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Abstract 

In this paper, we present an improved particle swarm optimization (PSO) algorithm to solve constrained 

optimization problems. The proposed approach, called MPSO, employs a novel mutation operator to enhance 

the global search ability of PSO. In order to deal with constrains, MPSO uses mean violations mechanism and 

boundaries search. Simulation results on five famous benchmark problems show that MPSO achieves better 

results than standard PSO and another variant of PSO. 
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1. Introduction 

In real world, many problems can be formulated as optimization problems. With the development of 

economic and society, these optimization problems become much complex. Some ones may have constrained 

conditions. To solve this kind of problems (constrained optimization problems), traditional pure mathematical 

methods suffer from some difficulties, such as constraints handling and boundaries search.  

Generally, a constrained optimization problem can be mathematically described as follows. 

Minimize ( )f x                                                                                                                                              (1) 

subject to 

( ) 0, 1, 2...,g x i qi                                                                                                                                  (2) 

( ) 0, 1, 2...,h x j q q mj                                                                                                                      (3) 
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where D
x R , ( )g x  is inequality constraint, ( )h x is the equality constraint, m is the number of constraints, q is 

the number of inequality constraints, m-q is the number of equality constraints. 

During the last decades, some intelligent approaches have been proposed to solve constrained optimization 

problems. Compared to the traditional methods, these new kinds of approaches do not need to consider the 

properties of optimized problems. Michalewicz and Nazhiyath [1] proposed a co-evolutionary algorithm for 

numerical optimization with nonlinear constraints (Gencop III), in which the constraints are only used to judge 

whether the current search point is feasible or not. However, it is very difficult to generate initial feasible 

candidate solutions when the feasible search region is very small. In [2], the concept of constraint violation is 

introduced. It means the sum of the violation of all constraint functions. By simultaneously optimizing the 
constraint violation and the objective function, some excellent researches [2-4] achieved good results. One of the 

famous methods is the penalty function. For this kind of methods, the selection of the penalty coefficients highly 

depends on the features of problems. Different strength of the penalty may lead different performance. To tackle 

this problem, some methods based on dynamical controlled penalty coefficient were proposed, in which the 

constraint violation and the objective function are optimized separately. These approaches mainly focus on 

ranking mechanisms. Deb [2] proposed a method using an extended objective function to realize the ranking of 

individuals. Runarsson and Yao [3] introduced a stochastic ranking method based on evolutionary strategy. 

Besides of the above approaches, some researchers used multiobjective optimization methods to deal with the 

constraints and the object function at the same time [5]. Although this method is ideal, it is a more difficult and 

expensive task than solving single objective optimization problems.  

In this paper, we present an improved PSO algorithm to solve constrained optimization problems. The 

proposed approach called MPSO employs a novel mutation operator to help trapped particles escape from local 

minima. Moreover, we use mean violations and boundaries search to deal with constrains. In order to verify the 

performance of MPSO, we test it on six benchmark functions. The simulation results show that MPSO 

outperforms PSO. 

The rest of the paper is organized as follows. Section 2 briefly introduces the standard PSO algorithm. In 

Section 3, our improved PSO algorithm is proposed. The experimental results and discussions are presented in 

Section 4. Finally, the work and future work are summarized in Section 5. 

2. Particle Swarm Optimization 

Particle swarm optimization (PSO) is an intelligent computational technique firstly developed by Kennedy 

and Eberhart in 1995 [6]. It is a stochastic global optimization method which is based on the simulation of social 

behavior, such as bird flocking and fish schooling. As in genetic algorithm (GA) and evolutionary strategy (ES), 

PSO exploits a population of potential solutions to search the problem domain space. Compared to the 
aforementioned methods in PSO, no operators inspired by natural evolution are applied to extract a new 

generation of candidate solutions (called particle). In stead of mutation, PSO depends on the interaction of 

information between particles in the population. Each particle adjusts its flying direction according to its own 

previous best flying experience and the best experience attained by any particle of the population.  

Since the introduction of the original version of PSO, many different PSO variants have been proposed. In 

order to control the global exploration and the local exploitation validly, Shi and Eberhart [7] introduced a 

concept of inertia weight to the original PSO and developed a modified PSO. Compared with the original 

version, the modified PSO gets a notable improvement of the performance in some problems, so it is often 

referred to as the standard PSO version and adopted by many following researches. The standard PSO version 

can be described by the following update equation [7]: 
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1( 1) ( ) ( ( ) )1

( ( ) ( ))
2

t w t c r pbest t Xi i

c r gbest t X t2 i

V V   

 
                                                                                    (4)  

( 1) ( ) ( 1)X t X t V ti i i                                                                                                                      (5) 

where X i = {xi1,xi2,…,xiD} and V i = {vi1,vi2,…,viD} represent the position vector and velocity vector of the ith 

particle, pbesti = {pbesti1,pbesti2,…,pbestiD} is the best previous position yielding the best fitness value for the 

ith particle, and gbest = { gbest1, gbest2,…, gbestD} is the global best particle found by all particles so far. The 

inertia weight w is a scaling factor controlling the influence of the old velocity on the new one. c1 and c2 are 

two constants known as cognitive and social coefficients, which determine the weight of pbesti and gbest, 

respectively. r1 and r2 are two random numbers generated by uniformly distribution in the range of [0, 1]. 

3. Improved PSO Algorithm 

In PSO, each particle is attracted by two special particles, its own previous best particle pbesti and the global 

best particle gbest. Particles’ movements highly depend on the quality of the above two kinds of particles. If 

these best particles are trapped in local minima, other particles will quickly converge to the minima by the 

attraction. To avoid this case, some researchers introduced mutation operators to the standard PSO. It is hope 

that the mutation could help trapped particles to escape from local minima.  

In this paper, we employ a novel mutation operator which was proposed in our previous work. It is described 

as follows. 

*
( )1

(1 ) ( )1 1 2

X gbest a gbest Xii

a X Xi i

   

   
                                                                                                                            (6) 

where Xi is the position vector of the ith particle, gbest is the global best particle found so far, a1 is a random 

number within [0,1], i1 is a random integer within [1, ps], ps is the population size, and i≠i1≠i2. 
The main steps of the proposed MPSO are described as follows. 
Step 1. Randomly initialize the population, and calculate the fitness value of each particle. 
Step 2. Update the previous best particle pbesti and the global best particle gbest. 
Step 3. Calculate the velocity of the each particle according to the equation (4). 
Step 4. Calculate the position of the each particle according to equation (5). 
Step 5. Calculate the fitness value of each particle in the population. 
Step 6. For each particle Xi, if rand(0, 1)<pm, then generate a new particle Xi* according to equation (6) and 

calculate its fitness value, where rand(0,1) is a random number within [0,1] and pm is the probability of mutation; 
otherwise, go to Step 9. 

Step 7. Select a fitter one between Xi and Xi* as new Xi. 
Step 8. Update pbesti and gbest. 
Step 9. If the terminate condition is satisfied, then stop the algorithm; otherwise, go to Step 3. 

In order to deal with the constraints, we employ mean violations v by the suggestions of [8]. It is defined: 
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1 1
( ) ( )

q m

i ji j q
g x h x

v
m

  



 

                                                                                                             (7) 

where  

( ), if ( ) 0
( )

0, otherwise

i i

i

g x g x
g x


 


                                                                                                             (8) 

( ) , if ( ) 0
( )

0, if ( ) 0

j j

j

j

h x h x
h x

h x





  
 

 

                                                                                                   (9) 

The sum of all constraints violations is zero for feasible solutions and positive when at least one constraint is 

violated. An obvious application of the constraint violation is to use it to guide the search towards feasible areas 

of the search space. In this paper,   is set to 0.0001. 

In some cases, the boundaries may contain feasible solutions. To search the boundaries space, we use the 

following method. 

 

 

min , min

,

max , max

, if

, if

j j i j

i j

j j i j

x k x x x x
x

x k x x x x

   


 
  

                                                                                         (10) 

,1

ps

i ji
j

x
x

ps




                                                                                                                                         (11) 

where k is a random number within [0, 1], ps is the population size, and  min max,x x  is the definition domain.  

4. Experimental Results 

A. Test Problems 

In order to verify the performance of MPSO, we select five famous benchmark functions in the following 
experiments. These problems were considered in an early study. Table I describes the features of the test 

problems, where |S| indicates the number of solutions randomly generated in the whole search space, |F| is the 

number of feasible solutions, |F|/|S| is the property of feasible solution space and the whole search space, LI is 

the number of linear inequality constraints, NI is the number of nonlinear inequality constraints, LE is the 

number of linear equality constraints, and NE is the number of nonlinear equality constraints. 
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Table 1. Main characteristics of the test problems 

Problems g01 g02 g03 g04 g05 

D 13 20 10 5 4 

Function quadratic nonlinear polynomial quadratic cubic 

|F|/|S| (%) 0.0003 99.9973 0.0026 27.0079 0.0000 

LI 9 1 0 0 2 

NI 0 1 0 8 0 

LE 0 0 0 0 0 

NE 0 0 1 0 3 

 

The descriptions of the test suite are listed as follows. 

g01:  
4 4 13

2

1 1 1

Minimize 5 5i i i

i i i

f x x x x
  

      

 

 

 

 

 

 

 

 

 

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

2 2 10 0

2 2 10 0

2 2 10 0

8 0

8 0

8 0

2 0

2 0

2 0

g x x x x x

g x x x x x

g x x x x x

g x x x

g x x x

g x x x

g x x x x

g x x x x

g x x x x

     

     

     

   

   

   

    

    

    

 

where
130 1( 1,2,...,9),0 100( 10,11,12), 0 1i ix i x i x        and the global optimum is -15. 

g02:  
   4 2

1 1

2

1

cos 2 cos

Maximize 

DD

i i

i i

D

i

i

x x

f x

ix

 






 


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 

 
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1

2

1

0.75 0

0.75 0

D

i

i

D

i

i

g x x

g x x D





  
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



 

where D=20,0 10( 1,2,..., )ix i D    and the global optimum is 0.803619. 

g03:    
1

Maximize 
DD

i

i

f x D x


   

  2

1

1

1 0
D

i

i

h x x


    

where D=10，0 1( 1,2,..., )ix i D    and the global optimum is 1. 

g04: 
  2

3 1 5

1

Minimize 5.3578547 0.8356891

37.293239 40792.141

f x x x x

x

 

 
 

 

 

 

 

85.334407 0.0056858 0.000626251 2 1 4

0.0022053 92 053

85.334407 0.0056858 52 2

0.0006262 0.0022053 051 4 3

80.51249 0.0071317 0.002995553 2 1 2

2
0.0021813 110 03

80.51249 0.00713174

g x x x x x

x x

g x x x

x x x x

g x x x x x

x

g x

  

  

  

  

  

  

  

 

 

0.002995552 1 2

2
0.0021813 90 03

9.300961 0.0047026 0.00125475 53 1 3

0.0019085 25 03 4

9.300961 0.0047026 0.001254756 3 1 3

0.0019085 20 03 4

x x x x

x

g x x x x x

x x

g x x x x x

x x



  

  

  

   

  

 

where
1 278 102,33 45,27 45 ( 3,4,5)ix x x i        and the global optimum is -30665.539. 

g05: 
 

 

3

1 1 2

3

2

Minimize 3 0.0000001 2

0.000002 / 3

f x x x x

x

  


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 

 

     

     

     

1 4 3

2 3 4

3 3 4

1

4 3 3 4

2

5 4 4 3

0.55 0

0.55 0

1000sin 0.25 1000sin 0.25

894.8 0

1000sin 0.25 1000sin 0.25

894.8 0

1000sin 0.25 1000sin 0.25

1294.8 0

g x x x

g x x x

h x x x

x

h x x x x

x

h x x x x

    

    

     

  

    

  

    

 

 

where
1 2 3 40 1200,0 1200, 0.55 0.55, 0.55 0.55x x x x           and the global optimum is -5126.4981. 

B. Simualtion Results 

In this section, we compare the performance of PSO, RVPSO [9] and MPSO on the test suite. For PSO and 

MPSO, we use the following parameter settings. The population size ps is set 50, w = 0.72984, c1 = c2 = 1.49618. 

When the number of function evaluations reaches to 100, 000, the algorithm is terminated. For the sake of fair 

comparison, we use the same comparison strategy.  

Table 2 presents the mean results of PSO, RVPSO and MPSO on the five test functions. It can be seen that 

MPSO achieves better results than PSO and RVPSO in all test cases except for g04. For this function, all the 

three algorithms could find the global optimum.  

Table 2. The mean results achieved by PSO, RVPSO and MPSO 

Problems 
PSO RVPSO [9] MPSO 

Mean Mean Mean 

g01 -14.376 -14.4187 -15 

g02 -0.3328 -0.413257 -0.78304 

g03 -1.0034 -1.0025 -1 

g04 -30665.539 -30665.539 -30665.539 

g05 53662.4026 5241.0549 5126.5832 

 

5. Conclusion 

In this paper, we propose an improved PSO algorithm called MPSO to solve constrained optimization 

problems. In MPSO, we employ three strategies. The first one is the mutation operator, which is beneficial for 

global search and help trapped particle jump out for local optima. The second one is the mean violations which 

could measure the constraints and judge whether the current candidate solutions is feasible or not. The last one is 

the boundaries search mechanism which helps the algorithm search the feasible solutions in the boundary region. 
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Experimental studies on five well-known benchmark problems show that the proposed approach MPSO 

outperforms standard PSO and RVPSO. 
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