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Abstract—Estimation of Distribution Algorithm (EDA) is a 
new kinds of colony evolution algorithm, through counting 
excellent information of individuals of the present colony 
EDA construct probability distribution model, then sample 
the model produces newt generation. To solve the NP-Hard 
question as EDA searching optimum network structure a 
new Maximum Entropy Distribution Algorithm (MEEDA) 
is provided. The algorithm takes Jaynes principle as the 
basis, makes use of the maximum entropy of random 
variables to estimate the minimum bias probability 
distribution of random variables, and then regard it as the 
evolution model of the algorithm, which produces the 
optimal/near optimal solution. Then this paper presents a 
rough programming model for job shop scheduling under 
uncertain information problem. The method overcomes the 
defects of traditional methods which need pre-set 
authorized characteristics or amount described attributes, 
designs multi-objective optimization mechanism and 
expands the application space of a rough set in the issue of 
job shop scheduling under uncertain information 
environment. Due to the complexity of the proposed model, 
traditional algorithms have low capability in producing a 
feasible solution. We use MEEDA in order to enable a 
definition of a solution within a reasonable amount of time. 
We assume that machine flexibility in processing operations 
to decrease the complexity of the proposed model. Muth 
and Thompson’s benchmark problems tests are used to 
verify and validate the proposed rough programming 
model and its algorithm. The computational results 
obtained by MEEDA are compared with GA. The 
compared results prove the effectiveness of MEEDA in the 
job shop scheduling problem under uncertain information 
environment. 
 
Index Terms—job shop scheduling under uncertain 
information, rough programming, maximum entropy 
estimation of distribution algorithm, test 

I. INTRODUCTION 

In the field of science, engineering and economy, 
many of latest the advances rely on computing 
corresponding optimization problems of the global 
optimal solution of the numerical technique. 

EDA(Estimation of Distribution Algorithm) is a new 
algorithm based on the population evolution , it 
constructs the probability distribution model by 
statisticing the information of optimal individuals in a 
present group, then samples the model to produce the 
next generation, thus, the offspring can be distributed in 
good space with large probability, which can promote the 
group’s evolution. Compared with the traditional 
evolutionary algorithm, crossover and mutation operator 
is replaced by distribution estimation, what else the new 
population produced by distribution estimation. EDA 
makes use of the distribution of random vectors to 
characterize its internal probability of dependence, 
therefore how to find an n-dimensional probability model 
which can fully reflect the interaction between random 
variables is the key of EDA. Probability distribution 
model directly determines the performance of EDA. 
Precise probability distribution model ensures a good 
outcome, and vice versa. Currently, the more common 
practice is the application of probability map model 
(Reference [1] shows that discrete EDA uses bayes 
network to express the relationship between variables, 
continuous EDA uses gauss network). However, how to 
determine the network parameters which in turn 
determine the optimal network structure is proved to be a 
NP-Hard problem, and the complicated calculation has 
greatly reduced the computing performance of EDA and 
limited the application of EDA. This paper presents a 
new algorithm named Maximum Entropy Estimation of 
Distribution Algorithm (MEEDA), this algorithm is 
based on Jaynes principle, using the random variables’ 
maximum entropy estimates its minimum bias 
probability distribution, and as the algorithm’s evolution 
model, and efficiently reduce the computational 
complexity of the algorithm. The simulation experiments 
of the two kinds of problems prove the effectiveness of 
the proposed algorithm, with higher global search ability 
and more stable convergence.  
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II.   MAXIMUM ENTROPY ESTIMATION OF DISTRIBUTION 
ALGORITHM 

A． The principle of EDA 
EDA is generated from genetic algorithm (GA). GA 

performs selection, producing a mating pool; a new 
population is then produced from the mating pool by 
crossover and mutation operations. This process is then 
iterated until a termination criterion is met. Although GA 
can be applied to many combinatorial optimization 
problems, yet they all need some prior knowledge to 
determine the evolution operator, therefore, it is difficult 
to find an appropriate set of parameters in coding and 
combined with the operation for a particular problem, 
which is the inherent defect of GA. Furthermore, in 
evolutionary terms, the crossover and mutation operator 
are used to the realization of and the exchange of 
individual information in group, and select operator is 
used to the guidance of the evolutionary process, both of 
them did not consider the relevant information of the 
same generation individuals, so they did not fully make 
use of the existing information and reduced the operating 
efficiency of GA; furthermore, crossover and mutation 
operator can not guarantee the establishment of building 
blocks assumptions in theory, as a result, GA 
demonstrates very poor performance for some of the 
issues (such as misleading).  

 To improve these deficiencies, H. Muhlenbein and G. 
Paa β  in reference [2] proposed the estimation of 
distribution algorithm in 1996, which quickly aroused 
the concern of extensive research. And it has been a 
hotspot of evolutionary computation at present. EDA 
does not use crossover and mutation operator, but uses 
probability distribution of higher degree individuals in 
the group as the evolutionary model, and then produces 
the next generation of subgroups; with the use of 
tracking advanced method to replace the recombination 
of the GA modes, and it has expanded the applied space 
of EDA.  

   As an evolution model is derived from the statistical 
probability distribution of information, thus it shows the 
main characteristics of groups in making the best use of 
existing information and reflecting more accurately the 
relationship between variables. The theoretical study in 
reference [3] shows that in the iterative process, EDA 
may get interaction information of individuals between 
group and different bit of individuals, identify and 
manipulate the model of important blocks, therefore it 
can effectively solve the optimization problems in which 
the decision-making variables are interactive.  

Reference [1] shows a schematic of the EDA 
approach. In the first step N  individuals are generated 
at random in Figure 1, for example, based on an uniform 
distribution (discrete or continuous) on each variable 
These individuals constitute the initial population, 

, and each of them is evaluated. In a second step, a 

number ( ) of individuals are selected 

(usually those with the higher objective function value). 
Next, the induction of the n-dimensional probabilistic 
model that better reflects the interdependences between 
the n variables is carried out. In a fourth step, N  new 
individuals (the new population) are obtained by means 
of the simulation of the probability distribution learnt in 
the previous step. The steps 2, 3 and 4 are repeated until 
a stopping condition is verified. Examples of stopping 
conditions are: when a fixed number of populations or a 
fixed number of different evaluated individuals are 
achieved, uniformity in the generated population, and not 
improvement with regard to the better individual 
obtained in the previous generation. 
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EDA makes use of the distribution of random vector 
to characterize its internal probability of dependence, 
therefore how to find a n -dimensional probability 
model which can fully reflect the interaction between 
random variables is the key of EDA. Probability 
distribution model directly determines the performance 
of EDA. Precise probability distribution model ensures a 
good outcome, and vice versa. 

James R. Neil.al. show the pseudo code for an EDA. 
The factorization step takes the population after s 
election and constructs a graphical model. The graphical 
model is then sampled population size times using 
probabilistic logic sampling to produce the next 
population. 
Population=random Population (population Size); 
while (terminating conditions to met) 
{ 

Gene pool = selection (population); 
//Factorization step 
bayesNet = buildBayesNetFromSample (genepool); 
//End Factorisation Step 
//Sampling step 
For  (I = 0; i<populationSize; i=i+1) 
{ 
newPopulation[i] = PLS (bayesNet); 
} 
//End Sampling step 
Population = newPopulation; 
} 

Good surveys of existing algorithms can be 
founding in Larranagaet.al.[4] and in Pelikan[5,6]. 

Currently, the more common practice is the 
application of probability map model (discrete EDA uses 
bayes network to express the relationship between 
variables, continuous EDA uses gauss network). Let’s 
consider continuous random variables. Assumption of 
the edge probability distribution and the statistical 
probability distribution of ix  are normal distribution, 
based on Gauss network, probability density ( )P x  can 
be said for the multiplication of each separate conditional 
probability which obeys normal distribution. In the 
equation of  

( ) ( )1
( )n

i ii
P x P x pa x

=
= ∏  

( )1

11
( ),n i

i ij j jji
N x iμ β μ σ−

==
= + −∑∏                 (1)  

iμ is the unconditional mean of variable ix , iσ is the 
variance in the condition of given variable 

1, , 1jx x⋅ ⋅ ⋅ − , ijβ is a linear coefficient of the relationship 
intensity between ix  and jx . From the multiplicative 
theorem of probability, there are  networks has this 
joint probability distribution. How to acquire network 
parameters to determine the optimal network structure is 
proved to be an NP-Hard problem, and the complicated 
calculation has greatly reduced the computing 
performance of EDA and limited the application of EDA. 
The existing general method is the use of greedy method 
search network architecture, or solves the Gauss network 
parameters through the covariance matrix. These 

methods cannot guarantee to found the most superior 
network architecture, or reduce the algorithm operating 
speed. Considered in the theory of probability, we can 
use the entropy to express system's average uncertainty, 
but the random event uncertainty size may be described 
by the probability distribution function, like this, random 
variable’s biggest entropy distribution is the random 
variable’s smallest prejudice probability distribution, 
namely most may several distribute, thus, simultaneously 
avoided the complex computation which for the simple 
and direct construction precise probabilistic model 
sought the design parameter to carry on providing the 
possibility. 

!n

This paper presents a new algorithm named 
Maximum Entropy Estimation of Distribution Algorithm 
(MEEDA), this algorithm is based on Jaynes principle, 
using the random variables’ maximum entropy estimate 
its minimum bias probability distribution, and as the 
algorithm’s evolution model, efficiently reduce the 
computational complexity of the algorithm. 

B．The MEEDA principle 
Maximum entropy method estimates the probability 

distribution of random variables on the basis of the 
entropy of random variables, the theory of which is 
based on the principle of Jaynes[7], that is "the most 
realistic probability of distribution gives the maximum 
entropy of bound information". To the continuous 
random variables, entropy can be definition from the 
following equation: 

              ( ) ( ) ( )log
R

H x P x x= −∫ dx                       

(2) 
In the equation,   is the function of probability 

density of random variable
( )P x

X ,  is the definition 
domain of  . Maximum entropy distribution gets 

the maximum entropy

R
( )P x

( )H x  by adjusting   on the 
conditions of statistical sample. According to the varying 
points, the author uses Lagrange indefinite multipliers to 
act as functional objectives:         

( )P x

( ) ( ) ( ) ( )0[ ln 1
R

L P x P x P xλ= − +∫ ＋ +  

1
( )]m i

ii
x P x dxλ

=∑                                 (3) 

The density function is:  

0 1
( ) exp( )

m i

ii
P x xλ λ

=
= + ∑                      (4)  

( )P x can be fully identified by further defining 

parameters λ . Through the derivation of the 
mathematics, 0λ is calculated as follows:  

0 1
ln[ exp( ) ]

m i

iiR
x dxλ

=
= − ∑∫ λ                (5)  

iλ ( 1, 2, , )i m= ⋅ ⋅ ⋅  can be obtained from 

value(6): 
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∑∫
∑∫

                  (6)  

The approximate solution of iλ  can be got by 

calculating the minimum 2min
i

δ  of square of residuals 

iδ  of value(6).  

C． The calculation steps of MEEDA 
Step1: randomly generate initial solutions; 

calculate initial fitness of these initial solutions.  
N

Step2: choose  individuals which have higher 

adaptation degree ( ).  
eS

eS ≤ N

Step3: take these individuals values into the 
equation (5), (6), calculate values of parameters 

eS

0λ and iλ .  
Step4: calculate the probability density function 
of these  individuals under equation (4) .  ( )P x eS

Step5: calculate the maximum entropy distribution 
function of these  individuals under equation (2), 
establish optimal n  victories probability model that 
reflects the interaction of random variables.  

eS

Step6: produce N  new entity by victories 
probability model.  

n

Step7: calculate the adapt degree of these new 
individuals, and replace the parent populations with new 
ones.  

Step8: if the termination of the conditions is met, 
you can put out the result; otherwise you can turn to 
Step2.  

D. The performance analysis of MEEDA 
The main calculation of MEEDA focuses on the set 

of network structure. At present, the computing amount 
of the common use of greedy to search network structure 
is ; through covariance matrix to get gauss 

network parameters is  computing amount. They 
are index, only suitable for small networks. From the 
above MEEDA, the computing amount of steps3 is 

,  steps4 is , steps5 is . Therefore, 
the time complexity of MEEDA is polynomial which 
is , compared to the computing 

complexity of  of greedy and 

( )2nο

( logn

lognο

( )3nο

( )nο

)
)2

)nο ( )nο

( n n n+ +

(nο ( )3nο  of 
covariance matrix method, it has greatly reduced the 
computation amount. 

Ⅲ THE MATHEMATICAL MODEL OF JSSP UNDER 
UNCERTAIN INFORMATION 

A.  Job shop scheduling problem 
Job shop scheduling problem is one of the most 

scheduling is significant because it determines process 
maps and process capabilities for most industries. Job 
shop scheduling problem of workshop production 
process is the core of manufacturing systems operations 
technology, management technology and the 
development of optimization technology. Relevant data 
in reference [8] shows that 95 percent of the 
manufacturing process time is consumed in the non-
cutting process; it showed that the research and 
application of effective method of scheduling and 
optimization technology have become the basis and the 
key of advanced manufacturing technology practice. Job 
shop scheduling problem (JSSP) is a kind of task 
allocation which meeting the requirements of the order 
and being constrained to the allocation of resources, in 
essence, it is three-dimensional multi-objective decision-
making problem involving task, time and resources. In a 
job shop scheduling problem with n  jobs and m  
machines, there is 

significant issues in production planning. Job shop 

( ) ( ) ( ) ( )1 2 3! ! ! !n n n ⋅ ⋅ ⋅  sequen . 

n   is the number of ecuted by 

chine k . JSSP has been proven as NP-complete 
problem the most difficult issues. This is a central 
issue in production management and combinational 
optimization. In the last three decades, many researchers 
have become interested in such problems. Certain JSSP 
has been well studied, the general assumption is that the 
processing time of work piece in specific equipment is 
known and do not consider the difference of work piece 
in priority. JSSP under uncertain information concerning 
to the uncertainty parameters (for example, in the process 
of the handling capacity of products, the processing time 
and consumption costs, etc.). Taking into account the 
important of flexible manufacturing in modern 
manufacturing industry, such problem has obvious 
practical significance. 

Jia and Ierapetritou

mn
operations that m  ex

ces

k

ma

ust be

in 

[9] handled uncertainty in short-
term scheduling based on the idea of inference-based 
sensitivity analysis for MILP problems and utilization of 
a branch-and-bound solution methodology. The basic 
idea of the proposed method is to utilize the information 
obtained from the sensitivity analysis of the deterministic 
solution to determine (a) the importance of different 
parameters and constraints; (b) the range of parameters 
where the optimal solution remains unchanged. The main 
steps of the proposed approach are shown in Fig. 2. Jia 
and Ierapetritou[10] proposed a new method of 
uncertainty analysis on the right hand side (RHS) for 
MILP problems. The proposed solution procedure starts 
with the B&B tree of the MILP problem at the nominal 
value of the uncertain parameter and requires two 
iterative steps, Linear Programming (LP)/multi-
parametric Linear Programming (mpLP) sensitivity 
analysis and updating the B&B tree (Fig. 3). 
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At present, there are four basic methods to dealing 
with the uncertain information: (1) random probability 
theory; (2) fuzzy set theory; (3) Gray theory; and (4) 
rough set theory. Zhang Guo-jun.al.[11]used random 
variables to describe uncertainty Job-shop parameters, 
developed a hybrid intelligent algorithm which fuses 
random simulation, neural network and genetic algorithm 
to solve such uncertain scheduling model; Xu Zhen-
hao.al.[12] constructed a scheduling model which used 
triangle fuzzy numbers to process uncertainty processing 
time and proposed immune scheduling algorithm of such 
problem; Li Bing, Gu Xing-sheng [13]studied grey 
chance constrained programming for job shop scheduling 
under uncertainty, and gives the corresponding genetic 
algorithm. The use of these methods has a theoretical 
premise that the uncertain information according to the 
random distribution or fuzzy function or whitening 
weight function. Rough set is a new mathematical tool 
dealing with ambiguity and inaccuracy problem 

proposed by Polish scientist Zdzislaw Pawlak [14] in the 
early 1980s  without the pre-default attributes or the 
number description of characteristics such as the 
statistical probability distribution, fuzzy set theory of 
membership degree or membership function, etc, it 
identifies inherent law in approximate domain of 
problems which be determined from undistinguished 
relations and undistinguished types of the given set. Yu 
Ai-qing, Gu Xing-sheng [15] presented rough scheduling 
GA for flow shop scheduling problem under uncertainty. 
This paper constructs rough programming model of JSSP 
under uncertainty based on the constrained of uncertain 
processing time of work piece, and proposes a new 
maximum entropy estimation of distribution algorithm 
(MEEDA) to solve such complex problems. 

Solve the deterministic        
Scheduling usingB&B tree 

Extract information 
from tne leaf nodes 

-Range of parameter change   
for certain objectivtiv change 

-Inportant parameters 
-Plantrobustness to parameter 

changes 

Identify the feasible schedules 
by eamining the B&B tree 

Move the bounds of the  
uncertain parameter range 

It is assumption that a processing system has 
{ }1 2, , , NN n n n⋅ ⋅ ⋅  machines and { }1 2, , , NN n n n⋅ ⋅ ⋅

( )1, 2, ,i iK K M= ⋅⋅⋅

( )1 2, , ,
ii iK

 

work pieces, each part includes  

procedure, to remember Ji iο ο ο⋅⋅⋅ ; the 

process sequence of work piece is pre-set, every 
procedure

iiKο  can be processed on multiple different 

machines lathe, the processing time of procedure
iiKο is 

changed according to different performance of machines. 
The scheduling goal is to choose the most appropriate 
machinery for each procedure to identify the best order 
and the best start time of every work piece procedure in 
each machine so as to achieve certain optimal 
performance. 

-Robustenss metric  
-Nominal performance 

-Aerage performance 

B.   Rough set theory 
The main ideology of rough set is to partite the 

domains based on currently available knowledge of 
given issue, while maintaining the same classification 
ability, it derives the concept of classification rules 
through knowledge reduction. 

Given the non-vacuous finite set U , known as the 
domain; R is  equivalent to the relationship of U , 
known as undistinguished relations, it divides the 
elements of U into various intersection subsets , then 
formats equivalence classes; A U  is known as 
the approximate space. The general definition of rough 
set using two concepts: upper approximations and lower 
approximations. Approximate set is that when a 
collection can not be properly classified by effectively 
using equivalence relations, the other set can be adopted 
to achieve this similar collection. Subset 

( , )R=

X U⊆  can be 
described by two basic operations: 
 
  Lower approximations: 

             ( ) { }:A X Y U R Y X
−

= ⊆ ⊆U                (7) 

   

Upper approximations: 

Solve the original problem 
using a brach and biund tree  

mpLP at leaf nodes 

Compare the critical regions 
with the current upper bounds 
update the branch and bound 

mpLP algorithm 

Figure 3. Flow chart of uncertainty analysis  

Evaluate the alternative shedules 

Figure 2. Flowchart of the sensitivity analysis method 

Copyright © 2009 MECS                                                           I.J. Information Engineering and Electronic Business, 2009, 1, 1-8 



6 A New Maximum Entropy Estimation of Distribution Algorithm to Solve Uncertain  
Information Job-shop Scheduling Problem 

        ( ) { }:A X Y U R Y X φ
−

= ⊆ ≠U I          (8) 

 Let R  be a real set, (  is on the open range of ),a b
R , the real number sequence 

{ }0 1

= <

, , , nS x x x= ⋅⋅⋅

0 1a x x < ⋅⋅⋅ <

of  makes  

, then 

( ),a b

nx b= ( , )A R S
S

=  is 

known as approaching space the generated by S ,  is 
known as discrete series, each S  has breakdown  
definition on :  ( ),a b

( ) { } ( ) { } ( )0 0 1 1 1 2{ , , , , ,S x x x x x xπ = ,  

{ } ( ) { }2 1, , , , }n n nx x x x−⋅⋅ ⋅  

This equivalent to a equivalence definition, so that 
for ( , )x a b∀ ∈ , its under approximation and on 

approximation of  can be defined as: S

     ( ) { }sup : , 0,1, ,S i iapr x x S x x i n
−

= ∈ ≤ = ⋅⋅⋅

( ) { }inf : , 0,1, ,S i iapr x x S x x i n
−

= ∈ ≥ = ⋅⋅⋅

     (

9)        

(10) 

 Clearly, when ix x=

1

, , 

while 

( ) ( ) iapr x apr x x
−

−
= =

i ix x< < x + apr
−

, ( ) ixx = ， ( ) 1iapr x x
−

+= ，

were the forward-backward points of equivalence classes. 

C. Mathematical models 

Let rough variables  describe the 

uncertainty of the processing time of work piece, r

,r r r
−

−

⎛ ⎞= ⎜
⎝

⎟
⎠

−
 is 

the  lower approximations describes the minimum 
determination time of the processing time of work piece , 

 is the upper approximations describes the most likely 
time of the processing time of work piece.  
r
−

Let rough variable  be the processing time of 

work piece 
i jrn mt

( )1, 2, , N= ⋅⋅⋅

)

( 1, 2,jm j = ⋅

i

, M⋅⋅

n i  on 

machine , rough variable  be 

the completion time of processing of work piece 
 on machine . 

Then the completion time of N  work pieces and 

( 1, 2,jm j = ⋅

( )1, 2, , N= ⋅⋅⋅

i jrn mp

, M⋅⋅in i )
M  

machines of JSSP under uncertain time is:  
                                  ( )

11,1r

( ) ( )
11 1, , 1 2,3,

jr j r rn mp n m p n k t j M= − + = ⋅⋅⋅   

(12)      
( ) ( )1 1,1 ,1 2,3,

ir i r i rnp n p n t i− N= + = ⋅⋅⋅          
(13)    

( ) ( ) ( ){ }1 1, max , , ,
i jr i j r i j r i j rn mp n m p n m p n m t− −= +

2,3, 2,3,i N j M= ⋅⋅⋅ = ⋅⋅⋅  (14) 

Let ( )H t  be the completion time of the last work 

piece of ( ),r Nmaxp p j m

min

=  on the final machine, then 

the objective function is . ( )H t

 D. Model  solution 
For the rough variables of the interval number, 

according to some theorems and expansion definition of 
rough set, the paper definite rough operations and 
concept for JSSP under uncertain information.  
① Rough calculation is rough addition, the definition of 

two rough variables ,x x x
−

−

⎛ ⎞= ⎜
⎝ ⎠

⎟  and ,y y y
−

−

⎛ ⎞= ⎜
⎝ ⎠

⎟ , rough 

addition is defined as:  

       , , ,x y x x y y x y x y
− − −

− −− −

⎛ ⎞ ⎛ ⎞ ⎛ − ⎞+ = + = + +⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

⎟
⎠

      (15) 

 ② The information described by rough variables is 
inaccurate or the uncertainty, therefore, definite 
precision  as imprecise measure of rough variables:  

        ( ) ( )
r r

precision r
Range U

−

−
−

=                         (16) 

      ( )min min precision rationο α β= × + ×             (17) 

( )Range U
r

 is the interval range of the domain of 
rough variable .  
According to the reference [16], the objective function 

of rough programming scheduling model can be 
transformed as:  

  ( )min min precision rationο α β= × + ×       (18)     

Among them, 
( )

( ){ }
,

max ,

r N

r N

p n M
ration

p n M

−

−

= ; 

,α β  is the definition of parameters for decision-making, 
α  describes the importance of precision  on the goal 
of decision-making, the smaller precision , the higher 
precision of the rough variables. Similar to this, β  
describes the importance of  on the goal of  ration

1rnp n t=                            
(11)    
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decision-making, the smaller , the smaller lower 
approximations of make . 

ration
span α  And β  are 

determined based on the objectives demand of decision-
making. 

Ⅳ.   SIMULATION 

Three well-known standard test question MT06, 
MT10 and the MT20 proposed by Muth and Thompson 
[17] are used for MEEDA test. The technique routes of 
various work pieces are fixed, every procedure can 
process in multiple devices, only differences on the 
processing time and cost. Table Ⅰ gives the raw data of 
MT06,  describes work piece corresponding 
procedures on machine m  and processing time t . In the 
actual operation of this paper, the lower approximations 
of work piece processing time  t  comes from the 
standards data, on the basis, the upper approximations is 
floating product according to  actual production situation. 

( , )m t

The set of parameters and operator strategy of 
MEEDA are as follows: ， , the highest 
adaptation individual in eS can directly get into the next 
offspring, to compute the remaining 499 individuals to 
construct the probability distribution model. The set of 
parameters of GA are as follows: ，exchange 
probability , mutation rate , using 
proportion choice selection mechanism to reproduce and 
two points exchange strategy where the point is 
randomly generated. The initial group of two algorithms 
is randomly generated according to normal in the same 
way. The decision-making parameters of rough 
programming model are that

1000N＝ 500eS ＝

10000N＝
mp =

0.30,

0.90cp = 0.01

0.80α β= = . The 
algorithm program is constructed by using Visual C + + 
language on a PC, the calculation results in figure 4, 
figure 5 and table 2. Among them, figure 4 is the Gantt 
of MT06, figure 5 is the convergence curve of MEEDA 
of MT10, table 2 is the performance compared of 
MEEDA and GA. 

TABLE I.   

RAW  DATA OF MT06 

 m,t m,t m,t m,t m,t m,t 
Job 1 3,1 1,3 2,6 4,7 6,3 5,6 
Job 2 2,8 3,5 5,10 6,10 1,10 4,4 
Job 3 3,5 4,4 6,5 1,9 2,1 5,7 
Job 4 2,5 1,5 3,5 4,3 5,8 6,9 
Job 5 3,9 2,3 5,5 6,4 1,3 4,1 
Job 6 2,3 4,3 6,9 1,10 5,4 3,1 
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Figure 4.  Gantt of MT06 

Figure 5. Convergence curve of MEEDA of MT10 

TABLE II.   

THE PERFORMANCE COMPARED OF  MEEDA AND GA 

problem n m 
best 

solution 
GA MEEDA

MT06 6 6 55 55 55 
MT10 10 10 930 965 930 
MT20 20 5 1165 1215 1165 

Ⅵ.   CONCLUSION 

This paper studies job shop scheduling problems 
under uncertain information, uses rough set theory to 
establish rough programming scheduling model of such 
problem, which is more truly reflects the uncertain 
situation in workshop than other scheduling models, and 
proposes a  new maximum entropy estimation of 
distribution algorithm to solve such complex problems. 
The simulation verifies the validity of rough 
programming model and MEEDA, which provides a new 
approach for job shop scheduling problem under 
uncertain information. 
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