Secondly, in commercial grid environment, resources are

paid. Resources compute the grouped jobs instead of the
original fine-grained jobs that customs upload. If we
adopt the grouping algorithm, how to processing error is
also an important issue in fine-grained job scheduling
environment.

III. FINE-GRAINED JOB SCHEDULING MECHANISM

A. Definition of fine-grained job
In grid computing, we use MI as the unit of jobs. MI is

million instructions or processing requirements of a user job.
If the MI of a job is less than a fixed threshold maxM , we
consider it as a fine-grained job. And it will be scheduled
by fine-grained job scheduling algorithm. In Fig.1, this
process has been depicted.

Figure 1. Job classification.

B. Resource monitoring
Due to nodes which are carrying resources joining and

leaving the network at any time, the available resources
change dynamically over time. The highly distributed and
dynamic nature of grids makes the resource monitoring
more challenging [19]. The grouping strategy should be
based on the characteristics of resources. In grid
computing, there are two approaches for obtaining
dynamic resource characteristics for job execution. One is
that a user directly searches the resources for job
execution using an information service. The other is to
use a resource manager. With a resource manager, users
can obtain information about the grid through an
interactive set of services, which consists of an
information service that is responsible for providing
information about the current availability and capability
of resources. Obviously, the latter one is more convenient.

In order to obtain the latest details of grid, our resource
monitoring mechanism is based on GRIM prototype and
GRIR protocol [5]. As illustrated in Fig. 2, resource
characteristics on which the grouping strategy is based
are obtained from mediators. The updated status of
resource information is actively transferred from
resources to the mediator in the push-based model. To
balance information fidelity in mediators and updating
transmission cost between hosts and mediators, GRIR
protocol is presented in [5]. Then we can schedule fine-
grained jobs based on the latest details of grid.

 Research on Fine-grained Job scheduling in Grid Computing 11

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

Figure 2. Mechanism for resource monitoring

C. Grouping constraint conditions
Based on the resources status, lightweight jobs can be

grouped into coarse-grained jobs according to processing
capabilities (in MIPS) and the bandwidth (in Mb/s) of the
available resources. Here only the processing capacity
and bandwidth are used to constrain the sizes of coarse-
grained jobs, but we can easily join additional constraint
conditions.

Then the fine-grained job can be grouped into several
new jobs and these new jobs should satisfy the following
formula:

__ * ,i i comp igroupedjob MI MIPS T≤ (1)

__ _ _ * ,i i comm igroupedjob file size baud rate T= (2)

_ _/ 1.comp i comm i iT T u= > (3)
In constraint conditions, iMIPS is the processing

capacity of the resource i that the igroupedjob will be
allocated to, _comp iT is the expected job processing time,

_ _ igroupedjob file size is the file_size (in Mb) of the
grouped job i, _ ibaud rate is the bandwidth of resource i,
and _comm iT is the communication time. Formula (1)
means that the processing time of the coarse-grained job
shouldn’t exceed the expected time. For the parallel
processing to make sense, that is to ensure that running a
parallel program on several processors is faster than
sequential execution, the calculation time should exceed
communication time, and this is illustrated as (2)(3).

D. Grouping strategy
To maximize the MI of the grouped job we schedule,

greedy selector and binary search are used. First the fine-
grained jobs should be sorted. The bucket sort is adopted
to sort the fine-grained jobs. Bucket sort, or bin sort, is a
sorting algorithm that works by partitioning an array into
a number of buckets. Each bucket is then sorted
individually, either using a different sorting algorithm, or
by recursively applying the bucket sorting algorithm. It is
a cousin of radix sort in the most to least significant digit
flavour. Bucket sort is a generalization of pigeonhole sort.
Bucket sort is a linear sort algorithm, the time complexity
is ()O n . The pseudocode of bucket sort is depicted in Fig.
3.

function bucket-sort(array, n) is
 buckets ← new array of n empty lists
 for i = 0 to (length(array)-1) do
 insert array[i] into buckets[msbits(array[i], k)]
 for i = 0 to n - 1 do
 next-sort(buckets[i])
 return the concatenation of buckets[0], ..., buckets[n-1]

Figure 3. Bucket sort

Then we group the fine-grained jobs by descending
order. When the first fine-grained job that doesn’t satisfy
restricted conditions appeared, binary search and
backtracking is adopted to search the next fine-grained
job that satisfies constraint conditions to join the coarse-
grained job.

A binary search algorithm (or binary chop) is a
technique for locating a particular value in a sorted list.
The method makes progressively better guesses, and
closes in on the location of the sought value by selecting
the middle element in the span (which, because the list is
in sorted order, is the median value), comparing its value
to the target value, and determining if it is greater than,
less than, or equal to the target value. The time
complexity of binary search is (log)O n . One of the
pseudocodes of binary search is depicted in Fig.4.
 int BinSearch(SeqList R，KeyType K)
 {
 int low=1，high=n，mid；
 while(low<=high){
 mid=(low+high)/2；
 if(R[mid].key==K) return mid；
 if(R[mid].key>K)
 high=mid-1;
 else
 low=mid+1；
 }
 return 0；
 } //BinSeareh

Figure 4. Binary search

Backtracking is a general algorithm for finding all (or
some) solutions to some computational problem that
incrementally builds candidates to the solutions, and
abandons each partial candidate c ("backtracks") as soon
as it determines that c cannot possibly be completed to a
valid solution.

If njob is the first fine-grained job that doesn’t satisfy
the restricted conditions, we will use n and 1 as the two
actual parameter of the binary search. In the next loop,
the return value of the binary search will be the second
actual parameter, and the low value that has computed the
return value will be the first actual parameter of binary
search.

 For example, if 1)/4njob +（ is the first job satisfying the
conditions. / 2n and (1) / 4n + will be the new actual
parameter of the binary search. If the return value of this
loop is zero, 1)/4njob +（ will be next fine-grained to join
the coarse-grained job. We use stack structure to store the

12 Research on Fine-grained Job scheduling in Grid Computing

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

jobs satisfy the constraint conditions. And the top of the
stack is the next fine-grained job to join the coarse-
grained job. This algorithm is not an optimum one, but it
can maximize the MI of the grouped job with a lower
time complexity of the algorithm.

E. fine-grained job scheduling algorithm
As is shown in Fig.5, AFJS algorithm is divided into

three parts. The first phase is the initialization phase. In
the first phase, the scheduler receives resources status
using the mechanism demonstrated in the section B.
Meanwhile, it sorts job list in descending order, and
assigns a new ID for each job. And we define ,i jCon as
the constraint conditions.

Algorithm:
Begin
Phase 1: Initialization

1. The scheduler receives jobs from users.
2. The scheduler gets resources status from mediator.
3. According to the MI of jobs, job_list is sorted in

descending order using bucket sort algorithm. And
each job is assigned a new ID.

4. Define constraint conditions value ,i jCon is
(__ * ,j i i comp jgroupedjob MI job MIPS T+ ≤ and

 (_ _ _ _j igroupedjob file size job file size+)
 _/ _ j comp jbaud rate T<) or
(groupedjob_MIj=0, and
jobi/MIPSj>job_file_size/baud_ratej)

Phase 2: Job Scheduling and Deployment
1. for resource j in resource_list do
2. {
3. for i:=1 to joblist_size do
4. {
5. if (,i jCon)
6. {
7. add job i to job group j;
8. remove I from joblist;
9. i++;
10. }
11. else
12. {
13. n=1;
14. while(n)
15. {
16. n=binarysearch(the low value of last

loop, n);
17. if (n!=0) push_stack();
18. }
19. }
20. if (!empty_stack())
21. {
22. i=pop_stack();
23. Clear_stack();
24. add job i to job group j;
25. remove i from joblist;
26. i++;
27. }
28. }

29. j++;
30. }
31. for i:=1 to groupedjoblist_size
32. {
33. allocate groupedjob i to resource i;
34. }

Phase 3
1. if joblist_size!=0
2. {
3. wait a minute;
4. get resource status from mediator;
5. receive computed grouped jobs from

resources;
6. repeat pahse2;
7. }
8. receive computed grouped jobs from resources
9. split the output before presenting to the user

End
Figure 5. AFJS algorithm

Phase 2 is the process of job scheduling and
deployment. In phase 2, given a list of resource, a match
grouped job will send to the appropriate resource. First,
we group the fine-grained jobs one by one until the first
job that didn’t satisfy the conditions appear. Then we use
binary search to find the next fine-grained job join the
grouped job. The job we found is the job that satisfies
constraint conditions with the maximal MI. This method
could sufficiently utilize the capability of the resources
since the grouped jobs match the MIPS of resource in a
more proper way. To group a fine-grained job, the time
complexity ()O T satisfies:

2(log) () ()O n n O T O n≤ < (4)
In the scheduling process, since the sort algorithm we

adopt is a linear sort algorithm, the time complexity of
our scheduling algorithm ()O H satisfies:

2(* log) () (*)O m n n O H O m n≤ < (5)
In formula (4) (5), m is the number of resource, and n

is the number of fine-grained jobs.
In the phase, when there is no more resource left, first

come first served (FCFS) algorithm is used, once a
resource node finishes its job, the mediator will get the
status of the idle resource, and it will be assigned a new
grouped job that grouped By AFJS. Compared with the
round-robin algorithm used in [3], this algorithm reflects
the dynamic grid environment more suitably especially
when new resources are discovered constantly by
resource manager. Then, the scheduler receives computed
grouped jobs from resources and split the output before
presenting to the user. And it will charge customs in
economic grid environment.

IV. EXPERIMENTS

A. Experimental setup
We simulated the proposed approach using GridSim

toolkit and implemented the scheduling algorithm on a
laptop with Core 2 T7250 processor and 1 G RAM. The

 Research on Fine-grained Job scheduling in Grid Computing 13

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

Figure 4. costs of the two algorithm(d=30)

GridSim toolkit allows modeling and simulation of
entities in parallel and distributed computing (PDC)
systems-users, applications, resources, and resource
brokers (schedulers) for design and evaluation of
scheduling algorithms. It provides a comprehensive
facility for creating different classes of heterogeneous
resources that can be aggregated using resource brokers
for solving compute and data intensive applications. A
resource can be a single processor or multi-processor
with shared or distributed memory and managed by time
or space shared schedulers. The processing nodes within
a resource can be heterogeneous in terms of processing
capability, configuration, and availability. The resource
brokers use scheduling algorithms or policies for
mapping jobs to resources to optimize system or user
objectives depending on their goals.

We modeled and simulated 6 time-shared resources.
Each resource has a machine with different characteristics.
Since the algorithm in [3] doesn’t consider the dynamic
resource changing, there will be no such change in the
simulation to enhance the comparability. The
characteristics of resource are depicted in table 1. Each
resource node has five properties—numbers of process
element, processor capacity, price and bandwidth rate.
Processor capacity can be expressed in million
instructions per second (MIPS). The resource cost can be
expressed in Grid dollars, which can be defined as the
processing cost per MIPS. All of the parameters of the
simulation environment are summarized in Table I. These
experimental configurations are used to evaluate the
performance of the resource scheduling algorithm as
much as possible.

In our experiment, a user submits fine-grained jobs to
the broker. And the job length is defined as 20MI (million
instructions) with a random variation -d% to d%. We will
test the performance of algorithm three times. In that
process, d equal 30, 60 and 90 respectively. The length of
input file is defined as 100 with a random variation -30%
to 30%. The output file size of the grouped job is defined
as 1000. The expected job processing time is defined as
15s. The overhead of job grouping is defined as 5s.

In the simulation, we performed scheduling
experiments by setting different values to the number of
jobs; the number of jobs is varied from 500 to 1000 in
steps of 6. The executing time and cost is recorded to
analyze the feasibility of our algorithm.

B. Experimental results
Simulations are conducted to analyze the executing

time and cost of our algorithm. For all simulations we use
the same set of default parameters which are given in the
section A. In our experiments only the parameters d will
be varied. Completion times and total cost are two
measurement criteria to measure in the experiment.
Completion times measure the time observed by the
schedule to access the requested grid resources and
complete the task. It is influenced by the available
connections and bandwidth, and processor capacity, and
processing delay. Cost is influenced by the price and the
total length of fine-grained jobs. We recorded processing
time and cost to demonstrate the validity of our algorithm.
We make a conclusion that the whole system can reduce
the processing time, and not to increase the total cost.

First experiment is to measure the effect of scheduling
algorithm on completion times. Fig.5 shows the
difference in jobs executing time between our algorithm
and the DFJS algorithm [3] when d=30. Compared with
the DFJS algorithm, our algorithm can reduce the
executing time from 20 to 30s. This is because the
Greedy algorithm used in AFJS algorithm can group the
fine-grained jobs as much as possible. And that indicates
a useful improvement especially when a deadline is
engaged in.

Fig.6 and Fig.7 show the difference in jobs executing
time between our algorithm and the DFJS algorithm [3]
when d=60 and d=90 respectively. As is shown in the
pictures, when d becomes lager, the jobs processing time
of DFJS increased. But the jobs processing time of AFJS
almost remains same. The AFJS algorithm could
sufficiently utilize the capability of the resources since
the grouped jobs match the MIPS of resource in a more
proper way. Despite the variation of job length changed,
the AFJS algorithm finish fine-grained jobs with same
total length in the same time.

Fig.4 shows costs of the two algorithms. In our
experiments, costs of the two algorithms are almost the
same. It means AFJS didn’t increase the total cost
compared with the DFJS algorithm. If we want decrease
the total cost of the scheduling algorithm, some other
algorithms can be introduced (e.g. cost-optimization
scheduling algorithm) to decrease the total cost, but that
case only happened when you pay more attention to the
money rather than time.

TABLE I.
ATTRIBUTES AND CHARACTERISTICS OF GRID RESOURCES

Resource
ID

No. of
PE

MIPS of
each PE

Total
MIPS

price Baud
Rate

R1 2 10 20 100 1500

R2 12 10 120 150 1700

R3 3 13 39 300 1400

R4 8 15 120 210 1200

R5 3 20 60 90 1600

R6 6 12 72 250 1100

14 Research on Fine-grained Job scheduling in Grid Computing

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

Figure 5. Jobs processing time (d=30).

Figure 6. Jobs processing time (d=60)

Figure 7. Jobs processing time (d=90)

access control
module

comparatorUSERS

Figure 8. Access module

Figure 9. Fault tolerant in fine-grained job scheduling

All of the experiments are based on a static
environment that can’t reflect the real world of grid
computing. In grids, nodes which are carrying resources
joining and leaving the network at any time, the available
resources change dynamically over time. In experiments,
none of resource properties is changed. Obviously, under
conditions that status of resources changes, the job
completion success rate of AFJS is higher than DFJS,
because a mediator is adopted to obtain dynamic resource
characteristics.

V. SECURITY AND FAULT TOLERANT

A. Security
In grid computing, there are many security solutions

[16, 21, 22, 24, 25]. Each one of these solution is
explained in detail in their papers to provide insight as to
their unique methods of accomplishing grid security. Any
secure grid environment must employ mechanisms to
secure authentication, authorization, data encryption,
resource protection, and secure communication.

Like other grid environment, access control policy
should be adopted in fine-grained job scheduling grid
environment. In our system, a “super scheduler” must
determine list of possible hosts if it has not already been
defined, then must decide if a user is allowed to execute
on those hosts. And to defend injection attack, the
scheduler must also decide which user can submit the
fine-grained jobs. We can adopt trust-based solution to
decide which node is a secure one. Ref. [16, 24] provide
two access control ways based on trust model.

In Fig.8, before jobs send to comparator the user
should be authorized by access control module. If the
trust degree of user is too low, the user can’t pass. All in
all, the chief benefit of this system is that it merges
security and resource management rather than pits them
against each other.

B. Fault tolerant
If a malicious custom had been authorized, or a fine-

grained job had broken down, other security module or
we can call it a fault tolerant mechanism should be added
in our system.

 Research on Fine-grained Job scheduling in Grid Computing 15

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

 In the system, sliding windows scheme is used to
group fine-grained jobs. As we know, each coarse-
grained job the scheduler submits to the resource is
grouped by many fine-grained jobs. Each fine-grained job
is stored in a sliding window. And a coarse-grained job is
constituted by a group sequential sliding windows.

Fine-grained job i will break down in the following two
cases: (1) a malicious custom was authorized by access
control module accidentally; (2) some accidents happen
in resource, just like electricity fails, the resource can’t
obtain anymore. In the first case, though we can compute
the next fine-grained jobs, the computing result is no
longer worth trust. And in the second case, all the next
fine-grained jobs have lost; we can’t obtain the
computing results.

As is shown in Fig.9, if job i breaks down, all of fine-
grained jobs in the sliding windows behind it should be
discarded. And the resource will submit the ID of job i
and the computing result of the fine-grained jobs before
job i to the scheduler. Then the scheduler will reschedule
the fine-grained jobs behind job i, and analyze the fine-
grained job i, if it is a computer virus, the trust degree of
the custom who submit it should be declined. If the
failing execution of coarse-grained job is caused by
resource, the job i will be rescheduled. Though we will
reschedule all the fine-grained jobs behind the position i
in sliding windows, this makes the system more security
and fault tolerant. And from the scheduling algorithm, we
know that the fine-grained job with lager MI always have
a forward position in sliding windows. Then the
reschedule jobs have a smaller MI, and they are easily
grouped into another coarse-grained job.

VI. CONCLUSION

The purpose of this paper was to research fine-grained
jobs scheduling in grid computing. Though there are
many job scheduling algorithm in grid computing, little
of them is concentrate on the fine-grained jobs scheduling.
In order to utilize grid resources sufficiently, an adaptive
fine-grain job scheduling algorithm is proposed. The
grouping algorithm integrated Greedy algorithm and
FCFS algorithm to improve the processing undertake of
fine-grained jobs. The algorithm considers the dynamic
characteristic of the grid environment. To protect the
system from the injection attack, an access control
module is engaged in. A fault tolerant mechanism is also
used to process errors. Numeric experimental results
demonstrate efficient and effective of our algorithm.

Though the proposed algorithm can reduce the
executing time, its time complexity is higher than DFJS
algorithm, and some improvement should be done in this
aspect. Additionally, the simulation environment is semi-
dynamic and it can’t reflect the real grid environment
sufficiently. To further test and improve the algorithm
and the system, some dynamic factors (e.g. local job with
a higher priority) and inhibitory factors (e.g. network
delay) will be taken into account. Also some experiments
should be done under attack to test the reliability of the
fault tolerant module.

ACKNOWLEDGMENT

The authors wish to thank the editors and the
anonymous reviewers for their helpful comments and
suggestions. The work is supported by National Natural
Science Foundation of China (NSFC) under grants
No.50675166 and 50620130441.

REFERENCES
[1] I. Foster and C. Kesselman , “Globus: a metacomputing

infrastructure toolkit,” International Journal of High
Performance Computing Applications, vol. 2, pp. 115–
128,1997.

[2] Chunlin Li, Layuan Li, and Zhengding Lu, “Utility driven
dynamic resource allocation using competitive markets in
computational grid”, Advances in Engineering Software,
No.36, vol.6, pp.425–434, 2005.

[3] N. Muthuvelu, Junyan Liu, N.L.Soe, S.venugopal,
A.Sulistio, and R.Buyya “A dynamic job grouping-based
scheduling for deploying applications with fine-grained
tasks on global grids,” in Proc of Australasian workshop
on grid computing, vol. 4, pp. 41–48, 2005.

[4] R. Buyya, S. Chapin, and D. DiNucci, “Architectural
models for resource management in the grid,” in Proc of
the 1st IEEE/ACM International Workshop on Grid
Computing, pp. 18-35, 2000.

[5] W. C. Chung and R. S.Chang, “A new mechanism for
resource monitoring in grid computing,” Future
Generation Computer System, Vol.25, pp.1-7, January
2009.

[6] R.Buyya and M.Murshed, “Gridsim: a toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing,”
Concurrency and Computation: Practice and Experience,
vol. 14, pp. 1175–1220, 2002.

[7] X. S. He, X. H. Sun, and G. V. Laszewski, “Qos guided
min-min heuristic for grid task scheduling,” Journal of
Computer Science & Technology, vol.3, pp.442-451,2003.

[8] R. S. Chang, J. S. Chang, and P. S. Lin, “An ant algorithm
for balanced job scheduling in grids,” Future Generation
Computer Systems, Vol.25, pp.20-27, January 2009.

[9] R.Buyya, “Economic model for resource management and
scheduling in grid computing,” Concurrency and
Computation: Practice and Experience, vol.14, pp.1507-
1542, 2002.

[10] D. Fernández-Baca, “Allocating modules to processors in a
distributed system,” IEEE Transactions on Software
Engineering, pp.1427-1463, November 1989.

[11] V. Korkhov, T. Moscicki, and V.Krzhizhanovskaya,
“Dynamic workload balancing of parallel applications with
user-level scheduling on the grid,” Future Generation
Computer Systems, vol.25, pp.28-34, January 2009.

[12] Gridbus Project website, http://www.gridbus.org/gridsim/
[13] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R.

Freund, “Dynamic mapping of a class of independent tasks
onto heterogenous computing systems,” in Proc of 8th
IEEE Heterogeneous Computing Workshop (HCW’99), pp.
30-44, San Juan, Puerto Rico, April 1999.

[14] F. Dong and S. G. Akl, “Scheduling algorithm for grid
computing: state of the art and open problems,” Technical
Report of the Open Issues in Grid Scheduling Workshop,
School of Computing, University Kingston, Ontario,
January 2006.

[15] Y. Gao, H. Rong, and J. Z. Huang, “Adaptive grid job
scheduling with genetic algorithms,” Future Generation
Computer Systems, vol.21, pp.151-161, January 2005.

16 Research on Fine-grained Job scheduling in Grid Computing

Copyright © 2009 MECS I.J. Information Engineering and Electronic Business, 2009, 1, 9-16

[16] Quan Liu, Yeqing Liao, “A trust model based on
subjective logic for multi-domains in grids,” in Proc of
Pacific-Asia Workshop on Computational Intelligence and
Industrial Application, vol.2, pp.882-886, 2008.

[17] Jon Bently, Programming Pearls, second edition,
Addison-Wesley Inc., 2000.

[18] Foster. I and Kesselman C, The Grid: blueprint for
a future computing infrastructure, Morgan Kaufmannn
Publishers, USA, 1999.

[19] Liangxiu Han and Dave Berry, “Semantic-supported and
agent-based decentralized grid resource discovery,” Future
Generation Computer Systems, vol.24, pp.806-812,
October 2008.

[20] R. Buyya, J. Giddy, and D. Abramson, “An Evaluation of
economic-based resource trading and scheduling on
computational power grids for parameter sweep
applications,” The Second Workshop on Active Middleware
Services (AMS 2000), 2000.

[21] E.Cody, R.Sharman, “Security in grid computing: A
review and synthesis,” Decision Support Systems, vol. 44,
pp.749-764, March 2008.

[22] M. Smith, M. Schmidt, “Secure on-demand grid
computing,” Future Generation Computer Systems, vol.25,
pp.315-325, March 2009.

[23] D. Laforenza, “Grid programming: some indications where
we are headed,” Parallel Computing, vol.28, pp.1733-1752,
Dec 2002.

[24] Junzhou Luo, Xudong Ni, Jianming Yong, “A trust degree
based access control in grid environments,” Information
Sciences, vol.179, pp.2618-2628, July 2009.

[25] G. Laccetti, G. Schmid, “A framework model for grid
security,” Future Generation Computer Systems, vol.23,
pp.702-713, June 2007.

Yeqing Liao was born in Chibi, Hubei, P.R.C., in 1986. He

received the B.S. degree in information engineering from
Wuhan University of Technology, Wuhan, China, in 2007. He
is currently working toward the M.S. degree in the Institute of
Information Technology, Wuhan University of Technology. His
research interest is Grid Computing, digital image watermarking,
and especially focus on job scheduling algorithm of grid
computing.

 Quan Liu was born in Wuhan in 1963. She got her BS
degree in Huazhong University of technology in 1985. After
years of study, she got MS degree and Ph.D. degree in Wuhan
University of technology. Now she is the professor and dean in
the school of information engineering in that school. With
several years’ research of computer network communication
and signal processing, she has published more than 90 related
dissertations. Her research interests include nonlinear system
analysis and signal processing, etc.

