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Abstract 

Genetic Folding algorithm uses linear chromosomes composed of organized genes in floating-numbers manner, 

in which each genes chain fold back on themselves to form the final GF chromosome. In this paper, a novel 

genotype representation and a novel genetic operator were proposed. The paper was applied using MATLAB 

code to illustrate the beneficiary, flexibility and powerful of the Genetic Folding algorithm solving Santa Fe 

Trail problem. The problem of programming an artificial ant to follow the Santa Fe Trail is used as an example 

of program search space. 

To evaluate the efficiency and feasibility of the proposed methods, a comparison was held between the 

various types and sizes through the Santa Fe Trail problem. Several test functions along with various levels of 

difficulty were also conducted. Results of this proposal clearly show significant results of the proposed 

genotype and the genetic operator also. 

 

Index Terms: Genetic Folding Algorithm, genotype representation, refolding operator, Evolutionary 

Algorithm, Genetic Programming, Genetic Algorithm, GF, GPLab. 
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1. Introduction 

The Evolutionary Algorithms are optimization and search techniques based on the principles of genetics and 

natural selection. Genetic Folding Algorithm (GF) is a member of the evolutionary algorithms as it uses 

population of individuals, elitism of chromosome and the reproduction operators. Genetic Algorithm (GA), 

Genetic Programming (GP) and recently Gene Expression Programming [10] (GEP) are all members of the 
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evolutionary algorithms. However, the essential difference among these algorithms reside on the nature of the 

chromosomes that being generated. GF algorithm presents a new way of representing problems by generating a 

linear floating number folded back nonlinearly on themselves. 

Like in biology, GF algorithm mimics the architecture of RNA/DNA “secondary structure” which the helices 

of chains are represented in the GF algorithm as terminal and nonterminal. GF therefore, mimics the 

RNA/DNA folding mechanisms as it allows each gene in the chromosome mapped with a complementary gene 

in the same chromosome. [1] 

During the folding process, GF algorithm bound genes using different sort of mathematical operators, logical 

operators or user-defined operators. Each GF strings fold back on themselves to create chromosomes as 

feasible programs. In these folded chromosomes, each gene carry the corresponding information. GF life cycle 

operates on a user-defined number of generations. Each population contains on a user-defined number of 

populations of potential non-linear mapping solutions. Each GF chromosome may undergo by a set of 

reproduction operators that lead in generating new population for the next generation. This population contains 

on several potential chromosomes evaluated each time by a fitness functions which applying the principal of 

survival of the fittest. 

In GF, the linear chromosomes work as the genotype and the parse trees as the phenotype, creating a 

genotype/phenotype system. This genotype/ phenotype system is efficient in thus encoding a very length parse 

tree in each chromosome. This means that the computer programs created by GF are composed of a very length 

parse tree. GF algorithm shown an effective strategy in various types of computer problems such as binary and 

multi-classification and regression datasets. For example, GF for binary classification [7], multi-classification 

[5] and regression [6] have demonstrated how GF used to derive superior results in comparing to other 

members of the evolutionary algorithm’s family. 

Fig. 1. shows the general GF life cycle starting from the initializing step up to the refolding operator process 

passing by the life cycle stages. In the encoding/decoding process the GF chromosome is encoding every gene 

in the GF approach where every gene has numbers separated by dots. Further details in the GF chromosomes 

are given in the next section. 

 

 

Fig.1. Genetic Folding Life Cycle
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2. Genetic Folding Chromosome 

RNAs are full of short sequences that are “accidentally” complementary, and RNA chains fold back on 

themselves to form helices. In general, the chromosomes (individuals) represent set of genes, which represent 

the code of the dependent mapping genes. For this, every chromosome symbolizes a folding solution of the 

given problem. From other hand, the genes hold floating-numbers that represent a meaning related to the next 

gene. A set of different chromosomes forms a population that runs through several generations.  

In this paper, GF can create computer programs or models by a simple linear string. Although computer 

programs may be complex tree structures GF could represent the program by learning and adapting their sizes. 

In [4-8], all papers addressed the GF chromosome, as it is the standard GF chromosome genotype format. 

However, in this paper we introduced GF algorithm for a new sort of genotype which being used for three 

functions and three terminals including three string styles. Table I shown the functions and terminals were 

applied in the implementation. Where Table II shows an example of three genotype styles. Each style has a 

different meaning which either composed of three numbers, two numbers or one number depending on the arity 

of that defined GF decoding string. 

Basically, the GF chromosome was divided into two segments; a head segment, which contains on the 

functions only and a tail segment, which contains on the terminals only. However, the size of the head segment 

must be determined beforehand but for the size of tails segment no need as the GF algorithm predict the 

number of genes required based upon the arity required for the drawn functions (shown in Table I). Though, to 

draw new chromosomes using GF algorithm, every time the GF algorithm generates several functions 

randomly at first the GF algorithm will predict again the number of terminals required. Simply, GF uses the 

equations of (1) and (2). 

Assume GF algorithm generate randomly the following two genes for the head segment: 

Antprogn3 Antif 

Then, GF algorithm will reserve five rooms for the corresponding two functions drawn earlier. Therefore, the 

new GF chromosome will be something like: 

Antprogn3 Antif AntMove AntRight AntLeft Antright 

Therefore, every time GF needs to find the number of tail required for a chromosome will use the following 

equation: 

GF_Tail = number_of _Arity - 1                                                                                                                       (1) 

Likewise, for finding the full length of a GF chromosome we use the equation in (2) and substituting the 

value of term in (1): 

GF_Length = number_of_functions + GF_Tail                                                                                                (2) 
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Table 1. Type of Functions and Terminals 

 

 

 

 

 

 

 

 

The genome of GF consists of a linear, symbolic string or chromosome of fixed length composed of equal 

size. These genes, despite their fixed length, code for floating-numbers strings. An example of a chromosome 

with different arity is the following string: (Notably, the tail was formatted as underlined style where the head 

was formatted in an italic style.) 

Table 2. GF Encoding Example 

Index 1 2 3 4 5 6 

GF (String) Decoding Antprogn3 Antif Antmove Antmove Antmove Antmove 

Arity 3 2 1 1 1 1 

GF Encoding 2.4.5 3.6 3 4 5 6 

 

Where the first row represents the index number of each gene in the chromosome. The second row represents 

the arity of a GF chromosome composed of functions or terminals were randomly generated. The third row is 

for the arity each type of operator required.  

As GF chromosome composed of both head and tail segments. In the above example, only functions were 

generated with a size of three and two arities respectively. The tail size thus was generated using the equation 

in (1). For both encoding and decoding processes, GF algorithm generates in every generation several 

populations of chromosomes contain on a random helix coding numbers. For the helix coding numbers 

generated in each cell of the chromosome we call this type of relationship a Helix-language or in short H-

Language. Decoding GF genes to expression tree is very simple and a straightforward procedure. For example, 

the GF chromosome shown in Table 2 will be presented using GF tree expression as follows: 

 

 

Fig.2. Expression Tree of Genetic Folding Chromosome

Type of operator Name of steps No of Arity 

 

Function 

Antif 2 

antprogn2 2 

antprogn3 3 

 

Terminal 

Antright 1 

Antleft 1 

Antmove 1 

Antprogn3 

antif 
antmove 

antmove 

antmove antmove 
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3. Genetic Folding Operator 

To comprehend the EA as a whole, it is necessary to understand the role of a gene representation and genetic 

operators. The two most commonly employed genetic search operators are crossover and mutation. Crossover 

produces offspring by recombining the information from two parents. While mutation prevents convergence of 

the population by flipping a small number of randomly selected bits to continuously introduce variation. A 

genetic operator is a process used in GAs to maintain genetic diversity [4]. 

The GF algorithm is a flexible technique in both genotype and phenotype based on the principals of genetics 

representation and genetic operators. The genetic operators proposed here allow a fittest population to specify 

genetic folding programs (chromosome) that maximizes the fitness function. By means of evolutionary 

operators, here a refolding operator of an offspring population is introduced for the first time to maintain 

genetic diversity. 

The refolding operator is a genetic operator that creates from the parent pool a chromosome by folding its 

genes on themselves to produce a new chromosome in the offspring pool. However, the refolding operator 

combines genes from a selected parent and produced new offspring including the folded genes. The idea behind 

refolding operator is that each offspring chromosome will keep folding on itself until an optimum folding found. 

And by this GF chromosomes will have a modification chance every time the chromosome fold again and 

again over the time. 

The powerful idea behind the refolding operator proofed to replace both operators and found reasonable 

results. The refolding operator can redraw different possibilities of chromosomes out of one GF chromosome. 

By this the GF algorithm will map all genes with its complementary genes for a numerous number of 

combinations and for finding out the best folding format. 

In the way of folding one gene into another gene a plenty of folding results may obtain based upon the length 

of the chromosome. However, each gene of parent will be folding back with its corresponding place of the 

complementary gene within the inside chromosome as sown below. Now, assume the refolding operator is 

occurred for the following GF individual. Let an individual holds a string of:  

antprogn3(antif(antmove,antmove), antmove,antmove) with a fitness value of 3. 

 

1 2 3 4 5 6 

Antprogn3 Antif Antmove Antmove Antmove Antmove 

2.6.5 4.3 3 4 5 6 

 

Consider now, the result of the refolding operator works on the GF individual as one of possible folding 

results as: 

 

1 2 3 4 5 6 

Antprogn3 Antif Antmove Antmove Antmove Antmove 

2.6.3 5.4 3 4 5 6 

 

Which gave the string of antprogn3(antif(antmove, antmove), antmove,antmove) with a fitness value of 3. 

4. Related Works 

In the ant trail problem, the task is to direct an ant moving on a virtual plane so that it collects maximum 

number of foods distributed randomly on the plane. The widely-used benchmark in evolutionary algorithms is 

the Santa Fe problem [2][3][11]. However, the techniques used to solve such benchmark could be divided into 

three major techniques; Fitness evaluations, Grammatical Evolutions, and ants’ energies. Some researches 
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provide modified algorithms to generate programs or subprograms to study empirically the effects of various 

fitness metrics on training and testing performance of the Santa Fe problem [12][13]. The evolutionary 

methodologies were adopted also in various research using the known ant’s energy levels in literature with 

different initial range of energy [14]. Many other techniques within the field of GP is Grammatical Evolution. 

GE is a grammar-based form of GP which performed a mapping from a linear genotype to phenotypic GP trees.  

5. Ant Colony Optimization 

Before we present our results, we will explain in a brief the problem we are facing to resolve using the 

refolding operator. In general, the artificial ant must follow the “Santa Fe trail”, which consists of 32*32 

squares. The Santa Fe Trail problem is a good exercise in which there are 89 food units distributed non-

uniformly along it. Every time the artificial ant enters a square containing food eat it per a programmed set of 

instructions. The amount of food eaten is used as the fitness measure of the control program. [3] However, each 

H-language of a GF chromosome was finally converted to a tree program by labeling its nodes with a function 

or terminal of the correct arity chosen uniformly at random. 

However, the Santa Fe Trail problem is a well-known model problem that has been studied over the past two 

decades and is still being used as a GP benchmark. The layout of food pellets in the Santa Fe Trail problem has 

become a standard for comparing different EAs. This problem is known for its status of being “hard” by quality 

of evolutionary computing methods not solving it. The hardness has been attributed to a fitness landscape that 

is difficult to found. [2]  

6. Experimental Results 

The GF algorithm was tested on various numbers of parameters to verify its ability of finding good results. 

The GF algorithm was identically relying on the GPlab toolbox [9] in drawing GF tree and in some other 

drawing features. Although, GF algorithm was conducted in a wide range of population and generation sizes, 

the refolding operator could find an optimum result at small sizes. Table 3 shows the maximum fitness values 

found in percentages of different sizes accompanied for a convenience reading. 

Table 3. GF Algorithms Results for Different Sizes 

 
Pop. 

Size 
Gen. 

Best 

found 
Fitness Depth Nodes 

Small 10 12 6 21/89 7 31 

Small 2 100 25 22 58/89 6 16 

Mid 200 50 49 62/89 9 31 

Large 400 100 42 54/89 6 15 

Large 2 400 200 72 62/89 7 15 

 

In Fig. 3, GF was tested again on five different sizes of both generations and populations. Fig.3 (e) and (c) 

were an example of medium and high number of populations. Even though GF algorithm could find the best 

ant pathway with a highest number of pallets not after 49 and 72 generations in both figures respectively (see 

Table III). However, Fig. 3 (d) was unsuccessful finding the highest number of pallets to be eaten in comparing 

to the artificial ant shown in the Fig. 3 (c).  

In the Appendix, we enclosed other examines and results in full details. The appendix shows results of 

different sizes conducted in the paper such as; the structural complexity of the GF folded chromosomes, best 

GF chromosome drawn as a tree structure and the ant pathways that each artificial ant passed through 

comparably. 
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a) Pop no. = 10, gen. no. = 12,                                                                       b) Pop no. = 100, gen. no. = 25 

 

 
c) Pop no. = 200, gen. no. = 50                                                              d) Pop no. = 400, gen. no. = 100 

 

 
e) Population no. =400, generation no. = 200 

Fig.3. Best Fitness Values for Different Sizes 

7. Conclusion and Future Works 

The increasing importance of Genetic Folding algorithm in solving NP-problem motivated us of developing 

a new genetic operator in contrast to the conventional genetic operators. The GF algorithm shows significant 

results of finding a high number of pallets for the artificial ants in aids of using the refolding operator proposed 

here. The genotype proposed here was also sufficient for the problem in hand to predict the best chromosome 
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structure even for a small and medium population size. 

Refolding operator introduced within a novel genotype as a simple and easy to implement operator, yet fast 

and powerful in reproducing new population. Instead of using a self-adaptive operator or using more than one 

of the traditional genetic operators the refolding operator may replace them all. 

Appendix A 

 

Fig.4. Best Result of Population no. = 10 and Generation no. = 12 

 

Fig.5. Best Result of Population no. = 100 and Generation no. = 25 

 

Fig.6. Best Result of Population no. = 200 and Generation no. =50



 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 9 

 

Fig.7. Best Result of Population no. =400 and Generation no. = 100 

 

Fig.8. Best Result of Population no. =200 and Generation no. = 400 

Table 4.  Best Result of Population no. = 10 and Generation no. = 12 

GF String antprogn3(antprogn3(antif(antmove,antif(antif(antmove,antright),antleft)),antright,antprogn3(antprogn2(antif(ant

move,antright),antmove),antmove,antprogn3(antright,antif(antleft,antif(antright,antleft)),antmove))),antif(antright,

antif(antmove,antleft)),antmove) 

 

GF 

chromosome 

[13.8.24][17.18][19.23][30.14][29.7][9.21.12][4.20][28.11][3.16][31.2][25.26][22.10.15][5.27.6][14][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31] 

 

Table 5. Best Result of Population no. = 100 and Generation no. = 25 

GF String antprogn2(antif(antmove,antright),antprogn2(antprogn2(antprogn2(antprogn3(antmove,antright,antmove),antif(a

ntright,antleft)),antleft),antmove)) 

 

GF chromosome [4.10][11.27][26.15][23.32][31.7.24][20.30][28.13][8.22][9.25][2.21][12.3][18.29.16][14.33.17][19.5.6][15][16]

[17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33] 

 

Table 6. Best Result of Population no. = 200 and Generation no. = 50 

GF String antprogn3(antif(antif(antmove,antleft),antleft),antprogn3(antmove,antleft,antif(antprogn3(antprogn3(antleft,antri

ght,antright),antright,antprogn3(antright,antleft,antprogn3(antprogn2(antright,antif(antleft,antright)),antprogn2(a

ntright,antleft),antleft))),antright)),antright) 

 

GF chromosome [11.8.30][20.14][17.24][27.23.9][10.13][19.3][29.22][26.21.5][6.2.15][12.28.4][7.25][18.31.16][13][14][15][16]

[17][18][19][20][21][22][23][24][25][26][27][28][29][30][31] 
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Table 7. Best Result of Population no. = 400 and Generation no. = 100 

GF String antprogn2(antprogn3(antif(antleft,antright),antright,antprogn2(antif(antmove,antprogn3(antleft,antleft,antleft)),an

tmove)),antright) 

 

GF chromosome [13.22][17.31.30][21.32][29.7][10.6][18.16][23.28.26][14.8][4.27][5.24][19.20][25.12][11.15.9][2.3][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31][32] 

 

Table 8. Best Result of Population no. = 400 and Generation no. = 200 

GF String antif(antleft,antprogn2(antright,antprogn2(antprogn3(antmove,antright,antif(antprogn3(antleft,antright,antmove),a

ntleft)),antleft))) 

 

GF chromosome [31.9][4.17][19.25][32.24.12][21.22.18][27.28][7.5][29.11][23.2][6.15][13.3][14.16][8.10][26.30.20][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31][32] 
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