
I.J. Engineering and Manufacturing, 2017, 6, 1-11
Published Online November 2017 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijem.2017.06.01

Available online at http://www.mecs-press.net/ijem

A Novel Genetic Operator for Genetic Folding Algorithm: A

Refolding Operator and a New Genotype

Mohammd A. Mezher
a
, Maysam F. Abbod

b

a
 Computer Science Department, Fahad Bin Sultan University, Tabuk, KSA

b
 Electronic and Computer Engineering Department, Brunel University London, UK

Received: 03 February 2017; Accepted: 28 March 2017; Published: 08 November 2017

Abstract

Genetic Folding algorithm uses linear chromosomes composed of organized genes in floating-numbers manner,

in which each genes chain fold back on themselves to form the final GF chromosome. In this paper, a novel

genotype representation and a novel genetic operator were proposed. The paper was applied using MATLAB

code to illustrate the beneficiary, flexibility and powerful of the Genetic Folding algorithm solving Santa Fe

Trail problem. The problem of programming an artificial ant to follow the Santa Fe Trail is used as an example

of program search space.

To evaluate the efficiency and feasibility of the proposed methods, a comparison was held between the

various types and sizes through the Santa Fe Trail problem. Several test functions along with various levels of

difficulty were also conducted. Results of this proposal clearly show significant results of the proposed

genotype and the genetic operator also.

Index Terms: Genetic Folding Algorithm, genotype representation, refolding operator, Evolutionary

Algorithm, Genetic Programming, Genetic Algorithm, GF, GPLab.

© 2017 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science.

1. Introduction

The Evolutionary Algorithms are optimization and search techniques based on the principles of genetics and

natural selection. Genetic Folding Algorithm (GF) is a member of the evolutionary algorithms as it uses

population of individuals, elitism of chromosome and the reproduction operators. Genetic Algorithm (GA),

Genetic Programming (GP) and recently Gene Expression Programming [10] (GEP) are all members of the

* Corresponding author. Tel.: 00966581681999

E-mail address: mmezhr@fbsu.edu.sa

http://www.mecs-press.net/ijem

2 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype

evolutionary algorithms. However, the essential difference among these algorithms reside on the nature of the

chromosomes that being generated. GF algorithm presents a new way of representing problems by generating a

linear floating number folded back nonlinearly on themselves.

Like in biology, GF algorithm mimics the architecture of RNA/DNA “secondary structure” which the helices

of chains are represented in the GF algorithm as terminal and nonterminal. GF therefore, mimics the

RNA/DNA folding mechanisms as it allows each gene in the chromosome mapped with a complementary gene

in the same chromosome. [1]

During the folding process, GF algorithm bound genes using different sort of mathematical operators, logical

operators or user-defined operators. Each GF strings fold back on themselves to create chromosomes as

feasible programs. In these folded chromosomes, each gene carry the corresponding information. GF life cycle

operates on a user-defined number of generations. Each population contains on a user-defined number of

populations of potential non-linear mapping solutions. Each GF chromosome may undergo by a set of

reproduction operators that lead in generating new population for the next generation. This population contains

on several potential chromosomes evaluated each time by a fitness functions which applying the principal of

survival of the fittest.

In GF, the linear chromosomes work as the genotype and the parse trees as the phenotype, creating a

genotype/phenotype system. This genotype/ phenotype system is efficient in thus encoding a very length parse

tree in each chromosome. This means that the computer programs created by GF are composed of a very length

parse tree. GF algorithm shown an effective strategy in various types of computer problems such as binary and

multi-classification and regression datasets. For example, GF for binary classification [7], multi-classification

[5] and regression [6] have demonstrated how GF used to derive superior results in comparing to other

members of the evolutionary algorithm’s family.

Fig. 1. shows the general GF life cycle starting from the initializing step up to the refolding operator process

passing by the life cycle stages. In the encoding/decoding process the GF chromosome is encoding every gene

in the GF approach where every gene has numbers separated by dots. Further details in the GF chromosomes

are given in the next section.

Fig.1. Genetic Folding Life Cycle

 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 3

2. Genetic Folding Chromosome

RNAs are full of short sequences that are “accidentally” complementary, and RNA chains fold back on

themselves to form helices. In general, the chromosomes (individuals) represent set of genes, which represent

the code of the dependent mapping genes. For this, every chromosome symbolizes a folding solution of the

given problem. From other hand, the genes hold floating-numbers that represent a meaning related to the next

gene. A set of different chromosomes forms a population that runs through several generations.

In this paper, GF can create computer programs or models by a simple linear string. Although computer

programs may be complex tree structures GF could represent the program by learning and adapting their sizes.

In [4-8], all papers addressed the GF chromosome, as it is the standard GF chromosome genotype format.

However, in this paper we introduced GF algorithm for a new sort of genotype which being used for three

functions and three terminals including three string styles. Table I shown the functions and terminals were

applied in the implementation. Where Table II shows an example of three genotype styles. Each style has a

different meaning which either composed of three numbers, two numbers or one number depending on the arity

of that defined GF decoding string.

Basically, the GF chromosome was divided into two segments; a head segment, which contains on the

functions only and a tail segment, which contains on the terminals only. However, the size of the head segment

must be determined beforehand but for the size of tails segment no need as the GF algorithm predict the

number of genes required based upon the arity required for the drawn functions (shown in Table I). Though, to

draw new chromosomes using GF algorithm, every time the GF algorithm generates several functions

randomly at first the GF algorithm will predict again the number of terminals required. Simply, GF uses the

equations of (1) and (2).

Assume GF algorithm generate randomly the following two genes for the head segment:

Antprogn3 Antif

Then, GF algorithm will reserve five rooms for the corresponding two functions drawn earlier. Therefore, the

new GF chromosome will be something like:

Antprogn3 Antif AntMove AntRight AntLeft Antright

Therefore, every time GF needs to find the number of tail required for a chromosome will use the following

equation:

GF_Tail = number_of _Arity - 1 (1)

Likewise, for finding the full length of a GF chromosome we use the equation in (2) and substituting the

value of term in (1):

GF_Length = number_of_functions + GF_Tail (2)

4 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype

Table 1. Type of Functions and Terminals

The genome of GF consists of a linear, symbolic string or chromosome of fixed length composed of equal

size. These genes, despite their fixed length, code for floating-numbers strings. An example of a chromosome

with different arity is the following string: (Notably, the tail was formatted as underlined style where the head

was formatted in an italic style.)

Table 2. GF Encoding Example

Index 1 2 3 4 5 6

GF (String) Decoding Antprogn3 Antif Antmove Antmove Antmove Antmove

Arity 3 2 1 1 1 1

GF Encoding 2.4.5 3.6 3 4 5 6

Where the first row represents the index number of each gene in the chromosome. The second row represents

the arity of a GF chromosome composed of functions or terminals were randomly generated. The third row is

for the arity each type of operator required.

As GF chromosome composed of both head and tail segments. In the above example, only functions were

generated with a size of three and two arities respectively. The tail size thus was generated using the equation

in (1). For both encoding and decoding processes, GF algorithm generates in every generation several

populations of chromosomes contain on a random helix coding numbers. For the helix coding numbers

generated in each cell of the chromosome we call this type of relationship a Helix-language or in short H-

Language. Decoding GF genes to expression tree is very simple and a straightforward procedure. For example,

the GF chromosome shown in Table 2 will be presented using GF tree expression as follows:

Fig.2. Expression Tree of Genetic Folding Chromosome

Type of operator Name of steps No of Arity

Function

Antif 2

antprogn2 2

antprogn3 3

Terminal

Antright 1

Antleft 1

Antmove 1

Antprogn3

antif
antmove

antmove

antmove antmove

 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 5

3. Genetic Folding Operator

To comprehend the EA as a whole, it is necessary to understand the role of a gene representation and genetic

operators. The two most commonly employed genetic search operators are crossover and mutation. Crossover

produces offspring by recombining the information from two parents. While mutation prevents convergence of

the population by flipping a small number of randomly selected bits to continuously introduce variation. A

genetic operator is a process used in GAs to maintain genetic diversity [4].

The GF algorithm is a flexible technique in both genotype and phenotype based on the principals of genetics

representation and genetic operators. The genetic operators proposed here allow a fittest population to specify

genetic folding programs (chromosome) that maximizes the fitness function. By means of evolutionary

operators, here a refolding operator of an offspring population is introduced for the first time to maintain

genetic diversity.

The refolding operator is a genetic operator that creates from the parent pool a chromosome by folding its

genes on themselves to produce a new chromosome in the offspring pool. However, the refolding operator

combines genes from a selected parent and produced new offspring including the folded genes. The idea behind

refolding operator is that each offspring chromosome will keep folding on itself until an optimum folding found.

And by this GF chromosomes will have a modification chance every time the chromosome fold again and

again over the time.

The powerful idea behind the refolding operator proofed to replace both operators and found reasonable

results. The refolding operator can redraw different possibilities of chromosomes out of one GF chromosome.

By this the GF algorithm will map all genes with its complementary genes for a numerous number of

combinations and for finding out the best folding format.

In the way of folding one gene into another gene a plenty of folding results may obtain based upon the length

of the chromosome. However, each gene of parent will be folding back with its corresponding place of the

complementary gene within the inside chromosome as sown below. Now, assume the refolding operator is

occurred for the following GF individual. Let an individual holds a string of:

antprogn3(antif(antmove,antmove), antmove,antmove) with a fitness value of 3.

1 2 3 4 5 6

Antprogn3 Antif Antmove Antmove Antmove Antmove

2.6.5 4.3 3 4 5 6

Consider now, the result of the refolding operator works on the GF individual as one of possible folding

results as:

1 2 3 4 5 6

Antprogn3 Antif Antmove Antmove Antmove Antmove

2.6.3 5.4 3 4 5 6

Which gave the string of antprogn3(antif(antmove, antmove), antmove,antmove) with a fitness value of 3.

4. Related Works

In the ant trail problem, the task is to direct an ant moving on a virtual plane so that it collects maximum

number of foods distributed randomly on the plane. The widely-used benchmark in evolutionary algorithms is

the Santa Fe problem [2][3][11]. However, the techniques used to solve such benchmark could be divided into

three major techniques; Fitness evaluations, Grammatical Evolutions, and ants’ energies. Some researches

6 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype

provide modified algorithms to generate programs or subprograms to study empirically the effects of various

fitness metrics on training and testing performance of the Santa Fe problem [12][13]. The evolutionary

methodologies were adopted also in various research using the known ant’s energy levels in literature with

different initial range of energy [14]. Many other techniques within the field of GP is Grammatical Evolution.

GE is a grammar-based form of GP which performed a mapping from a linear genotype to phenotypic GP trees.

5. Ant Colony Optimization

Before we present our results, we will explain in a brief the problem we are facing to resolve using the

refolding operator. In general, the artificial ant must follow the “Santa Fe trail”, which consists of 32*32

squares. The Santa Fe Trail problem is a good exercise in which there are 89 food units distributed non-

uniformly along it. Every time the artificial ant enters a square containing food eat it per a programmed set of

instructions. The amount of food eaten is used as the fitness measure of the control program. [3] However, each

H-language of a GF chromosome was finally converted to a tree program by labeling its nodes with a function

or terminal of the correct arity chosen uniformly at random.

However, the Santa Fe Trail problem is a well-known model problem that has been studied over the past two

decades and is still being used as a GP benchmark. The layout of food pellets in the Santa Fe Trail problem has

become a standard for comparing different EAs. This problem is known for its status of being “hard” by quality

of evolutionary computing methods not solving it. The hardness has been attributed to a fitness landscape that

is difficult to found. [2]

6. Experimental Results

The GF algorithm was tested on various numbers of parameters to verify its ability of finding good results.

The GF algorithm was identically relying on the GPlab toolbox [9] in drawing GF tree and in some other

drawing features. Although, GF algorithm was conducted in a wide range of population and generation sizes,

the refolding operator could find an optimum result at small sizes. Table 3 shows the maximum fitness values

found in percentages of different sizes accompanied for a convenience reading.

Table 3. GF Algorithms Results for Different Sizes

Pop.

Size
Gen.

Best

found
Fitness Depth Nodes

Small 10 12 6 21/89 7 31

Small 2 100 25 22 58/89 6 16

Mid 200 50 49 62/89 9 31

Large 400 100 42 54/89 6 15

Large 2 400 200 72 62/89 7 15

In Fig. 3, GF was tested again on five different sizes of both generations and populations. Fig.3 (e) and (c)

were an example of medium and high number of populations. Even though GF algorithm could find the best

ant pathway with a highest number of pallets not after 49 and 72 generations in both figures respectively (see

Table III). However, Fig. 3 (d) was unsuccessful finding the highest number of pallets to be eaten in comparing

to the artificial ant shown in the Fig. 3 (c).

In the Appendix, we enclosed other examines and results in full details. The appendix shows results of

different sizes conducted in the paper such as; the structural complexity of the GF folded chromosomes, best

GF chromosome drawn as a tree structure and the ant pathways that each artificial ant passed through

comparably.

 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 7

a) Pop no. = 10, gen. no. = 12, b) Pop no. = 100, gen. no. = 25

c) Pop no. = 200, gen. no. = 50 d) Pop no. = 400, gen. no. = 100

e) Population no. =400, generation no. = 200

Fig.3. Best Fitness Values for Different Sizes

7. Conclusion and Future Works

The increasing importance of Genetic Folding algorithm in solving NP-problem motivated us of developing

a new genetic operator in contrast to the conventional genetic operators. The GF algorithm shows significant

results of finding a high number of pallets for the artificial ants in aids of using the refolding operator proposed

here. The genotype proposed here was also sufficient for the problem in hand to predict the best chromosome

8 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype

structure even for a small and medium population size.

Refolding operator introduced within a novel genotype as a simple and easy to implement operator, yet fast

and powerful in reproducing new population. Instead of using a self-adaptive operator or using more than one

of the traditional genetic operators the refolding operator may replace them all.

Appendix A

Fig.4. Best Result of Population no. = 10 and Generation no. = 12

Fig.5. Best Result of Population no. = 100 and Generation no. = 25

Fig.6. Best Result of Population no. = 200 and Generation no. =50

 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 9

Fig.7. Best Result of Population no. =400 and Generation no. = 100

Fig.8. Best Result of Population no. =200 and Generation no. = 400

Table 4. Best Result of Population no. = 10 and Generation no. = 12

GF String antprogn3(antprogn3(antif(antmove,antif(antif(antmove,antright),antleft)),antright,antprogn3(antprogn2(antif(ant

move,antright),antmove),antmove,antprogn3(antright,antif(antleft,antif(antright,antleft)),antmove))),antif(antright,

antif(antmove,antleft)),antmove)

GF

chromosome

[13.8.24][17.18][19.23][30.14][29.7][9.21.12][4.20][28.11][3.16][31.2][25.26][22.10.15][5.27.6][14][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31]

Table 5. Best Result of Population no. = 100 and Generation no. = 25

GF String antprogn2(antif(antmove,antright),antprogn2(antprogn2(antprogn2(antprogn3(antmove,antright,antmove),antif(a

ntright,antleft)),antleft),antmove))

GF chromosome [4.10][11.27][26.15][23.32][31.7.24][20.30][28.13][8.22][9.25][2.21][12.3][18.29.16][14.33.17][19.5.6][15][16]

[17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33]

Table 6. Best Result of Population no. = 200 and Generation no. = 50

GF String antprogn3(antif(antif(antmove,antleft),antleft),antprogn3(antmove,antleft,antif(antprogn3(antprogn3(antleft,antri

ght,antright),antright,antprogn3(antright,antleft,antprogn3(antprogn2(antright,antif(antleft,antright)),antprogn2(a

ntright,antleft),antleft))),antright)),antright)

GF chromosome [11.8.30][20.14][17.24][27.23.9][10.13][19.3][29.22][26.21.5][6.2.15][12.28.4][7.25][18.31.16][13][14][15][16]

[17][18][19][20][21][22][23][24][25][26][27][28][29][30][31]

10 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype

Table 7. Best Result of Population no. = 400 and Generation no. = 100

GF String antprogn2(antprogn3(antif(antleft,antright),antright,antprogn2(antif(antmove,antprogn3(antleft,antleft,antleft)),an

tmove)),antright)

GF chromosome [13.22][17.31.30][21.32][29.7][10.6][18.16][23.28.26][14.8][4.27][5.24][19.20][25.12][11.15.9][2.3][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31][32]

Table 8. Best Result of Population no. = 400 and Generation no. = 200

GF String antif(antleft,antprogn2(antright,antprogn2(antprogn3(antmove,antright,antif(antprogn3(antleft,antright,antmove),a

ntleft)),antleft)))

GF chromosome [31.9][4.17][19.25][32.24.12][21.22.18][27.28][7.5][29.11][23.2][6.15][13.3][14.16][8.10][26.30.20][15][16][17]

[18][19][20][21][22][23][24][25][26][27][28][29][30][31][32]

References

[1] Peter B. Moore, The RNA World, 2nd Ed.: The Nature of Modern RNA Suggests a Prebiotic RNA World.

Pages 381-401. Volume 37. 1999

[2] Dominic Wilson, Devinder Kaur, How Santa Fe Ants Evolve. Neural and Evolutionary Computing. 2014

[3] W. B. Langdon and R. Poli. Why Ants are Hard. Genetic Programming, Pages 193-201. 1998

[4] Mohammad Mezher, Maysam Abbod. Genetic folding: Analyzing the mercer's kernels effect in support

vector machine using genetic folding. World Academy of Science, Engineering and Technology. Pages

1342 – 1347. Volume 5. 2011.

[5] Mohammad Mezher, Maysam Abbod. Genetic folding for solving multiclass SVM problems. Applied

Intelligence Journal. Pages 464-472. Volume 41. 2014.

[6] Mohammad Mezher, Maysam Abbod. A new genetic folding algorithm for regression problems.

Computer Modeling and Simulation (UKSim), UKSim 14th International Conference On. Pages 46-51.

2012.

[7] Mohammad Mezher, Maysam Abbod. Genetic Folding: A New Class of Evolutionary Algorithms.

Research and Development in Intelligent Systems. Springer. Pages 279-284. 2011.

[8] Mohammad Mezher. Genetic Folding Algorithm: An Introduction to a New Evolutionary Algorithm. LAP

Lambert Academic Publishing. 2012.

[9] Sara Silva, Jonas Almeida. GPLAB-a genetic programming toolbox for MATLAB. Proceedings of the

Nordic MATLAB conference. Pages 273-278.

[10] Candida Ferreira. Gene Expression Programming: A new Adaptive Algorithm for Solving Problems.

Complex Systems, Vol. 13, issue 2. 2001.

[11] Kushchu, I. Genetic programming and evolutionary generalization. IEEE transactions of Evolutionary

Computation Vol. 6 issue 5. 2002.

[12] Lehman, J. Stanley, K. Exploiting open-endedness to solve problems through the search for novelty.

Proceedings of the international conference on artificial Life. MIT press, Cambridge. 2008.

[13] J. Doucette, M. 1. Heywood, "Novelty-based fitness: An evaluation under the santa fe trail", Genetic

Programming 13th European Conference EuroGP 2010 ser. Lecture Notes in Computer Science, pp. 50-

61, 2010.

[14] D. Oghorodi, P. Asagba. Determining an Optimal Energy Level of the Artificial Ant in the Classical Santa

Fe Artificial Ant Problem on the platform of Genetic Programming. African Journal of Computing and

ICT. Vol 8 issue 2. 2015.

 A Novel Genetic Operator for Genetic Folding Algorithm: A Refolding Operator and a New Genotype 11

Authors’ Profiles

Mohammad A. Mezher is assistant professor and chair of the department of computer

science at Fahad Bin Sultan University, where he has been since 2013. He received a BSc.

From Alzaytoonah University in 2004, and MSc. From the Sains Malaysia University in

2006. He received his Ph.D. in Computer Science from the University of Brunel in 2011.

Much of his work has been on improving the evolutionary algorithms, mainly Genetic

Folding Algorithm. Where he has invented and introduced GF for the first time in 2010 at

SAGAI, Cambridge, UK.

Dr Maysam F. Abbod (MIEE, CEng) He received BSc degree in Electrical Engineering

from University of Technology in 1987. PhD in Control Engineering from University of

Sheffield in 1992. From 1993 to 2006 he was with the Department of Automatic Control and

Systems Engineering at the University of Sheffield as a research associate and senior

research fellow. He is recently a senior lecturer in Intelligent Systems and a Course Director

for EEE programmes at Brunel University.

How to cite this paper: Mohammd A. Mezher, Maysam F. Abbod,"A Novel Genetic Operator for Genetic

Folding Algorithm: A Refolding Operator and a New Genotype", International Journal of Engineering and

Manufacturing(IJEM), Vol.7, No.6, pp.1-11, 2017.DOI: 10.5815/ijem.2017.06.01

