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Abstract 

Regression test suite study has been research topic for decades. In this paper we investigate the Regression test 

suite prioritization using residual test coverage algorithm for white box testing and introduce new statistical 

technique for black box testing. Our contribution in this paper is mainly problem solution to breaking the tie in 

residual coverage algorithm. Further we introduce new metric which can be used for prioritizing the regression 

test suite for black box testing. Towards the end part of the paper we get down to implementation details 

explaining how this can be done in the industrial or research project. The intended readers of this paper are 

developers and testers in the research field and practitioners of software engineering in the large scale industrial 

projects. 
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1. Introduction 

We begin introduction of this paper with the statement, “Developer is also tester and vice versa” of Aditya P. 

Mathur [1]. A versatile software professional or researcher works in multiple capacities in a typical 

development life cycle. Missing exposure to either development or testing is partial view of the product 

development life cycle. The tester without development knowledge can contribute little towards the white box 

testing and developer without testing knowledge means quality compromise from the product perspective. With 

this precursor, it is clear that the paper is for both the testers and developers. 

Regression testing is discussed at lengths in several papers. The main topics of research are: Test selection, 

minimization and prioritization. There are two measures of coverage 

 

 Requirement coverage. In this method we trace the test cases to requirements and ensure that all the 
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requirements are covered. The requirement specification document itself serves as test oracle. 

 Code coverage. In this method the measures such as statement coverage, branch coverage, loop coverage 

etc are checked to ensure that nothing is missed as part of testing. 

 

Requirements coverage is not the topic of discussion in this paper. It’s the latter which will be focused as the 

same metric is used in the white box testing and black box testing approaches discussed in the further sections. 

If P is the product code before bug fixes and enhancement and P’ is the product code after the modification, 

we can denote the corresponding test suites as T and T’ respectively. Now, one way to visualize T is as 

collection of obsolete, redundant and valid test cases. In other words T is collection of {obsolete, redundant, 

valid} test cases. The T’ will encompass {valid, newly added test cases}.  

There are different schools of thoughts when it comes to selecting regression tests between successive 

releases. Each with their own set of advocates. As Aditya P. Mathur aptly classifies [1], the philosophy for each 

of these categories is very different. The categories are: 

 

 Test all: Brute force method with long execution cycles. Most widely used technique in the commercial 

world combined with automation of regression testing 

 Random selection: Sampling of the test cases. Better than no regression testing at all. Test cases are picked 

from the test suite except obsolete test cases randomly. 

 Selecting modification traversing tests: Assumes the tester to have the knowhow of the complete product 

code. Better than test all and random selection process. Usually the testers classify the test cases in 

buckets where they put related test cases in a given bucket. Depending upon how the test cases are chosen 

this mode of testing may or may not yield good results. 

 Test minimization: Pruning of the test suite by dropping the test cases with similar product trace code as 

they are redundant. This results in new reduced size of the regression test suite. 

 Test Prioritization: Assumes that the test cases can be ranked on the basis of certain criteria. 

 

It is the last school of thought which will be investigated in this paper. Regression test suite prioritization is 

must when there is crunch of resources and time. 

In some organizations, the organizations may choose combination of the approaches mentioned above. Large 

execution time means test all approach and may mean drain of resources and time. Therefore good amount of 

research has already gone in optimizing the regression test suites. 

In this paper we look at test prioritization using the approach which is implementable given time. The paper 

can be broadly classified into following sections: 

 

 Residual test coverage algorithm enhancements for regression test suite prioritization using white box 

testing. 

 Statistical techniques for regression test suite prioritization using black box testing. 

 Process flow at the implementation level which can aid the above two processes. 

 Case study of coverage tool to explain how metrics of choice can be extracted. 

 

As already explained earlier, if the current test suite is visualized as the collection of {obsolete, redundant, 

valid test cases}, the test suite for new version of the product will be {valid test cases, newly added test cases}. 

The new test cases added are with reason. They cover either the newly added functionality or they cover the 

modified functionality. In this case some of the valid test cases may become redundant or obsolete. In rare 

scenarios the obsolete test cases become valid test cases when the removed functionality is added back for 

some reason. In variably the newly added test cases go through the review process depending upon the 

organizations process in place. They are always executed. The remaining test cases need to be prioritized. We 

consider modified test cases as new test cases. Further, the approaches mentioned in further sections for black 

box and white box testing assume the historical data of the test suite is maintained between successive releases. 



34 Regression Test Suite Prioritization using Residual Test Coverage Algorithm and Statistical Techniques  

That is the coverage and execution time data of current suite becomes the reference data for the next build of 

the product. Since the new test cases are always executed, we are not ranking them among themselves. This 

means the test cases will be new test cases followed by prioritized test cases. 

Since the newly added test cases will be far less compared to valid test cases taken from the previous release 

the following approaches should work in practical setup. The gain of ranking the new test cases is minimal as 

they are executed mandatorily. 

2. Residual Test Coverage Algorithm Enhancements for white Box Testing 

We assume the reader of this paper is aware of residual test coverage algorithm. The concept behind the 

algorithm is explained nicely in the reference book [1]. The problem of breaking the tie is left to readers as an 

exercise. This is the problem definition which we will investigate. We there-fore modify the algorithm such that 

the random test selection is weeded out completely at all the steps. 

The newly introduced parameters and steps by us are in italics. The modified algorithm looks as follows: 

Algorithm for prioritizing the regression test suite post modification. 

Input T’: Set of regression tests for the modified program P’. 

entitiesCov: Set of entities in P covered by tests in T’. 

cov: Coverage vector such that for each test t Ɛ T’, cov(t) is the set of entities covered by executing P against 

t. 

executionTime: executionTime(t) is the time taken by the test case t Ɛ T’ to complete the execution. 

linesOfCodeTraced: linesOfCodeTraced(t) is the total lines of  product code covered by the test case t Ɛ T’ 

during execution. 

 

Output PrT: A sequence of prioritized test cases such that (a) each test case belongs to T’, (b) each test in T’ 

appears exactly once in PrT, and (c) tests in PrT are arranged in the ascending order of cost. 

 

Step 1: X’ = T’. Find t Ɛ X’ such that │cov(t)│≥ │cov(u)│for all u Ɛ X’, u ≠ t. 

Step 2: Set PrT = <t>, X’ = X’\{t}. Update entitiesCov by removing from it all entities covered by t. Thus 

entitiesCov=entitiesCov\cov(t). 

Step 3: Repeat the following steps while X’ ≠ Φ and entityCov ≠ Φ. 

 

3.1. Compute the residual coverage for each test t Ɛ T’. resCov(t) = │entitiesCov \ (cov(t) ∩entitiesCov│. 

resCov(t) indicates the count of currently uncovered entities that will remain uncovered after having 

executed P against t. 

3.2. Find test t Ɛ X’ such that resCov(t) ≤ resCov(u), for all u Ɛ X’, u ≠ t. If two or more such tests exist then 

first compare │cov(t)│, if there is tie again look for executionTime(t) and linesOfCodeTraced(t) and 

select the one with high │cov(t)│, linesOfCodeTraced(t) and least executionTime(t). 

3.3. Update the prioritized sequence, set of tests remaining to be examined, and entities yet to be covered by 

tests in PrT. PrT = append(PrT, t), X’=X’\{t}, and entitiesCov = entitiesCov\cov(t). 

 

Step 4: Append to PrT any remaining tests n X’. All remaining tests have the same residual coverage which 

equals │entitiesCov│. Hence these tests are tied. Now follow exactly what was done in step3.2. That is 

when two or more tests tie look for test case with higher value of │cov(t) │and linesOfCodeTraced(t) 

and least executionTime(t).  

End of Algorithm 
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Readers of this paper are strongly advised to trace the example 9.29 in the text book again in conjunction 

with the algorithm. 

This algorithm needs bit of explanations in plain English as the notations of Mathematics often do not go 

well with the computer science practitioners. In simple terms we start with the test case which covers maximum 

entities to begin with. Then we choose the test case which will run the maximum uncovered entities that are not 

already covered by previously run test case. The second step is repeated till there are no more unique entities to 

be covered. Of course when we encounter two or more test cases with the same cost, we go ahead with the one 

which has high entities coverage, high loc trace and least execution time. Once all the entities are covered, we 

choose to run the remaining test cases with the same criteria i.e. high entities coverage, high loc trace and least 

execution time. The logic behind this is, always choose the test case which covers maximum entities, traces 

maximum lines of code in least amount of time. 

In the introduction section we mentioned about same person wearing different hats of developer and tester. 

This is with a reason. White box testing is by or with the help of developer. 

3. Statistical Approach for Prioritization of Test Cases for Black Box Testers 

Although the approach used in section 2 is nice, it involves the product code dissection at class, function 

level. Therefore we explain a very simple approach which can be used by regression team for prioritizing the 

test cases when there is no sufficient time to understand and implement the algorithm. As we shall explain in 

section 4, this approach can be implemented with minimal probes in the test case and minimal tweaking of the 

tool used for gathering the coverage data.  

We explain this directly taking the example. Please have look at the table below. 

Table 1. Table for Calculating the New Metric 

Test case 

number 

Number of lines of 
code in the test case 

(LOCTesti) 

Number of lines of code 
traced in the product 

code(LOCProdi) 

Execution time 

(ᴛi) 

New metric 

(Nmi) 

1     

2     

. 

. 

n     

Effectiveness of total test suite = ∑       
    

Effectiveness of test suite per test case =
∑       
   

 
 

 

Where Nmi = 
LOCProd 

(LOCTest   X  ᴛ )
                                                                                                                               (1) 

The logic needs bit of explanation. We are using the logic that the test case which traces maximum lines of 

product code with least number of lines in itself in least amount of time is efficient. We sum up the numbers 

Nmi short for New Metric to get the picture at the test suite level. 

However this logic assumes there are no redundant test cases in test suite. 
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4. Coverage Tools: Codecover a Case Study 

Since we have used the terms such as product lines of code traversed and lines of the code in the test case we 

need a tool to measure the same. The obvious choice is code coverage tools. There are plenty of coverage tools 

for code coverage [3]. The choice of tool for particular project depends upon various criteria [3]. We had 

investigated the CodeCover earlier. Its most suited tool for Java projects since it comes with EPL license and 

most importantly, it is open source software. It is backed by courteous team of developers who support the 

tools issues. The tool can be extended and tweaked as per the needs of particular project. Although we have 

other coverage criteria such as combinatorial coverage at researchers disposal today [5, 6], we need to revisit 

the traditional coverage criteria code coverage often. Although one of our previous papers [4] attempts to 

prioritize the test suite, the focus in this paper is completely different. The CodeCover gives various metrics 

such as statement coverage, branch coverage, loop coverage, MC/DC coverage etc at test case level as well as 

test suite level. There are provisions to call the Application Programmers Interface (APIs) of this tool from 

outside. The flexibility to call the APIs from external environment can mean a lot to implement the topics 

explained in this paper. 

In further sections we explain how the APIs could be called from test setup to gather the required data and 

how it can be combined with other parameter of interest viz. execution time. 

The CodeCover already supports two languages as diverse as Java and Cobol. This is being mentioned for 

reason. That is tweaking of the tool is not effort intensive. 

5. Process Flow for Collecting Metrics of Choice. 

 

Fig.1. Process Flow for Collecting the Metrics of Choice.
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The figure 1 needs bit of explanation. We have been talking about gathering the product code traced and 

execution time of the test case while collecting the metrics of choice. The figure 1 depicts how this could be 

done in real life project. 

6. Advantages of Test Suite Prioritization 

The real advantages of spending effort in test suite prioritization can be explained very easily. Imagine a 

project which maintains 1000+ test cases. Further, depending upon the system, it could take few days to 

execute the test cases. These kinds of systems are real in wireless telecom sector. Imagine the period of field 

support where the developers and testers have to quickly give the fixes for field support issues. The product 

team cannot afford the time required. In such scenarios it is very advantageous to have the ranked test suite 

where the tester could decide to end the test case after 500+ test cases. The savings could be substantial amount 

of time. 

7. Conclusion 

In this paper we presented two approaches mainly for the cases when the testers want to use the black box or 

white box testing. Each approach is with its own benefits and drawbacks. Either of the approach can be 

followed depending upon resources and time. 

We presented how the metrics being discussed in either of the approaches can be extracted in practical setups. 

The CodeCover synonymous to Java coverage although incorrect is discussed as case study to explain the fact 

that the metrics introduced in the algorithm or in the new approach are not difficult to extract. 

8. Future Work 

We will investigate if these concepts can be applied to ongoing commercial project. We shall investigate 

how the concepts could be improved upon further. 

Further we investigate how the concepts explained in this paper can be applied to integrated test 

environments which we investigated earlier [7]. 
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