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Abstract 

Rough set theory is an effective approach to imprecision, vagueness, and incompleteness in classification 

analysis and knowledge discovery .Attribute reduction is a key problem for rough set theory. While computing 

reduction according to the definitions is a typical NP problem. In this paper, basic concept of rough set theory 

is presented, one heuristic algorithm for attribution reduction based on conditional entropy is proposed. The 

actual application shows that the method is feasible and effective. 
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1. Introduction 

The theory of rough set proposed by Pawlak [1] in 1982 is a new method for data processing based on 
equivalence relation, and it has been successfully applied in such artificial intelligence fields as machine learning, 
pattern recognition, decision analysis, process control, knowledge discovery in databases and expert systems. 
The main idea of rough set theory is attribute reduction. It is well known that an information system or a decision 
table may usually have more than one reduction. It has been proven that finding the minimal reduction of 
information systems or decision tables is an NP-complete problem. Usually heuristic algorithm is used for 
reduction of attributes. In this paper, using discernibility matrix introduced by Skowron and Rauszer and 
conditional entropy, we propose a heuristic algorithm. By constructing an example, we show that the proposed 
algorithm is feasible. 

The rest of the article is organized as follows. Section 2 presents the fundamentals of Pawlak’s rough sets. In 
Section 3, we propose a heuristic algorithm. In Section 4, we show some example on fourteen public data sets. 
Section 5 presents conclusions. 
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2. Preliminaries 

2.1. Information System and Decision Table 

Rough sets have been employed to remove redundant conditional attributes from discrete-valued data sets 

while retaining their information content. Here are some basic concepts. 
Let I =(U; A) be an information system, where U is a non-empty set of finite objects (the universe of 

discourse); A is a non-empty finite set of attributes such that a :U→Va ,∀a∈A; Va being the value set of 

attribute a. In a decision system, A={C ∪D} where C is the set of conditional attributes and D is the set of 

decision attributes. With any P ⊆A there is an associated equivalence relation IND(P) [1] 

2( ) {( , )IND P X Y U  | , ( ) ( )}a P a x a y   .                                                                                       (1) 

The partition of U, generated by IND(P) is denoted U/P and can be calculated as follows: 

/ { : / ({ })},U P a P U IND a                                                                                                                   (2) 

where  

{ : , , }A B X Y X A Y B X Y          . 

If ( , ) ( )x y IND P , then x and y are indiscernible by attributes from P. The equivalence classes of the P-

indiscernibility relation are denoted [ ]Px . Let X U , the P-lower approximation[2] of a set can now be 

defined as 

{PX x |[ ] }Px X                                                                                                                                          (3) 

Let P and Q be equivalence relations over U, then the positive region [3] can be defined as 

U /
( )P

X Q
POS Q PX  .                                                                                                                                    (4)   

In terms of classification, the positive region contains all objects of U that can be classified to classes of U/Q 
using the knowledge in attributes P. 

Let U be a universe, P, Q denote a family of equivalence relations on the universe. Then P, Q may be 

considered as random variables on the  -algebra that is composed of the subsets of the universe U. Let X, Y be 

two partitions of the universe induced respectively by P, Q, where 

X=U/IND(P)={ 1X , 2X ,…, 
nX }, 

Y=U/IND(Q)={ 1Y , 2Y ,…, 
mY }. 

Then probability distributions of X,Y are defined respectively by: 
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where  
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The “card(.)” denotes the cardinality of a set. 
Having defined the probability distribution of knowledge[4], we can give the definitions of information 

entropy, conditional entropy and mutual information. 

The information entropy H(P) of Knowledge P is defined by: 

H(P)= — )(log)( 2
1

i

n

i
i XpXp                                                                                                                               (7) 

The entropy is a nonnegative function, i, e, H(P)  0.It may be interpreted as a measure of the information 

content, or the uncertainty about knowledge P . Information entropy reaches a maximum value log | |U ,when 

the knowledge P becomes finest. The minimum value 0 is obtained, when the distribution of the knowledge P 

focuses on a particular value 
0x , i, e. 

0( ) 1p x   and 
0( ) 0,p x x x  . 

The conditional entropy H(Q|P) of the knowledge Q given by the knowledge P is expressed by:  

H（Q|P）= -
i 2 i

1

( ) ( |X ) log ( |X )
n

i j j

i

p X p Y p Y    (8) 

Conditional entropy is nonnegative and non-symmetric, namely, H(Q|P)  0 and in general H(Q|P)   H(P|Q). 
It measures the additional amount of information provided by Q if P is known. 

Mutual information can be defined by using entropy and conditional entropy as follows: 

I(P;Q)=H(Q)- H（Q|P）.         (9) 

Mutual information measures the decrease of uncertainty about Q caused by P, and its inverse is the same. It 
measures the amount of information about P contained in Q or Q contained in P. The amount of information 
contained in P about itself is obviously H(P), namely, I(P;Q)= H(P).Attribute reduction depends on a criterion 
determining the attribute importance. By calculating the change in mutual information when an attribute is added 
to the set of considered condition attributes, a measure of the significance of the attribute can be obtained. The 
higher the change in mutual information is, the more significant the attribute is. 

Theorem 1 [5] .Suppose DT=（U, C∪D, A, f ）is a decision table, where U is the universe of discourse ,C is 
the set of conditional attributes and D is the set of decision attributes.  

For arbitrary set B  C, the sufficient and necessary conditions that B is a relative reduction of C with respect 

to D are the followings, and the two conditions must be satisfied at the same time. 

(1) I（B;D）=I（C;D）, 

(2) H（D|B）< H（D|B-{p}）,for an arbitrary attribute p ∈ B. 

2.2. Discernibility Matrix 

Let DT=（U, C∪D, A, f ）be a decision table. By M(DT) we denote an n n  matrix( ijc ),called the 

discernibility matrix[6] of DT, such that: 
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Since M(DT) are symmetric and iic   for i=1,2,…,n, we represent M(DT) only by elements in the lower 

triangle of M(DT), respectively, i, e.The 
ijc ’s with 1 j < ni  . 

Using discernibility matrix, Skowron and Rauszer have proven several properties and constructed efficient 

algorithms related to information systems and decision tables, e.g. The set of all indispensable attributes in C is 

called the core of DT, denoted by )(DCOREc . )(DCOREc  can be characterized by M(DT) in the following 

way: 

})))}{()((,(C)(|{)( acMccaaDCORE ijnnijijc   .                                                                                          (11) 

3. A Heuristic Algorithm for Reduction of Knowledge 

A reduct is a subset of condition attributes that is jointly sufficient and individually necessary for preserving 

the same information under consideration as provided by the entire set of attributes. This algorithm attempts to 

find a minimal reduct without exhaustively generating all possible subsets. It starts with relative core and adds 

one attribute that results in the highest increase in H(D|B∪{ 
ic }) in turn, until ending condition is met. This 

method does not always generate a minimal reduct, but it does result in a close-to-minimal reduct, which is still 

useful in reducing data set dimensionality. 

Algorithm: 

Input: 

Decision table DT=（U, C∪D, A, f ）. 

Output:  

B , which is one relative reduct of conditional attribute set C with respect to decision attribute set D. 

Step1: 

Compute the mutual information I(C;D) between conditional attribute set C and decision attribute set D in the 

decision table DT; 

Step2: 

Compute the relative core of C with respect to D by discernibility matrix denoted by CORE D (C); 

Step3: 

B←CORE D (C); 

Step4: 

Compute I(B;D), if I(B;D)=I(C;D),go to step6, otherwise go to step5; 

Step5: 

ic  C\B,compute the significance of attribute 
ic ,and 

mc =arg 
BCci \

min  H(D|B∪{ ic })( If multiple attributes 

achieving the maximum exist at the same time, choose one whose combination with B reaches the least as 

mc ),let B=B∪{
ic },go to step4; 

Step6:  

Conditional attribute set B is a relative reduct we need. 

4. An Illustrative Example 

To illustrate the operation of attribute reduction, an example is given here (see Table I). 
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TABLE I.  A DECISION TABLE 

 
U 

Conditional attribute set C Decision 

Attribute 

D d 
Outlook 

(a1) 

Temperatur

e 

(a2) 

Humidit

y 

(a3) 

Windy 

(a4) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Sunny 

Sunny 

Overcast 

Rain 

Rain 

Rain 

Overcast 

Sunny 

Sunny 

Rain 

Sunny 

Overcast 

Overcast 

Rain 

Hot 

Hot 

Hot 

Mild 

Cool 

Cool 

Cool 

Mild 

Cool 

Mild 

Mild 

Mild 

Hot 

Mild 

High 

High 

High 

High 

Normal 

Normal 

Normal 

High 

Normal 

Normal 

Normal 

High 

Normal 

High 

False  

True 

False 

False 

False 

True 

True 

False 

False 

False 

True 

True 

False 

True 

N 

N 

P 

P 

P 

N 

P 

N 

P 

P 

P 

P 

P 

N 

 

In the decision table defined in table1,U is the 14 objects, decision attributes set D is {d},conditional 

attributes set is { 1a , 2a ,
3a , 4a }and IND(D) ={{1,2,6,8,14},{3,4,5,7,9,10,11,12,13}}. 

Step1: Calculate I(C;D)=H(D)- H（D|C）=0.940-0=0.940; 

Step2: Calculate the discernibility matrix. 

14144321

43131

1414
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































aaaa

aaaaa

DTM







.  

And in the matrix: 

1,1c ; 

 2,21,2 cc ; 

1,3c { 1a }, 2,3c { 1a , 4a }, 3,3c ; 

1,4c { 1a , 2a }, 2,4c { 1a , 2a , 4a },  4,43,4 cc ; 

 … 

 2,141,14 cc , 3,14c { 1a , 2a , 4a }, 4,14c { 4a }, 5,14c { 2a , 3a , 4a }, 6,14c , 7,14c { 1a , 2a , 3a }

, 8,14c , 9,14c { 1a , 2a , 3a , 4a }, 10,14c { 3a , 4a }, 
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11,14c { 1a , 3a }, 12,14c { 1a }, 13,14c { 1a , 2a ,
3a , 4a } 

14,14c ; 

From the matrix, obviously 1,3c { 1a }, 4,14c { 4a } is the single attribute element , thus  CORE D (C)= 

{ 1a , 4a }; 

Step3: Let B ={ 1a , 4a }; 

Step4:Calculate I(B;D)=H(D)-H(D|B)=0.940-0.679=0.261, obviously I(B;D)≠I(C;D); 

Step5: Calculate  H(D|B∪{ 2a })= H(D|B∪{ 3a })= 0,since the number of the combination with B of 2a  and 

3a  is same. So 2a or 
3a  is chosen to be put into B,B=B∪ { 2a }={ 1a , 2a , 4a }or B1=B∪

{ 2a }={ 1a ,
3a , 4a } ,then go to step4 and calculate I(B;D)=H(D)- H(D|B ） =0.940-

0=0.940=I(C;D),I(B1;D)=H(D)- H(D|B1）=0.940-0=0.940= I(C;D),so it is the end. The result is { 1a , 2a , 4a } 

and { 1a , 3a , 4a }. 

5. Conclusions 

In this paper, we address attribute reduction of rough set theory under the information-theoretic frame and 

discernibility matrix. Mutual information is presented. Based on the measure, an approach of attribute 

reduction based on rough sets is proposed. By constructing an example, we show how the technique works.  

References 

[1] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (1982) 341-356. 

[2] PawlakZ.Rough set approach to multi-attribute decision analysis [J].European Journal of Operational 

Research,1994,72:443-459. 

[3]  Wenxiu Zhang,Weizhi Wu,Jiye Liang.Theory and Approach in Rough Set[M].Beijing:Science 

Press,2001(in Chinese). 

[4] D.Q. Miao, J. Wang, An information representation of the concepts and operations in rough set theory, 

Journal of Software 10 (1999) 113-116 (in Chinese). 

[5] D.Q. Miao,Daoguo Li.Theory,algorithm and application in rough set[M]. beijing:tsinghua university 

press.2008,4(in Chinese). 

[6] Skowron, A, Rauszer, C., “The discernibility matrices and functions in information systems”, 

Slowifiski(Ed.), Intelligent decision support: Handbook of applications and advances of rough set theory, 

Kluwer Academic Publishers, Dordrecht, volume 11, 1992, pp.331-362. 


