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Abstract 

Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food 

recalls and in the global food safety scares involving milk products. Due to the serious health concerns 

associated with melamine consumption and the extensive scope of affected products, rapid and sensitive 

methods to detect melamine‟s presence are essential. We propose the use of spectroscopy data – produced by 

near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular – for melamine 

detection in complex dairy matrixes. It was found that infrared spectroscopy is an effective tool to detect 

melamine in liquid milk. The limit of detection (LOD) below 1 ppm (0.76±0.11 ppm) can be reached if a 

correct spectrum pre-processing (pre-treatment) technique and a correct multivariate (MDA) algorithm: partial 

least squares regression (PLS), polynomial PLS (Poly-PLS), or artificial neural network (ANN) – is used for 
spectrum analysis. The relationship between MIR/NIR spectrum of milk product and melamine content is non-

linear. So, non-linear regression methods are needed to correctly predict the triazine-derivative content. It can 

be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-

cost method for liquid milk analysis. The technique can be applied for the automation of milk analysis. 
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1. Introduction 

Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food 
recalls in 2007 [1,2] and in the global food safety scares in 2008 involving milk products [3-5]. In those food 

safety incidents, melamine was intentionally added to foods and animal feed to boost the protein content [6,7]. A 

driving force for the adulteration of a food product with melamine is that its high nitrogen content, which 

increases the apparent protein content measured by standard protein analysis tests, such as Kjeldahl or Dumas 

ones [5]. Note that the Kjeldahl analytical method is a method for the quantitative determination of nitrogen only 

(not true protein content) [8].  

Corresponding author:  

E-mail address: ss22563@yandex.ru 



 Melamine Analysis in Liquid Milk by Simple and Robust Neural Network Based Method 25 

In late 2008, trace amount of melamine were detected in US-made infant formula products [9,10]. The recalls 

involving pet food and milk products, contaminated with melamine, have created a widespread food safety scare 

[5,8]. Today melamine contamination has been reported in a variety of food products such as milk (liquid or 

powder), infant formula, frozen yogurt, pet food, biscuits, candy, and coffee drinks [11]. 

The 2008 incident of contamination of milk with melamine in China likely caused 300,000 cases of renal 

complications in children, and at least 6 child deaths, directly resulting from consumption of tainted product 

[5,12]. Toxic effects associated with melamine consumption occur only following high doses [13]. The oral 50% 

lethal dose (LD50) has been reported as approximately 3 g kg-1 of body weight [14]. It is thought that 

simultaneous ingestion of melamine and one of its analogues, cyanuric acid, may result in the formation of 

crystals in the kidney [13], as was the case in the pet food incident [15]. 

We propose the use of spectroscopy data – produced by near infrared (near-IR or NIR) and medium infrared 

(mid-IR or MIR) spectroscopies, in particular – for melamine detection in complex matrixes.  
Near infrared spectroscopy in combination with MDA methods has been applied to melamine detection in a 

number of analytical studies [16-35]. 

In 2009, Mauer et al. [8] evaluated near- and mid-infrared spectroscopy methods (NIR, FTIR-ATR, FTIR-

DRIFT) for the detection and quantification of melamine in infant formula powder. Partial least-squares (PLS) 

models were established for correlating spectral data to melamine concentration: R2 > 0.99, RMSECV ≤ 0.9, and 

residual prediction deviation (RPD) above 12. Factorization analysis of spectra was able to differentiate 

unadulterated infant formula powder from samples containing 1 ppm melamine with no misclassifications, a 

confidence level of 99.99%, and selectivity > 2. It was stated that NIR and MIR methods enable rapid detection 

of 1 ppm melamine in infant formula powder [8].  

Lu et al. [36] established a novel and rapid method for detecting pure melamine in milk powder using near 

infrared (NIR) spectroscopy based on least squares-support vector machine (LS-SVM). Partial least square 

discriminant analysis (PLS-DA) was used for the extraction of principal components (PCs). The scores of the 

first two PCs have been applied as inputs to LS-SVM. Compared to PLS-DA, the performance of LS-SVM was 

better, with higher classification accuracy, both 100% for the training and testing set. The detection limit was 

lower than 1 ppm. Based on the results, it was concluded that NIR spectroscopy combined with LS-SVM could 

be used as a rapid and accurate method for detecting pure melamine in milk powder.  

In this paper, we try to reach two goals: (i) to establish a quick, sensitive (LOD < 1 ppm), reliable, and robust 
method for melamine detection in liquid milk based on NIR and MIR spectroscopy methods; (ii) to compare 

different multivariate calibration models (PLS, OPLS, ANN, SVM, etc.) on the large melamine data sets (>660 

samples each) to find the best candidate for industrial analytical application. A large calibration range of 

melamine concentration (0.11-2000 ppm) was used to build a model that is capable of dealing with both, almost 

melamine free and largely contaminated, dairy samples. Notably, the artificial neural networks (ANNs) have 

never been used to predict melamine content in milk products from vibrational spectral data [36-43]. 

2. Experimental 

2.1 Materials 

Six hundred sixty (660) liquid milk samples were prepared for MIR/NIR analysis from standard (non-

contaminated) products, supplied by Unimilk Joint Stock Co. and purchased in a local store. Such a huge amount 

of samples allows one to estimate the efficiency of the model at the “sample set limit” – see the “basis set limit” 

(BSL) or “complete basis set” (CBS) in quantum chemistry [43-46], e.g. in focal point analysis (FPA) schemes 

[43,47,48]. The initial samples (12) of liquid milk were checked for the absence of melamine contamination 

using standard HPLC-based method [49]. 
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2.2 Methods 

The near infrared (NIR) spectra were acquired with a MPA Multi Purpose FT-NIR Analyser (Bruker, 

Germany). The spectra were acquired at room temperature (20-23 °C). The NIR spectrometer was calibrated 

with benzene (C6H6) and cyclohexane (c-C6H12) at least twice per day to minimise the influence of variable 

laboratory conditions. The spectral range between 9000-4500 cm-1 (1110-2500 nm) was scanned with a 

resolution of 8 cm-1 (Table 2). Thirty-two (32) scans were averaged for each sample spectrum. A background 
spectrum (32 scans) was measured every 45 min. A photometric accuracy of ~0.07% was obtained [28,29]. A 

cylindrical glass cell was used throughout the study. Approximately 1 mL of sample was needed for each NIR 

measurement. NIR spectrum collection was repeated 5 times with cell rotation inside the spectrometer to 

minimise interferences from the cell or glass defects. The measurement of one sample took less than 3 min. The 

averaged and background-corrected spectrum was used for subsequent data pre-processing [37-39]. See [34,37-

60] for details. 

The IR spectroscopy method was used for determination of the melanine content in milk products. An 

analysis was performed using a Tensor 27 FT-IR Spectrometer (Bruker, Germany). A MIRacle ATR add-on 

device (Bruker, Germany) with a ZnSe crystal (1-reflexion; 1.8 mm) was used for the analysis of dairy products 

[33,35]. A spectral range between 500 and 4000 cm-1 was scanned with a spectral resolution of 2 cm-1 (Table 2). 

Thirty-two (32) scans were averaged for each spectrum. The measurement was repeated at least 5 times for each 

liquid or solid sample. See [33] and Table 2 for details. 

Data pre-processing was done according to [37]. Briefly, prior to calibration model building, various widely 

used pre-processing techniques were applied to the data. Nine (9) data pre-treatment methods were tested.  

See [38,39] for detailed discussions of different multivariate methods and algorithms: partial least squares 

regression / projection to latent structures (PLS), orthogonal projection to latent structures (OPLS/O-PLS), 

polynomial partial least squares regression (Poly-PLS), and artificial neural networks (ANNs). Spline-PLS 
method has not been applied due to its relatively high computational cost (long optimization procedure) and 

almost no superiority in accuracy over simpler Poly-PLS method [38]. The same can be said about principal 

component regression (PCR) in comparison with PLS method [38]. 

Here we will try to understand the extent to which ANN-based techniques can substitute linear (e.g., PLS) 

ones in real-world (industrial) applications. 

3. Results and discussion 

3.1 Methods optimization 

Cross-validation error was minimized in each case. It is interesting to note that the same degree of polynomial 

(3) of the final models was found for both methods. The quality of Poly-PLS method was found to be less 

dependent on the choice of n. Other chemometric algorithms (PLS, OPLS, ANN, etc.) were optimized in a 

similar manner [38]. 

3.2 Sample set separation 

It is a hard task to make a general calibration model for a really wide range of melamine content in dairy 

products, like we have in our sample (0-2000 ppm). If the whole data set is used for calibration model building, 

the final model will be biased towards the accurate prediction of samples with high melamine content, due to the 

minimization of mean squared error (MSE) in most multivariate algorithms (10002 >> 1002) [50]. So, the price 
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will be low model accuracy for diary samples with low melamine content and, as a consequence, high limit of 

detection (LOD). That is unacceptable from a point of view of food product quality control [1].  

To solve this problem the samples were separated into two subranges, named „low‟ and „high‟, with 

melamine content of below 17.3 ppm (14.6 ppm) and between 17.3 and 2000 ppm (14.6-2000 ppm) for infant 

formula (milk powder / liquid milk). Separate calibration models were built for each range. See Table 1 for 

details. It was checked that the accuracy of, both, „low‟ and „high‟ multivariate models in region of the border 

values (17.3/14.6 ppm) is not worse than elsewhere. 

3.3 MDA methods comparison: ANN-based regression 

The results of multivariate methods comparison for dairy products with low melamine content are discussed 

below. For both spectroscopic ranges and all milk products the same trend is well-seen: linear calibration 

methods (PLS and OPLS) show much larger prediction error (RMSEP), exceeding 1 ppm. The average error of 

PLS/OPLS methods is 1.31±0.07 ppm (σ), while the error of Poly-PLS and ANN methods is almost 5 times 

smaller (0.28±0.05).  

So, one can state that there is definitely a non-linear dependence between infrared spectrum of milk sample 

and the melamine content even in a low concentration range [1,36-39]. This non-linearity can be corrected by 

rather simple Poly-PLS algorithm [37]. 

Almost identical results are observed for all dairy products in both frequency ranges, with the lowest 

prediction errors of 0.25±0.04 ppm for SVM-based methods. ANN results of almost the same quality can also be 

obtained. There is a small superiority of SVR method over LS-SVM one, but the difference is negligible – below 

the reference method / preparation accuracy (0.01±0.01 ppm). So, both methods are equally effective and lead to 

LOD of 0.76±0.11 ppm [1]. 

It is clear that linear models are still not accurate. But a different trend is observed in the high-concentration 

case: the Poly-PLS model, being accurate for low-content region (Figure 3), is not accurate for higher 
concentrations of the target substance. The ration between the RMSEP of Poly-PLS and the lowest RMSEP has 

increased from 1.3±0.1 to 2.3±0.6. 

So, for higher melamine concentration the polynomial modification of PLS method is not able to fully 

account for spectral non-linearity. This can be due to higher influence of intermolecular interactions between 

melamine and matrix molecules, which are able to slightly shift vibrational frequencies and modify spectral 

intensities [28-30,56-58]. 

ANN, SVR, and LS-SVM methods are able to solve this problem. All of them are able to produce accurate 

results with RMSEP of 6.1±0.9 ppm.  

Note that for high melamine content NIR spectroscopy shows superiority over MIR one [22,23,36,59]. 

Currently, the FDA uses a liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) 

method to detect residues of melamine in dry infant formula [60]. Although this method provides limits of 

detection as low as 0.25 ppm, the sample preparation and cleanup procedures are time-consuming and labor-

intensive.  

The spectroscopic method for melamine detection based on mid- and near-infrared spectroscopy provides a 

much quicker and low-cost method procedure with a detection limit of just 0.76±0.11 ppm. Even though this 

value is by a factor of three larger than LC one, it is still below 1 ppm [1]. That means that the method can be 

applied in practice to detect adulteration of dairy products by melamine [1]. 

The influence of matrix is rather limited and different milk products can be analysed with equal efficiency. So, 
NIR spectroscopy is robust enough for real-world applications. Extra research is needed to clarify the possibility 

of melamine detection by infrared spectroscopy in other food products.  

The presented results can be compared with NIR spectroscopy of petroleum products (e.g., gasoline), as 

reported by Balabin et al. in 2007 [38]. Note that the hierarchy of the multivariate methods was different in that 

case: Poly-PLS method was less effective than ANN one. Unfortunately, no information on SVM-based 
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multivariate methods was provided [38,39]. It seems to be that the smaller spectral non-linearity was observed in 

a hydrocarbon mixture. 

Unfortunately, up to date not many papers compare several chemometric algorithms to find the most 

appropriate one for this or that task. So, it is hard to make any general comparison of dairy products with other 

chemical systems to understand the reasons of good or bad behavior. We can just state that ANN models were 

found to be the most accurate for the melamine calibration task. 

However further work is needed to enlarge the sample banks and the spectral libraries to get a real insight into 

the chemical reasons of success or failure of the NIR/MIR+MDA strategy. 

3.4 Methods comparison. ANN superiority 

Here we confirm the results of [36] for milk powder and extend them to other dairy products. Both infrared-

based methods (MIR and NIR) can be successfully applied to detect melamine in dairy products (liquid milk) 

with a limit of detection below 1 ppm. The simplicity of the sample preparation procedure and recent progress in 

hand-held near infrared devices makes the proposed technique promising for real-world applications.  

At least preliminary food quality control can be done by IR methods with subsequent confirmation of sample 

contamination by chromatographic method. This will greatly decrease the number of samples, one need to 

analyse, to ensure food quality and safety. The same technique is applied today in petroleum industry for online 

analysis of products of petroleum refining and petrochemicals [20,22,23]. 

The possibility of online (real-time) quality control by NIR spectroscopy is also an interesting perspective for 

practical implementation of the method proposed. A correct signal pre-processing procedure makes the sample 

collection unnecessary. 

4. Conclusion 

The following conclusions can be drawn: 

(1) Infrared spectroscopy (MIR or NIR) when combined with artificial neural networks (ANNs) is an 

effective tool to detect melamine in dairy products, such as liquid milk. 

(2) The limit of detection (LOD) below 1 ppm can be reached if a correct multivariate algorithm (ANN) is 

used for spectrum analysis (LOD = 0.76±0.11 ppm). 

(3) Neural network based method for melamine analysis in liquid milk based on spectroscopy data was 

successfully developed and tested [37-61]. 
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