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Abstract 

Many nonlinear partial differential equations admit traveling wave solutions that move at a constant speed 
without changing their shapes. It is very important and difficult to search the exact travelling wave solutions. In 
this work, the auxiliary Riccati equation method and the computer symbolic system Maple are used to study 
exact solutions for the nonlinear Kuramoto-Sivashinsky equation. Maple can help us solve tedious algebraic 
calculation. Therefore many exact traveling wave solutions are successfully obtained which include some new 
kink (or anti-kink) wave solutions and periodic wave solutions.   
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1. Introduction 

Nonlinear partial differential equations are widely used to describe complex phenomena in vary scientific 
fields and especially in areas of physics such as plasma, fluid mechanics, biology, solid state physics, nonlinear 
optics and so on. Therefore the investigation of the exact solutions to nonlinear equations plays an important role 
in the study of nonlinear science. Up to now, many powerful methods to seek for exact solutions of the nonlinear 
differential equations have been proposed. Among these are inverse scattering method [1], Lie group method [2], 
bifurcation method of dynamic systems [3,4], sine-cosine method [5], tanh function method [6], homogenous 
balance method [7].  

Our interest in this work is to study the exact solutions of the following Kuramoto-Sivashinsky (KS) equation 
[8] 

,0 xxxxxxxt uuuuu      　　　                       
(1) 

where  are arbitrary constants. The KS equation (1) describes the fluctuations of the position of a flame 
front, the motion of a fluid going down a vertical wall. This equation was examined as a prototypical example 
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of spatiotemporal chaos in one space dimension [9]. Recently some new soliton solutions are obtained by the 
tanh method and the extended tanh method [8]. Here we use the auxiliary Riccati equation method to discuss 
the exact solutions of (1). With the aid of computer software Maple, we successfully obtain many new kink 
wave solutions and periodic wave solutions. 

2. Auxiliary Riccati Equation Method 

For a given partial differential equation with ),( txu  

,0),,,,,,( xxxtttxt uuuuuuP                                                                                                                                (2) 

can be converted to an ordinary differential equation 

0),,,,(  uuuuP                                                                                                                                              (3) 

under the traveling wave transformation ctx  . 

Suppose that the solutions of (3) can be expressed in the form 

 n
naaaau 2

210                                                                                                                                 (4) 

with the new variable )(  satisfying the Riccati equation 

,2 qp                                                                                                                                                             (5) 

where ctx  ),/(d)(d and qp, are constants.  

The Riccati equation (5) has special solutions as follows: 

);2/coth(),2/tanh(,2/1,2/1 1  qp  

);2/cot(),2/tan(,2/1,2/1 2  qp  

;coth,tanh,1,1 3  qp  

;cot,tan,1,1 4  qp                                                                                                                           (6) 

);2coth(2/1),2tanh(2/1,4,1 5  qp   

).2cot(2/1),2tan(2/1,4,1 6  qp  

The process of solving (2) is taking as the following: 
Firstly, we determine n  in (4) by substituting (4) and (5) into (3) and balancing the highest-order derivative 

terms with the highest-order nonlinear terms. 
Secondly, substituting (5) and (4) with the concrete n  into (3) yields to an algebraic system of equations in 

powers of   . Then setting all coefficients of i to be zero will lead to the determination of the parameters 

).,,0( niai   

Lastly, substituting all the obtained parameters ia  into (4) and using special solutions of (5) gives the 
responding exact solutions of (2). 

3. Traveling Wave Solutions of The KS Equation  

This work is supported by the National Natural Science Foundation of China (11061010 and 61004101) and
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We then consider the KS equation (1). Making the traveling wave transformation ctxutxu  ),(),( , then 

(1) reduces to the ordinary differential equation 

.0)4(  uuuuuc                                                                                                                                  (7) 

Integrating (7) with respect to   once yields 

,02/ 2  guuucu                                                                                                                           (8) 

where g  is an integral constant. Substituting (4) and (5) into (8) and balancing u  with 2u gives 3n . 

Therefore it follows from (4) that we can choose the following ansatz: 

.)( 3
3

2
210  aaaau                                                                                                                                 (9) 

Substituting (9) into (8) with (5), collecting the coefficients of )6,,1,0( ii and setting all them to zero, 
we obtain a system of algebraic equations. Solving the system by Maple gives the following solutions: 

(i) The first set: 
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                                                                                       (10) 

(ii) The second set: 
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a                                                                                    (11) 

This in turn gives the following general set of solutions 

,76,
120360 332

pq
qpqc

uI 










                                                                                                      (12) 

,
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,
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1080 332 pqqpqc
uII


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



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
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                                                                                               (13) 

where p  and q  are arbitrary constants and   takes many trigonometric and hyperbolic functions as shown in 

(6) . 

A. Exact solutions  for case (12) 

We first consider ),( txuI  by using the first set (10) and applying the related    functions for this choice of p 

and q. 
Using the first case in (6) where 2/1,2/1  qp  gives the hyperbolic function solution 

2
coth
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2
coth
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)( 3

1
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c

u                                                                                                                 (14) 

and the kink wave solution 
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where .19  

For 2/1,2/1  qp , we find  19  and therefore obtain the two periodic traveling wave solutions 

,
2

tan
15

2
tan

45
)( 3

3















c

u                                                                                                                     (16) 

.
2

cot
15

2
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45
)( 3

4
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
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c

u                                                                                                                      (17) 

For 1,1  qp , we gain  76  and thus determine the hyperbolic function solution 

,coth
120

coth
360

)( 3
5 












c

u                                                                                                               (18) 

and the kink (or anti-kink) wave solution 

.tanh
120

tanh
360

)( 3
6 



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






c

u                                                                                                               (19) 

For 1,1  qp , we find  76  and hence obtain the two periodic traveling wave solutions 

,tan
120

tan
360

)( 3
7 



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
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u                                                                                                                   (20) 

.cot
120
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)( 3
8 
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


c

u                                                                                                                    (21) 

For 4,1  qp , we obtain  304  and therefore give the hyperbolic function solution 

),2(coth
960

)2coth(
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)( 3
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


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c
u                                                                                                    (22) 

and the kink (or anti-kink) wave solution 
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c
u                                                                                                  (23) 

For 4,1  qp , we find  304  and therefore obtain the two periodic traveling wave solutions 

),2(tan
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)2tan(
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)( 3
11 


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u                                                                                                      (24) 

).2(cot
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)2cot(
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)( 3
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
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
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u                                                                                                       (25) 

B. Exact solutions for case (13) 

We next discuss ),( txuII  by using the second set (11) and applying the related    functions for this choice 
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of p  and q . 

Using the first case in (6) where 2/1,2/1  qp  yields the hyperbolic function solution 

2
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c

u                                                                                                                (26) 

and the kink wave solution 
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2
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u                                                                                                              (27) 

where .11/19  

For 2/1,2/1  qp , we find 11/19  and therefore obtain the two periodic traveling wave solutions 

,
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
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c

u                                                                                                                  (28) 
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
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c

u                                                                                                                   (29) 

For 1,1  qp , we obtain 11/76  and therefore give the hyperbolic function solution 
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and the kink wave solution 
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c

u                                                                                                             (31) 

For 1,1  qp , we find 11/76  and thus gain the two periodic traveling wave solutions 
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
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



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c

u                                                                                                                (33) 

For 4,1  qp , we obtain 11/304  and therefore determine the hyperbolic function solution 

),2(coth
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)2coth(
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and the kink wave solution 

).2(tanh
960

)2tanh(
11

8640
)( 3

22 











c

u                                                                                                  (35) 



66 Exact Solutions of Kuramoto-Sivashinsky Equation 

 

For 4,1  qp , we find 11/304  and therefore obtain the two periodic traveling wave solutions 
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4. Conclussions 

In this paper an auxiliary Riccati equation method is used to construct the exact solutions of the Kuramoto-
Sivashinsky equation with the aid of software Maple. As a result many kinds of exact traveling wave solutions 
are obtained, which show that this method is reliable and effective. The applied method will be used in further 
works to establish more entirely new solutions for other kinds of nonlinear wave equations. The availability of 
computer systems like Maple facilitates the complicated algebraic calculations, which allows us to solve 
tedious algebraic calculation. 
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