
I.J. Education and Management Engineering 2012, 1,9-15 
Published Online January 2012 in MECS (http://www.mecs-press.net) 
DOI: 10.5815/ijeme.2012.01.02 

Available online at http://www.mecs-press.net/ijeme 

 
Application of DFS in the Study of Edge-connected Graph 

Cui-xia XU 

Computer and Communication Engineering Weifang University Weifang261061, China 

Abstract 

In this paper a simple method is proposed to determine whether a graph is edge-connected. This method may 
calculate the minimum pre-order number of each vertex by back edge for the depth-first search spanning tree, 
and then find out the bridges in the graph. Finally, it may determine whether the graph is edge-connected. The 
best nature of method is to understand and hold the algorithm easily. It can help teaching improvement and 
practice application. It is also worth popularization. 
 
Index Terms: spanning tree; bridge; edge-connected graph; DFS (depth-first search);back edge 
 
© 2012 Published by MECS Publisher. Selection and/or peer review under responsibility of the International 
Conference on E-Business System and Education Technology 

1. Introduction 

In the graph we sometimes wish there are multiple paths between each pair vertices, so that we can promptly 
deal with certain problems. For example, suppose that the main communication lines in integrated circuits, or the 
communication network is the edge-connected. If a wire or a link is broken, the rest of the circuit can work 
properly. 

There are many similar problems. Such a kind of problems is called the edge-connectivity problem. This paper 
presents a method to determine whether a graph is edge-connected, which is based on the nature of the DFS tree. 

2. basic concept 

2.1. Graph, Connected Graph, Connected Component  

A graph G consists of a finite set V of objects called vertices, a finite set E of objects called edges. 
A graph G is called connected if there is if there is a path from any vertex to any other vertex in the graph G. 

Otherwise, the graph is disconnected. If the graph is disconnected, the various connected pieces are called the 
connected components [2] of the graph. 

Corresponding author:  
E-mail address: x115@sina.com 

http://www.mecs-press.net/ijem�
mailto:x115@sina.com�


10 Application of DFS in the Study of Edge-connected Graph 

2.2. Tree, Rooted Tree, Subtree 

Let A be a set, and let T be a relation on A. We say that T is a tree if there is a vertex v0 in A with the property 
that there exists a unique path in T from v0 to every other vertex in A, but no path from v0 to v0. The vertex v0 is 
unique. It is often called the root of the tree T, and T is the referred to as rooted tree. We write (T, v0) to denote a 
rooted tree T with root v0

If (T, v
. 

0

2.3. Spanning Tree, DFS Spanning Tree 

) is a rooted tree and v∈T, then T (v) is also a rooted tree with root v. We will say that T (v) is the 
subtree [3] of T beginning at v. 

If R is a symmetric, connected relation on a set A, we say that a tree T on A is a spanning tree for R if T is a 
tree with exactly the same vertices as R and which can be obtained from R by deleting some edges of R. 

If a spanning tree [1] is used to describe the depth-first search process for a connected graph, it is called the 
depth-first search spanning tree or sometimes called DFS spanning tree of this graph. 

2.4. Tree-Edge, Back edge 

An edge (v, w) is a tree-edge in a connected graph if it is also in the DFS tree of this graph. When we are 
traveling in the edge (v, w) for the first time, the vertex w has not been traveled. 

In the DFS tree, if the vertex w is the ancestor of vertex v (not its parent), and when we are traveling in the 
edge (v, w) for the first time, the vertex w has been traveled. Such an edge (v, w) is called a back edge. 

2.5. Bridges 

An edge is called a bridge [4] in a connected graph if deleting it would create a disconnected graph.  
A connected graph is called edge-connected if it contains no bridge. Otherwise, the graph is edge-separable 

and the bridge is called separation edge. 

2.6. Preorder Number of Vertex, Minimum Preorder Number Of Vertex 

Suppose that we use an array pre to keep track of the preorder numbers of vertices and use an array low to 
keep track of the minimum preorder numbers of vertices.  

The preorder number of vertex v is its number in the preorder sequence of the DFS tree, denoted by pre [v]. 
The minimum preorder number of vertex v, denoted by low [v], is got by a back edge in the subtree with root v, 

which points to a vertex at the lowest-numbered level of the DFS tree.  
Let low [v] be the minimum value in the following three: 

• pre [v] 
• low [w], if edge (v, w) is a tree-edge. 
• pre [u], if edge (v, u) is a back edge. 

For example, in Fig. 2, low [9] has value 2, because in the subtree with root 9 there is a back edge pointing to 
vertex 4 (pre [4] = 2), but no other back edges pointing to the vertex at the lower-numbered level of the DFS tree.  

For a vertex w in the DFS tree, if it has parent, that is, vertex v, and if low [w] = pre [w], then the tree-edge (v, 
w) is a bridge.  



 Application of DFS in the Study of Edge-connected Graph 11 

3. the property of bridge 

Finding all bridges in a connected graph is actually the application of DFS, which need to use the basic 
properties of DFS trees for this graph. Note that a back edge can not be a bridge, because there is another path 
between its two vertices. 

Property 1: In any DFS tree, a tree-edge (v, w) is a bridge if and only if there is no back edge to connect the 
ancestors and descendants of vertex w.  

This property tells us that the only link between any vertex in the subtree with root w and vertex v that is not in 
the subtree, is the parent link. If and only if each path from any vertex in the subtree with root w to any other 
vertex not in the subtree with root w, which must include the edge (v, w), such an edge (v, w) is a bridge. In other 
words, if the edge (v, w) is removed from the graph, the new graph will not be connected. 

4. algorithm of finding bridges 

4. 1 the Basic Thought of Algorithm 

Suppose that a connected graph G has n vertexes and m edges. Let V = {v1, v2, …, vn } and let E = {e1, e2, …, 
em 

Step 1  For each vertex v ∈ V, let pre[v] = -1,that is, vertex v has not been traveled. 

}. The steps are as follows: 

Step 2  Initialize variable predfn and variable bcnt with value 0. That is, let predfn=0 and let bcnt=0. 
Step 3  Choose vertex v1 as the first vertex. Let v = v1
Step 4  Call the procedure Dfs_bridge to this graph beginning at v, that is Dfs_bridge(G, EDGE(e.v=v, e.w=v)). 

A procedure Dfs_bridge(G, EDGE(e.v, e.w)) consists of the following four steps: 

. 

Step 4.1  Replace predfn with predfn+1, and let w = e.w . 
Step 4.2  Mark w traveled, that is, let pre[w] = predfn. 
Step 4.3  Initialize low[w] with value predfn. 
Step 4.4  For each edge (w, v) ∈ E, the specific operations are as follows: 
If edge (w, v) is a tree-edge, then recursively call the procedure Dfs_bridge (G, EDGE(w, v)), and let low[w]= 

min{low[w], low[v]}, and if low[v]=pre[v], then let bcnt = bcnt+1 and print out the bridge (w, v).  
If edge (w, v) is a back edge, then let low[w] = min{low[w], pre[v]}.  

4. 2 Algorithm Implementation 

int predfn, bcnt, pre[maxV], low[maxV]; 
void Graph_ bridge (Graph G) 
{ 
int v;     link t; 
for (v = 0; v < G->V; v++) pre[v] = -1; 
predfn =0;  
bcnt=0;   
v=0; 
Dfs_bridge (G, EDGE(v, v));  
} 
void Dfs_bridge (Graph G, Edge e) 
{ 
 link t;   int v, w = e.w;  
 predfn = predfn+1; 
 pre[w] = predfn;  
 low[w] = predfn; 
 for (t = G->adj[w]; t != NULL; t = t->next) 



12 Application of DFS in the Study of Edge-connected Graph 

if (pre[v = t->v] == -1) 
{ 
Dfs_bridge(G, EDGE(w, v));  
if (low[w] > low[v]) 
low[w] = low[v];  
if (low[v] == pre[v])  
{ 
bcnt++;  
printf("%d-%d\n", w, v); 
} 
} 
else if (v != e.v) 
if (low[w] > pre[v])  
low[w] = pre[v];  
} 

4. 3 Time Complexity of the Algorithm 

Note that the procedure of above algorithm is actually a procedure of depth-first searching for the graph. 
Suppose that a connected graph G has n vertexes and m edges. Then, if the graph G is represented by adjacency-
matrix, the algorithm has running time O (n2

5. EXAMPLE 

), and if the graph G is represented by adjacency-list, the algorithm 
has running time O (n + m). 

In the graph shown in Fig. 1, edges (0, 5), (6, 7) and (11, 12) are bridges, that is, all such edges are represented 
by thick lines. Here the graph has four edge-connected components, that is, respectively, {0,1,2,6}, {7,8,10}, 
{3,4,5,9,11} and {12}. 

 

 
 

Figure 1.  an edge-separable graph 
 

We will represent the tree-edge as a solid line and represent the back edge as a dashed line. For the DFS tree 
each vertex v is labeled with the pair (pre [v], low [v]). 

A depth-first search spanning tree for the graph in Fig. 1 may be found by using this algorithm beginning at 
any vertex. Fig. 2 shows a depth-first search spanning tree produced by beginning at vertex 0, and Fig. 3 shows a 
depth-first search spanning tree beginning at vertex 12. 

Let us now apply above algorithm to the graph shown in Fig. 1 beginning at vertex 0. Start from vertex 0 to 
vertex 3, a back edge (3, 5) is found, let low [3] = pre [5]. Then return to vertex 4, let low [4] = low [3].  

10 

0 

11 12 

1 2 

3 

4 

5 

6 7 8 

9 



 Application of DFS in the Study of Edge-connected Graph 13 

Proceeding as before from vertex 4 to vertex 12, as low [12] = pre [12], edge (11, 12) is a bridge. Now return 
to vertex 11, a back edge (11, 4) is found, let low [11] = pre [4]. Then return to vertex 9, let low [9] = low [11]. 
Then return to vertex 5, as low [5] = pre [5], edge (0, 1) is a bridge. At last return to vertex 0. 

Proceeding as before from vertex 0 to vertex 8, a back edge (8, 7) is found, let low [8] = pre [7]. Now return to 
vertex 10, let low [10] = low [8]. Then return to vertex 7, as low [7] = pre [7], edge (6, 7) is a bridge. Then return 
to vertex 6, a back edge (6, 0) is found, let low [6] = pre [0]. Then return to vertices 2 and 1, let low [2] = low [6] 
and low [1] = low [6]. Finally, the search ends at the starting vertex. The result is shown in Fig.2. 

In the DFS tree shown in Fig.2, vertices 5, 7, and 12 have the properties: no back edges to connect their 
descendants and their ancestors. And the other vertices do not have this nature. As shown, deleting any tree-edge 
between any of these vertices and its parent would make the subtree beginning at any such vertex and the rest of 
the graph disconnected. In other words, edges (0, 5), (11, 12) and (6, 7) are bridges. Here for the vertices 5, 7 and 
12, their minimum preorder numbers are equal to their preorder numbers. 

 

 
 

Figure 2.  a DFS tree beginning at vertex 0 

(0, 0) 

(2, 1) 

0 

5 

4 

3 

11 

12 

9 6 

2 

1 

10 

7 

8 

(10, 10) 

(11, 10) 

(12, 10) 

(9, 0) 

(7, 0) 

(8, 0) 

(1, 1) 

(4, 2) 

(5, 2) 

(6, 6) 

(3, 1) 



14 Application of DFS in the Study of Edge-connected Graph 

 
 

Figure 3.  a DFS tree beginning at vertex 12 
 
 
The DFS trees shown in Fig.2 and Fig.3, respectively, are not the same, but by them the same bridges are 

found. In Fig.3 for the vertices 11, 0 and 7, their minimum preorder numbers are equal to their preorder numbers.  
But when we are searching the different DFS trees for the same graph, we find that search costs depend not 

only on the nature of that graph, but also on the natures of the DFS trees. For example, in Fig. 3, the stack for 
recursive calls requires a larger space. 

6. CONCLUSION 

As the example illustrates, spanning trees are not unique. If we choose different vertices as the starting 
vertices, and if we travel the vertices and edges in a different order, then we should produce the different DFS 
trees. Analysis showed that we should find the same bridges by either of the DFS trees. 

On the one hand, the algorithm can find all the bridges in the graph, that is, it can determine whether a graph is 
edge- connected; on the other hand the algorithm is based on recursive function DFS, so it has a better effect 
upon the teaching. 

REFERENCES 

[1]  [U.S.] Robert Sedgewick. “Algorithms in C(Third Edition)”. Beijing: POSTS & 
TELECOMMUNICATIONS PRESS, 2004. (in chinese) 

1 

2 

0 

6 

5 

7 

8 

10 

(10, 10) 

(11, 10) 

(12, 10) 

(9, 6) 

(7, 6) 

(8, 6) 

(4, 3) 

(5, 3) 

(6, 6) 

12 

4 

11 

9 (2, 1) 

(0, 0) 

(1, 1) 

(3, 1) 

3 



 Application of DFS in the Study of Edge-connected Graph 15 

[2] Sara baase, Allen Van Gelder.“Computer Algorithms:Introduction to Design and Analysis(Third Edition)”. 
Beijing: Higher Education Press, 2001. 

[3] [Saudi Arabia] M.H. Alsuwaiyel. “Algorithms Design Techniques and Analysis”. Beijing: Electronic 
Industry Press, 2004.(in chinese) 

[4] Bernard Kolman, Robert C. Busby, Sharon Cutler Ross.“Discrete Mathematical Structures”. Beijing: 
Higher Education Press, 2008. 


	2.1. Graph, Connected Graph, Connected Component 
	2.2. Tree, Rooted Tree, Subtree
	2.3. Spanning Tree, DFS Spanning Tree
	2.4. Tree-Edge, Back edge
	2.5. Bridges
	2.6. Preorder Number of Vertex, Minimum Preorder Number Of Vertex
	4. 1 the Basic Thought of Algorithm
	4. 2 Algorithm Implementation
	4. 3 Time Complexity of the Algorithm

