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Abstract 

Data Warehousing, data mining and analysis plays a very important role in decision support. Various 

commercial organisations are using tools based on these techniques to be used for decision support system. 

Apriori algorithm is a classic algorithm which works on a set of data in the database and provides us with the 

set of most frequent itemsets. It is used to find the association rules and mines the most frequent itemsets in a 

set of transactions. Here the frequent subsets are extended one item at a time. In this paper a hash-based 

technique with Apriori algorithm has been designed to work on data analysis. Hashing helps in improving the 

spatial requirements as well as makes the process faster. The main purpose behind the work is to help in 

decision making. The user will select an item which he/she wishes to purchase, and his/her item selection is 

analysed to give him/her an option of two and three item sets. He/she can consider choosing a combination of 

two item sets or three item sets, or he/she can choose to go with his/her own purchase. Either ways, the 

algorithm helps him in making a decision. 

 

Index Terms: Apriori algorithm, hashing, frequent itemsets, association rule, support count. 

 

© 2018 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research 

Association of Modern Education and Computer Science. 

1. Introduction 

Every year the amount of data being generated increases exponentially thus making the process of extracting 

useful information from them more tedious and critical. Most of these information are stored in a data 

repository known as the data warehouse. The data warehouse consists of data which are gathered from various 

sources inclusive of external sources, summarized form of information from the various internal systems as 
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well as from the corporate databases. Also storing the data is not enough, extracting useful information from 

this wide collection of data is equally important. This is where data analysis comes into play. It consists of 

writing simple queries, doing complex multidimensional analysis, data mining as well as presenting reports of 

statistical analysis.  

A data warehouse consists of the data model, metadata as well as all the different rules in relation to data 

aggregation, distribution, replication, error handling and all the other various information required for the 

purpose of mapping the data warehouse. Data warehousing strategy mainly involves developing useful 

information from raw data using fast methods. The various data mining and data analysis tools make use of 

pattern recognition, cluster analysis, quantitative analysis, associations and correlation discovery for the 

purpose of data analysis without any kind of IT intervention [6]. There are two main ways of identifying 

frequent itemsets from a set of transactions: 

Sequential: This process studies the order in which items are frequently purchased in a sequential data set, 

where sequence records an ordering of events. 

Structured: This process searches for frequent sub-structures in a structured data set. Structures can consist of 

– graphs, lattices, sequence, sets, tree, single item or combination of above structures. 

Each element of an itemset may contain a subsequence and such containment relationship can be defined 

recursively. Therefore, structural pattern mining can be considered as the most general form of frequent pattern 

mining. Once the useful information is extracted, it is presented to the users in a comprehensible form using 

processes which are collectively called Business Intelligence (BI). Managers can choose in between the various 

types of analysis tools available such as reports and queries, OLAP and its many variants (MOLAP, HOLAP 

and ROLAP). Data mining supports these and the patterns formed are later used for further data analysis thus 

completing the process of business intelligence [8]. Online Analytical Processing (OLAP) is one of the most 

popular data analysis technologies. Here, data are organized into cubes or multidimensional hierarchies using 

OLAP servers to enable fast analysis of data. The various data mining algorithms uncover patterns or 

relationships by scanning the databases. Data mining and OLAP are complementary where data mining takes 

up a bottom up approach for data analysis and OLAP provides the top-down approach. One such data analysis 

algorithm is known as Apriori algorithm. 

With the escalation in the field of e-Commerce, data mining and analysis have seen an exponential growth. 

The aim is to find the hidden patterns for better understanding of customer buying style in retail sectors. For 

these problems Apriori algorithm is one of the most used solution for finding frequent itemsets from a 

transaction dataset and derive the corresponding association rule. This is a real-world example of the 

implementation of the Apriori algorithm. Based on the pattern of purchase found in the customers, the items 

which are most likely to be purchased by the customers are placed near each other to help him in decision 

making.  

The present research work is enhancing the efficiency of the algorithm by implementing it with the hashing 

technique. 

2. Related Work 

There have been several works which have been done taking Apriori algorithm as the base method. One such 

research was described in [1] where Apriori Algorithm has been enhanced for discovering frequent patterns 

with an optimal number of scans. This particular paper has focused on the inadequacy of the Apriori algorithm 

for scanning the entire transactional database for the purpose of discovering association rules. The amount of 

time spent in scanning the entire transactional database is reduced by restricting the number of transactions 

while doing a calculation on the frequency of item-pairs or an item. Thus the improved algorithm optimizes the 

time complexity. Another research work, as depicted by [2], dealt with implementation of association rule 

mining using a reverse Apriori Algorithmic approach. This paper also made an improvement on the reverse 

Apriori and has compared the results with the existing classical one. A research work on parallel Apriori 

algorithm for mining frequent itemsets was described in [3]. This paper has revised Bodon’s implementation of 
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finding the frequent itemsets into parallel ones where parallel computers were used to read the input 

transactions. They also presented the effect of the parallel computers on this implementation. Another research 

work [4] had proposed a new and enhanced form of the Apriori algorithm by presenting solution to the frequent 

set counting problem. They had optimized the beginning iterations of the Apriori, which consumes the 

maximum time when datasets with frequent length patterns of short or medium are considered. They had used a 

method of storing candidate items sets and keeping a count of their support and have also exploited the 

effective pruning methods, which has brought about a reduction in the size of the data set with the progress of 

the execution. For identifying frequent 2-itemsets, a research work was put forward in [5]. Another work has 

been done in [9] which illustrated Apriori algorithm on simulated database and found the association rule on 

different confidence value. Sheila A. Abaya [10] did related work in this field and used a modified Apriori 

algorithm which makes less database access and hence executes faster than the original algorithm. Use of 

Apriori algorithm has also been depicted in another research work [7]. Apriori algorithm has also been used for 

detecting suspicious emails [11]. Using deception theory which suggests reduced frequency of use of first 

person pronouns as well as exclusive words and more frequent usage of negative emotion words as well as 

action verbs point towards suspicious mails. Applying this model of deception on a set of email and after 

preprocessing the body of the email they have used Apriori algorithm that generates a classifier to categorize 

the email as deceptive or not. 

3. Description of the Proposed Work 

The main aim of the present research work is to generate a decision support system in a fast and efficient 

way. The proposed algorithm has been built based on the Apriori algorithm. It would identify a list of frequent 

item sets from the purchasing pattern coming from the users. This input to the proposed method has been taken 

in the form of a transaction string. Based on the various items present in the transaction string, the user will be 

given a choice of frequent item sets (one, two and three). The value of these frequent itemsets will be generated 

based on a particular parameter known as the support count. 

For example, let there be a transaction table as shown in table 1. It consists of the transaction IDs and the 

corresponding transaction strings. The given table consists of four transactions. From T1, the one-item 

candidate table (C1) has been constructed and that has been shown in table 2. The candidate table contains all 

the items and their corresponding frequency values. Let the minimum support count be 2. Comparing the 

minimum support count and the frequency of the items in C1, the frequent one item set table (L1) is generated 

and has been shown in table 3 which comprises of items having frequency values greater than or equal to 2. 

Table 1. Transaction table, T1 

Transaction Id Itemset 

T01 1,3,4 

T02 2,3,5 

T03 1,2,3,5 

T04 2,5 

Table 2. Table, C1 

Item Support Count 

1 2 

2 3 

3 3 

4 1 

5 3 
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Table 3. Table, L1 

Item Support Count 

1 2 

2 3 

3 3 

5 3 

Table 4. Table, C2 

Itemset 

{1,2} 

{1,3} 

{1,5} 

{2,3} 

{2,5} 

Table 5. Table C2 with Support Count 

Itemset Support Count 

{1,2} 1 

{1,3} 2 

{1,5} 1 

{2,3} 2 

{2,5} 3 

{3,5} 2 

 

A two item-set candidate table (C2) has been generated (table 4), which consists of item pairs (i, j) where i < 

j and both i and j are from L1. The required item sets along with their support counts has been shown in table 5. 

A frequent two item-set table (L2) is now generated from the already constructed C2 table. L2 consists of all 

those item pairs (i, j) whose frequency in C2 is greater than or equal to 2 (minimum support count). This has 

been shown in table 6. 

Table 6. Table L2  

Itemset Support Count 

{1,3} 2 

{2,3} 2 

{2,5} 3 

{3,5} 2 

 

In a similar manner, a three item-set candidate set (C3) and a frequent three itemset (L3) may be generated. 

Now when a user selects a certain set of items to buy, the various combination of the items (1, 2 and 3) are 

formed and compared with the already generated frequent item-set tables (L1, L2, L3). If the combination of 

items forms a match, then they are considered to be the most valued items. 
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Since the aim of the research work has been to incorporate a hashing function along with Apriori algorithm, 

hash tables have been generated to work with the items present in the tables containing the frequent itemsets. 

This was done to improve the efficiency of Apriori algorithm by considerably reducing the size of the 

candidate itemsets.  A two itemset hash table (H2) was used to store a combination of two items (y, x), where y 

< x, instead of the candidate table C2. Each of these items in the item pair (y, x) was picked up from L1 table. 

The hash function used for the purpose of storing the items was [(y * 10) + x] mod 13. A three-item set hash 

table (H3) was used for the purpose of storing a combination of three items (z, y, x). Each of these items needs 

to be a part of L1 table. It was also required that all possible two combinations of items z, y, x were belonging 

to the L2 table and z < y < x for all the items. 

The hash function used for the purpose of storing the items in the hash table was [(z * 100) + (y * 10) + x] 

mod 13. To check the system integrity of the proposed work, different hash functions along with different sizes 

of hash tables were used. Various hash functions can be used for hashing and no hash function is collision free. 

The aim of using a particular hash function was to get minimal number of collisions. In the present research 

work, two different hash functions were used as depicted below: 

 

1. Concatenation function – This function has concatenated the items present in 2 or 3 itemsets, as 

available, and then modulo operation was performed using a particular hash table size. 

2. General Hash Function: A function has been defined and used. The function was ((z * 100) + (y * 10) 

+ x) mod (table size) for 3 itemsets combination and ((y * 10) + x) mod (table size) for 2 itemsets 

combinations. Here z, y and x are index values of items and z < y < x.  

 

The greater the hash table size the less has been the number of collisions. But at the same time, by increasing 

the hash table size, many spaces could be kept unused which would lead to a wastage of storage space. Hence a 

trade-off between number of collisions and space wastage has to be made while choosing the hash table size. In 

the proposed work, hash table sizes of 13 and 17 were used. Furthermore, the hash table size is mostly chosen 

to be a prime number as this leads to a comparatively less number of collisions. 

4. Description of the Proposed Work 

Step 1: Take the transaction string as input 

Step 2: Update the 1-itemset candidate table C1 using the current transaction string by following these steps. 

Step 2.a: Extract each item from the transaction string item list and update the count of that item in the C1 

table. 

Step 3: Items in C1 with support count more than minimum support count, which are not present in frequent 

1-itemset table L1, are updated. 

Step 4: All possible 2 item combination of the items present in the transaction string is generated using only 

those item pair both of which are present in L1. 

Step 5: The 2 item combinations generated in Step 4 are hashed into 2-itemset hash table H2 using a hashing 

function. 

Step 6: Frequent 2-itemset table L2 is updated using the members of H2 which has at least the minimum 

support count. 

Step 7: All possible 3-item combination of the items present in the transaction string is generated using only 

those item sets where all the items are present in L1 also all its 2-item combinations should be 

present in L2. 

Step 8: The 3 item combinations generated in Step 7 are hashed into 3-itemset hash table H3 using some 

hash function. 

Step 9: Frequent 3-itemset table L3 is updated using the members of H3 which has at least the minimum 

support count. 
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5. Result Analysis 

The proposed method was executed in an environment with the following hardware and software platforms: 

Java SE 9.0.1 on Windows 10 operating system with Intel i5 5th generation processor. 

Hash tables with two different sizes have been chosen for the implementation and the sizes were 13 and 17. 

Prime numbers have been chosen as the sizes of the hash table because of the fact that every key that has shared 

a common factor with the number of buckets would be hashed to a bucket that was a multiple of this factor. 

Therefore, the common factor between them needed to be reduced, so selecting a prime number as a mod in 

hash function has been the best way. 

Table 7. Transaction Table 

Id Item list 

1 5,6,10,50,48,10 

2 15,26,48,5,10,20 

3 34,26,5,25,28,31,1 

4 5,1,26,48,4,3,42 

5 6,29 

6 19,46,37,17 

7 28,17,39,50 

8 16,28,17,38,5,24 

9 5,22,33,44,11 

10 28,15,6,28,8,41 

11 25,26,10,50,48,10,11,1 

12 15,36,48,5,10,20,1,2, 3 

13 4,15,44,43,21,7 

14 15,1,12,17,19,21,7 

15 8,8,8,8,8,8,16,16,16 

16 8 

17 28,29,30,31, 32,27,39 

18 35,45,7,6,5,10 

19 7,17,23,35,49 

20 18,28 

 

Since two different hash functions have been used with two separate table sizes, the proposed method could 

be run with four different cases as mentioned below: 

 

 using concatenation hash function and keeping hash table size 13 

 using the general hash function and keeping hash table size 13 

 using concatenation hash function and keeping the hash table size 17 
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 using the general hash function and keeping the table size 17 

Table 8. 1-itemset Candidate Table 

Item Support Count 

1 4 

2 1 

3 2 

4 3 

5 8 

6 4 

7 3 

8 8 

9 0 

10 7 

11 3 

12 2 

13 0 

14 1 

15 5 

16 4 

17 5 

18 1 

19 3 

20 3 

21 2 

22 1 

23 1 

24 1 

25 3 

26 5 

27 1 

28 7 

29 2 

30 1 

31 2 

32 1 

33 1 

34 1 

35 2 

36 1 

37 1 

38 1 

39 2 

40 0 

41 1 

42 1 

43 2 

44 2 

45 1 

46 1 

47 0 

48 5 

49 2 

50 4 

 

For the implementation purpose, twenty randomly generated transactions on fifty different items have been 

created. The items have been numbered from 1 to 50. Table 7 stores the information for the transaction data. 
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Each transaction row is available to us through a transaction string I1, I2, I3…. In. On every such transaction 

string the algorithm is executed, and the hash table is updated. 

Corresponding 1-itemset candidate table C1, for fifty items has been generated as shown in table 8 and the 

corresponding frequent 1-itemset table L1 has been shown in table 9. Here we are considering 1 as the 

minimum support count. Both the tables have been shown in the next page. 

After this, hash functions have been applied for different cases. The first case is depicted below: 

The hash function that has been initially chosen is based on the concatenation operation. The function is first 

applied on 2-itemset pair. It concatenates each item of the 2-itemset pair and performs mod 13, the size of the 

hash table, which initially has been chosen. To generate the H3 table another concatenation operation was 

performed on x, y and z and then the modulus was performed and the value we got as result is the hashing 

index for that itemset in the hash table. Here z, y and x are index values of items and z < y < x. The result of the 

execution of 2-itemsets has been shown as table H2 and that of 3-itemsets as table H3. 

Table 9. Frequent 1-itemset table 

Item Support Count 

1 4 

5 8 

6 4 

8 8 

10 7 

15 5 

16 4 

17 5 

26 5 

28 7 

48 5 

50 4 

Table 10. Few Entries of Table H2 

A b C D e f G 

Null null Null null null null 5, 26 

Null null 5, 48 null null null 5, 26 

Null null Null null 6, 28 null Null 

5, 20 48, 50 Null null null null Null 

25, 48 15, 48 5, 48 5, 10 11, 48 5, 25 5, 26 

Null null 11, 20 null 15, 25 15, 26 10, 20 

Null null Null null 25, 26 null Null 

1, 17 null 1, 19 17, 19 null null Null 

Null null Null 5, 10 5, 6 null Null 

Null null Null null null null 5, 26 

 

Table 10 shows the all the records stored in H2. In this table, the column headings, denoted by characters 

starting from ‘a’, signify thirteen possible outcomes after applying the hash function as the modular operation 

has been performed on 13. Here ‘a’ stand for 0 and so on and so forth. Table 10 has shown the entries for the 
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first seven outcomes, denoted from ‘a’ to ‘g’. From H2, the frequent 2-itemset table (L2) has been generated. 

Table 11 shows some of the entries from L2. 

Table 11. Few Entries of Table L2 

Item Support Count 

1,17 1 

1,19 1 

10,48 2 

11,15 1 

5,10 2 

5,17 1 

15, 17 1 

 

In table 11, the support count of the itemset {1, 17} is 1 as this set has occurred only once in H2. Similarly, 

the support count values of other itemsets have been depicted in L2. From L2, H3 has been generated and some 

of the entries of H3 have been shown as table 12. 

Table 12. Few Entries of Table H3 

a b c d e f g 

null 5,17,28 null null null null Null 

10,26,48 26,48,50 10,26,50 null null 10,48,50 Null 

1,10,11 1,5,48 1,5,10 1,5,11 1,5,25 1,5,26 5,11,48 

1,11,15 1,10,25 1,10,26 1,25,48 1,10,15 1,11,20 5,15,25 

1,20,25 1,20,26 1,15,20 5,10,15 1,15,48 10,15,48 5,25,26 

5,10,25 5,10,26 5,25,48 5,15,48 5,11,20 11,20,26 10,11,20 

5,20,26 5,15,20 10,20,26 10,15,20 10,25,48 null 11,15,20 

10,26,48 10,11,15 15,26,48 11,26,48 11,20,25 null 15,25,48 

15,20,48 10,20,25 null 15,20,25 15,20,26 null 25,26,48 

null 11,20,48 null null 20,26,48 null null 

null 1,15,19 null null null null 1,17,19 

 

From H3, the frequent 3-itemset table (L3) has been generated. Table 13 shows some of the entries from table 

L3. 

Table 13. Few Entries of Table L3 

Item Support Count 

10,26,48 2 

1,10,11 1 

1,15,19 1 

1,5,11 1 

10,25,48 1 

11,20,25 1 

11,15,20 1 
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In table 13, the support count of the itemset {10, 26, 48} is 2 as this set has occurred twice in H3. Similarly, 

the support count values of other itemsets have been depicted in L3. 

These hash tables once calculated, are stored in the database. When a customer makes a new transaction, he 

is given an option of 2 and 3 most frequently bought itemset with respect to the items in his transaction list, if 

those items have been bought quite frequently with other items. In the second case, another hash function has 

been applied on the set of transactions as mentioned in table 7.  

This hash function is stated below: 

 

a. ((y * 10) + x) mod 13 in case of 2-itemsets 

b. ((z * 100) + (y * 10) + x) mod 13 in case of 3-itemsets 

 

In both the cases, table size was taken to be 13 and z, y and x are index values of items and z < y < x.  Table 

14 depicts the entries of H2, which stores the result of the execution of hash function on 2-itemsets and that on 

3-itemsets has been shown as table H3 and table 16 depicts the entries of H3. 

Table 14. Few Entries of Table H2 

a b c d e f g 

5,28 null 5,17 17,28 null null null 

null null null null null 10,48 null 

5,15 15,20 1,5 10,20 1,20 5,20 1,48 

11,20 20,48 11,48 15,48 20,25 10,48 11,26 

null null null 25,26 null 11,25 15,25 

null null null null null 20,26 null 

null null null 4,15 null null null 

15,19 1,17 null 1,19 null null null 

null null null null null 8,16 null 

null null null null 5,6 6,10 null 

 

As has been done in the first case, from H2, the frequent 2-itemset table (L2) has been generated. Table 15 

shows some of the entries from table L2. 

Table 15. Few Entries of Table L2 

Item Support Count 

5, 28 1 

15,19 1 

1,17 1 

25,26 1 

1,5 1 

4,15 1 

1,19 1 

 

In table 15, the support count of the itemset {5, 28} is 1 as this set has occurred only once in H2. Similarly, 
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the support count values of other itemsets have been depicted in L2. From L2, H3 has been generated and some 

of the entries of H3 have been shown as table 15. 

Table 16. Few Entries of Table H3 

A b c d e f g 

null null 5,26,48 null null null null 

1,20,25 1,5,20 1,11,26 1,5,48 1,5,10 1,5,11 1,5,25 

5,10,11 1,10,48 1,15,25 1,10,11 1,10,25 1,10,26 5,11,20 

5,15,26 1,11,25 5,10,26 1,15,26 1,11,15 1,26,48 10,15,26 

 

From H3, the frequent 3-itemset table (L3) has been generated. Table 17 shows some of the entries from table 

L3. In table 17, the support count of the itemset {5, 26, 48} is 1 as this set has occurred once in H3. Similarly, 

the support count values of other itemsets have been depicted in L3. 

Similarly, other two cases have been executed with table size 17 and the corresponding results were obtained 

as expected.  

Table 17. Few Entries of Table L3 

Item Support Count 

5,26,48 1 

1,20,25 1 

1,15,48 1 

1,15,26 1 

 

Furthermore, the proposed algorithm doesn’t depend upon the size of the transaction table in the sense that, 

if every time a new transaction takes place the whole transaction table won’t be rescanned to generate the 

updated 1,2 and 3 frequent itemset table, instead the frequency of the new items purchased are updated in the 

hash table and frequent itemset table. This in turn saves time as the whole table is not scanned after every 

transaction which becomes a tedious job once the size of the transaction table increases as well as when the 

number of items in the inventory increases. Also, since we are using hashing to store the 2 and 3 itemsets, we 

don’t need a candidate table an auxiliary data structure, which needs to be scanned completely every time to 

find the frequency of an itemset present in the table. This is achieved as same itemset appear under same index 

value and hence their count can be found by traversing that index location only, where the itemsets have been 

stored using chaining to resolve collision.  

Thus, by implementing the original Apriori algorithm using hashing, time complexity could be decreased. 

6. Conclusion and Future Scope 

On comparing the H2 table of size 17 and 13 for the general hash function, it has been observed that both are 

suffering quite less collisions but the H2 of size 13 is more compact and contains less NULL entries than that of 

size 17. Thus, for this set of transaction H2 of size 13 is preferred. But since the number of transactions may 

increase in practice, a hash table with bigger size would be preferred to reduce the collisions. In such a case, H2 

of size 13 can be rehashed in H2 of size 17. 

The same conclusion holds for hash table H3 of size 13 and 17. 

On comparing H2 of size 13 for two different hash functions, it has been observed that there is no significant 

difference between the outcomes stored in two H2 tables. The number if elements remain quite the same; only 

the hashed position has been different. 
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The same holds for H3 table also. The same case is also true for hash table of size 17. 

Further, a better hash function can be used so that the number of null positions may be reduced in the hash 

tables and to improve the spatial complexity of the algorithm further. Though finding a perfect hash function 

based upon transaction is difficult because the transactions are random and thus it is difficult to design a hash 

function based upon random transactions. 
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