
I.J. Education and Management Engineering, 2015, 2, 10-19
Published Online June 2015 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijeme.2015.02.02

Available online at http://www.mecs-press.net/ijeme

Efficient Round Robin Scheduling Algorithm with Dynamic Time

Slice

Lipika Datta
a

a
Computer Science and Engineering Department, College of Engineering and Management Kolaghat, K.T.P.P.

Township, Purba Medinipur, W.B., PIN: 721171, India

Abstract

Round Robin (RR) scheduling algorithm is the widely used scheduling algorithm in multitasking. It ensures

fairness and starvation free execution of processes. Choosing the time quantum in RR algorithm is very crucial

as small time slice results in large number of context switches and large time quantum increases the response

time. To overcome these problems of RR scheduling, instead of static time slice dynamic time slice can be used

to get optimal performance. The objective of this paper is to modify RR algorithm by adjusting time slices of

different rounds depending on the remaining CPU bursts of currently running processes and considering their

waiting times until that round in respect of the other processes’ waiting times. Experimental analysis reveals

that the proposed algorithm produces better average turnaround time, average waiting time and fewer number

of context switches than existing algorithms.

Index Terms: Operating System, Scheduling, Round Robin Algorithm, Dynamic Time Slice, Context switch,

Turnaround time, Average Waiting time.

© 2015 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science.

1. Introduction

Modern operating systems support multitasking environment in which processes run in a concurrent manner.

In a single-processor system, only one process can run in the CPU at a time. Others processes in the ready

queue must wait until the CPU becomes free. The operating system must decide through the scheduler the order

of execution of the processes in ready state. The objective of multiprogramming is to have some process

running at all times to maximize CPU utilization. Scheduling is a fundamental operating-system function.

Almost all computer resources are scheduled before using. The CPU is, of course, one of the primary computer

resources. Thus, its scheduling is central to operating-system design. CPU scheduling determines which

processes run when there are multiple run-able processes. CPU scheduling is important because it can have a

* Corresponding author.

E-mail address: lipika.datta@cemk.ac.in

 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice 11

big effect on resource utilization and the overall performance of the system. In general we want to optimize the

behaviour of the system.

The goals of scheduling may be categorized as user based scheduling goals and system based scheduling

goals [1]. User based goals are the criteria that benefit the user. Some User-based scheduling goals are:

 Turnaround Time: The time elapsed between the submission of a job and its termination is called the

turnaround time.

tr = wt + x

where tr is turnaround time of a process

wt is waiting time of the process in the ready queue.

x is the execution time of the process.

The scheduling algorithm should be designed such that turnaround time is minimized.

 Waiting Time: The time spent by the process in the ready queue is the waiting time. The scheduling

algorithm should be designed such that waiting time is less.

 Response Time: It is the time interval between the time of submission of a process and the first response

given by the process to the user. The scheduling algorithm should be designed such that the response time

is within an acceptable range.

 Predictability: The algorithm should take care that a process does not take too long in processing as

compared to the predictable behaviour of the process.

 Deadlines: The scheduling algorithm should be designed such that real-time processes will execute within

their deadlines.

Some system-based scheduling goals are:

 Throughput: Throughput is the number of processes completed in a unit time. The scheduling algorithm

should be designed in such a way that throughput in a system is maximized.

 CPU Utilization: It is the percentage of time that the CPU is busy in executing a process. The fundamental

goal of scheduling is to keep the processor busy all the time.

 Fairness: All processes in the system should be treated in the same way unless there is some preference or

priority for a specific process. In that case also processes with lower priority should not be ignored to

avoid starvation.

 Context Switch: Context switching is the procedure of storing the state of an active process and restoring

the state of another process for the CPU when it has to start executing the later process. Context switch is

total overhead to the system and leads to wastage of CPU time. The scheduling algorithm should be

designed such that the context switch is minimized.

So we can conclude that a good scheduling algorithm for real time and time sharing system must possess

following characteristics:

 Minimum context switches.

 Maximum CPU utilization.

 Maximum throughput.

 Minimum turnaround time.

 Minimum waiting time.

 Minimum response time.

In this paper a new version of Round Robin scheduling algorithm is introduced which calculates the time

slice of each pass of the RR scheduling algorithm considering the remaining CPU burst times of the currently

12 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice

executing processes. In each pass, the precedence factor for each process is also calculated. Precedence factor

depends on the ratio of the remaining CPU burst of a process and the relative waiting time of the process until

that round and it is used to decide the order of execution of the processes in that round. This modification

makes the RR scheduling algorithm effective for real time task scheduling by reducing average turnaround time,

average waiting time and number of context switches.

2. Related work done

In the last few years different approaches are used to enhance the performance of Round Robin scheduling.

Research has been conducted to achieve good fairness in a dynamic environment while having a low

scheduling overhead [2]. In [3] the authors have arranged the processes in ascending order of burst time. Time

slice is chosen as the CPU burst of the mid process in case of odd number of processes, otherwise time slice is

equal to the average CPU burst of all running processes. In [4] the authors have proposed an algorithm (ORR)

executed in three phases. In first phase the processes execute according to RR scheduling with an initial time

quantum. Then in the next round the time quantum doubles and the remaining processes are scheduled

according to RR scheduling. In next phase they select the shortest process to execute. In [5] the authors have

selected the median process and the time slice is calculated as the time slice of the median process plus the

number of processes. In [6] authors have introduced weighted dynamic RR scheduling for scheduling cells in

ATM switches to reduce waiting time by considering delay in each queue. In [7] the authors have assigned

weights to processes. They have assigned more weight to the process with small CPU burst and they have also

considered the waiting time of the processes for I/O and accordingly modified their weights. For heterogeneous

processes i.e. CPU bursts of some processes are very smaller or larger than other processes, time quantum for

RR scheduling is calculated using Arithmetic mean and Harmonic mean respectively in [8]. Time slice for

different rounds of RR algorithm is dynamically calculated depending on the remaining CPU bursts of

currently running processes in [9]. In [10] in DQRRR algorithm time Quantum is dynamically calculated for

each round as the remaining CPU burst of the median process. In first round the processes are sorted according

to the ascending order of their CPU burst time and in the following rounds they are arranged in the lowest

followed by highest CPU burst processes among the currently running processes. Most of the aforesaid

algorithms do not consider the waiting time of a process while calculating time slice for the next round of the

RR scheduling.

2.1. Organization of paper

Section 3 presents the illustration of my proposed algorithm. In section 4, Experimental results and its

comparison with existing algorithms is presented. Section 5 contains the conclusion.

3. Proposed approach

The proposed algorithm eliminates the drawbacks of implementing simple round robin architecture in real

time system by introducing a concept of assigning different time quantum to different rounds of RR scheduling

algorithm. At the beginning of each round of the RR algorithm the following matrices are calculated for each

process:

RRB =

 (1)

 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice 13

WR =

 (2)

Precedence Factor (PF) =

 (3)

The proposed algorithm eliminates the drawbacks of implementing simple round robin architecture in real

time system by introducing a concept of assigning different time quantum to different rounds of RR scheduling

algorithm. At the beginning of each round of the RR algorithm the following matrices are calculated for each

process:

3.1. Proposed algorithm

Input: Process id, Burst time.

Output: Average turnaround time, Average waiting time, Number of Context Switches.

1. Let BTi be the CPU burst of process Pi.

TQ be the time quantum

RBTi be the remaining CPU burst of Pi

WTi be the waiting time of Pi till that time

TWTi be the total waiting time of all the currently running processes till that time.

PFi be the precedence factor.

2. If number of processes in ready queue is more than one (suppose n) sort them in ascending order of their

CPU burst time.

3. TQ = ∑

4. Execute the processes as per RR scheduling with TQ time quantum.

5. If BTi < TQ delete process Pi from ready queue.

Else RBTi = BTi – TQ and calculate WTi

6. If ready queue! = NULL execute following steps. Suppose k be the number of processes present in ready

queue.

7. Calculate RRBi =

8. If i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ k, if RRBi = RRBj sort the processes in ascending order of their RBT. Go to

step 13.

9. Calculate TWTi = ∑

10. Calculate PFi =

11. For i, 1 ≤ i ≤ k sort the processes in descending order of PFi

12. TQ = ⌈ ∑

 ⌉

13. Schedule the processes in the ready queue according to RR algorithm with time quantum TQ.

14. Calculate RBTi = RBTi – TQ and calculate WTi , for i, 1 ≤ i ≤ k

15. Repeat steps 7 to 15

16. If new process arrives, after expiry of current time quantum goto step 7.

17. Calculate average waiting time, average turnaround time and number of context switches for each

process.

End

4. Experimental results

14 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice

4.1. Assumption

Experiments are performed in single processor environment and on independent processes. All the

parameters like number of processes, and burst time of all the processes are known before submitting the
processes to the processor. All processes are CPU bound and none I/O bound. Context switching overhead and
time taken for calculating the time slices are ignored while calculating average turnaround time and average

waiting time.

4.2. Data set

To compare the performance of the algorithm with the algorithms described in [10] (DQRRR) and six

different data sets are taken. For first three cases arrival times of processes are considered with zero and next

three cases are with non-zero arrival times. Again comparison is done between algorithms introduced in [4]

(ORR) with two sets of data, one with zero arrival time and another with non-zero arrival time.

4.2.1. Same data set applied to DQRRR and proposed algorithm

4.2.1.1. Data set with zero arrival time

Case a: Processes with increasing Burst Time:

Table 1. Inputs for case 4.2.1.1.a

Process id Arrival time Burst time

P1 0 30

P2 0 42

P3 0 50
P4 0 85

P5 0 97

P1 P2 P3 P4 P5 P5 P4 P5

0 30 72 122 183 244 247 298 304

Fig.1. Gantt chart for case 4.2.1.1.a

Table 2.Comparison between algorithms for case 4.2.1.1.a

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 195.2 134.4 7

Proposed Algorithm 165.2 104.4 6

Case b: Processes with decreasing burst time:

Table 3. Inputs for case 4.2.1.1.b

Process id Arrival time Burst time

P1 0 105

P2 0 90
P3 0 60

P4 0 45

P5 0 35

 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice 15

P5 P4 P3 P2 P1 P1 P2 P1

0 35 80 140 207 274 305 328 335

Fig.2. Gantt chart for case 4.2.1.1.b

Table 4.Comparison between algorithms for case 4.2.1.1.b

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 219.4 152.4 7

Proposed Algorithm 183.6 116.6 7

Case c: Processes with Random Burst Time

Table 5. Inputs for case 4.2.1.1.c

Process id Arrival time Burst time

P1 0 92

P2 0 70

P3 0 35

P4 0 40

P5 0 80

P3 P4 P2 P5 P1 P2 P5 P1 P1

0 35 75 139 203 267 273 289 314 317

Fig.3. Gantt chart for case 4.2.1.1.c

Table 6.Comparison between algorithms for case 4.2.1.1.c

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 215.6 150.2 7

Proposed Algorithm 197.8 134.4 8

(a) (b) (c)

Fig.4. Analysis of performance among algorithms (a) (case 4.2.1.1.a), (b) (case 4.2.1.1.b), (c) (case 4.2.1.1.c)

4.2.1.2. Data set with non-zero arrival time

Case a: Processes with increasing Burst Time:

16 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice

Table 7. Inputs for case 4.2.1.2.a

Process id Arrival time Burst time

P1 0 28
P2 2 35

P3 6 50

P4 6 82
P5 8 110

P1 P2 P3 P4 P5 P4 P5 P5

0 28 63 113 169 225 251 291 305

Fig.5. Gantt chart for case 4.2.1.2.a

Table 8.Comparison between algorithms for case 4.2.1.2.a

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 173.2 112.2 7

Proposed Algorithm 152 94.6 7

Case b: Processes with decreasing Burst Time:

Table 9. Inputs for case 4.2.1.2.b

Process id Arrival time Burst time

P1 0 80
P2 2 72

P3 3 65

P4 4 50
P5 5 43

P1 P5 P4 P3 P2 P3 P2

0 80 123 173 230 287 295 310

Fig.6. Gantt chart for case 4.2.1.2.b

Table 10.Comparison between algorithms for case 4.2.1.2.b

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 209.8 147.8 7

Proposed Algorithm 196.2 131.4 6

Case c: Processes with Random Burst Time:

Table 11. Inputs for case 4.2.1.2.c

Process id Arrival time Burst time

P1 0 26

P2 1 82

P3 2 70
P4 5 31

P5 7 40

 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice 17

P1 P4 P5 P3 P2 P3 P2

0 26 57 97 153 209 223 249

Fig.7. Gantt chart for case 4.2.1.2.c

Table 12.Comparison between algorithms for case 4.2.1.2.c

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

DQRRR 145.4 95.6 7

Proposed Algorithm 130.4 77.6 6

(a) (b) (c)

Fig.8. Analysis of performance among algorithms (a) (case 4.2.1.2.a), (b) (case 4.2.1.2.b), (c) (case 4.2.1.2.c)

4.2.2. Same data set applied to ORR and proposed algorithm

4.2.2.1. Data set with zero arrival time

Table 13. Inputs for case 4.2.2.1

Process id Arrival time Burst time

P1 0 22

P2 0 18

P3 0 9

P4 0 10

P5 0 5

P5 P3 P4 P2 P1 P2 P1

0 5 14 24 37 50 55 64

Fig.9. Gantt chart for case 4.2.2.1

Table 14.Comparison between algorithms for case 4.2.2.1

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

ORR 42.6 29.8 9

Proposed Algorithm 32.4 19.6 6

4.2.2.2. Data set with non-zero arrival time

18 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice

Table 15. Inputs for case 4.2.2.2

Process id Arrival time Burst time

P1 0 4

P2 2.004 7

P3 5.010 5
P4 6.02 8

P5 8.019 9

P1 P2 P3 P4 P5

0 4 11 16 24 33

Fig.10. Gantt chart for case 4.2.2.2

Table 16.Comparison between algorithms for case 4.2.2.2

Algorithm Average Turnaround Time Average Waiting Time No. of Context Switch

ORR 23.2 17 9

Proposed Algorithm 13.39 6.79 4

(a) (b)

Fig.11. Analysis of performance among algorithms (a) (case 4.2.2.1), (b) (case 4.2.2.2)

Figure 4 and Figure 6 graphically represent the performances of the DQRR and proposed algorithm in terms

of Average Turnaround Time, Average Waiting Time and number of context switching considering zero arrival

parameters considering zero and non-zero arrival time respectively. Figure 11 graphically represents the

performances of the ORR and the proposed algorithm in terms of the same parameters.

5. Conclusion

A comparative study of Dynamic Quantum with Re-Adjusted Round Robin Scheduling algorithm,

Optimized RR algorithm and proposed one is made. It is concluded that the proposed algorithm is superior to

the other two algorithms as it has less waiting time, less turnaround time and usually less context switching

thereby reducing the overhead and saving of memory space. Future work can be based on this algorithm

modified and implemented for hard real time system where deadlines of the processes are to be taken into

consideration.

 Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice 19

References

[1] Principles of Operating System, Naresh Chauhan, Oxford University Press, 2014.

[2] Kevin Jeffay, F. Donelson Smith, Arun Moorthy, James Anderson, “Proportional Share Scheduling of

Operating System Services for Real-Time Applications”, In Proceedings of the 19th IEEE Real-Time

Systems Symposium, Madrid, Spain, December 1998.

[3] Saroj Hiranwal, Dr. K.C. Roy, “Adaptive Round Robin Scheduling using Shortest Burst Approach Based

on Smart Time Slice”, International Journal of Computer Science and Communication Vol. 2, No. 2, July-

December 2011, pp. 319-323.

[4] Ajit Singh, Priyanka Goyal, Sahil Batra, “An Optimized Round Robin Scheduling Algorithm for CPU

Scheduling”, International Journal on Computer Science and Engineering Vol. 02, No. 07, 2010, 2383-

2385.

[5] Chhayanath Padhy, Dillip Ranjan Nayak, “Revamped Round Robin Scheduling Algorithm”, Journal of

Engineering Computers & Applied Sciences (JECAS) ISSN No: 2319-5606 Volume 3, No.4, April 2014.

[6] Taeck-Geun Kwon, Sook-Hyang Lee, and June-Kyung Rho, “Scheduling Algorithm for Real-Time Burst

Traffic using Dynamic Weighted Round Robin”, R&D Lab., LG Information & Communications, LTD.,

1998 IEEE.

[7] Tarek Helmy, Abdelkader Dekdouk, “Burst Round Robin as a Proportional - Share Scheduling

Algorithm”, IEEEGCC, http://eprints.kfupm.edu.sa/1462.

[8] Ashkan Emami Ale Agha, Somayyeh Jafarali Jassbi,” A New Method to Improve Round Robin

Scheduling Algorithm with Quantum Time Based on Harmonic-Arithmetic Mean (HARM)”, I.J.

Information Technology and Computer Science, 2013, 07, 56-62 Published Online June 2013 in MECS

(http://www.mecs-press.org/).

[9] Rami J. Matarneh,” Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst

Time of the Now Running Processes”, American Journal of Applied Sciences 6 (10): 1831-1837, 2009

ISSN 1546-9239 © 2009 Science Publications.

[10] H.S.Behera, R. Mohanty, Debashree Nayak,” A New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance Analysis”, International Journal of Computer

Applications (0975 – 8887) Volume 5– No.5, August 2010.

Author(s) Profile

Lipika Datta: Lipika Datta is presently working as an Assistant Professor in Computer

Science and Engineering department in College of Engineering and Management,

Kolaghat, West Bengal, India. She received B.E. degree from Regional Engineering

College Durgapur, W.B. and M.E. degree from West Bengal University of Technology.

She has 9 years teaching experience. She has published several research papers in

international journal and conferences. Her research interest includes CPU scheduling and

load balancing.

How to cite this paper: Lipika Datta,"Efficient Round Robin Scheduling Algorithm with Dynamic Time

Slice", IJEME, vol.5, no.2, pp.10-19, 2015.DOI: 10.5815/ijeme.2015.02.02

