
I.J. Engineering and Manufacturing, 2012,4, 35-48
Published Online August 2012 in MECS (http://www.mecs-press.net)

DOI: 10.5815/ijem.2012.04.05

Available online at http://www.mecs-press.net/ijem

A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

Chuanqing Shi
a
, Shengfa Gao

b

College of Computer Science and Technology, ShanDong University, Jinan Shandong

Abstract

We propose a coordinated checkpointing algorithm based unreliable non-FIFO channel. In unreliable non-FIFO

channel, the system can lose, duplicate, or reorder messages. The processes may not compute some messages

because of message losses; the processes may compute some messages twice or more because of message

duplicate; the processes may not compute messages according to their sending order because of message

reordering. The above-mentioned problems make processes produce incorrect computation result, consequently,

prevent processes from taking consistent global checkpoints. Our algorithm assigns each message a sequence

number in order to resolve above-mentioned problems. During the establishing of the checkpoint, the

consistency of checkpoint can be determined by the sequence number of sending and receiving messages. We

can identify the lost messages, reordering messages and duplicate messages by checking the sequence number

of sending and receiving messages. We resolve above-mentioned problems by resending the lost messages,

buffering the reordering messages and dropping the duplicate messages. Our algorithm makes processes take

consistent global checkpoints.

Index Terms: unreliable non-FIFO channel; message losses; message duplicate; message reordering;

consistent global checkpoints

© 2012 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research

Association of Modern Education and Computer Science.

1. Introduction

Checkpointing and rollback-recovery are popular techniques that permit processes to make progress despite

a process fails. We assume that the failures are transient problems. The failures are improbable to recur when

the process restarts. With this scheme, a process takes a checkpoint periodically by saving its state on stable

storage [1]. When a process has a failure, it rolls back to its most recent checkpoint that saves the state of this

process and restarts execution.

Most checkpointing algorithms generally assume the communication channels are reliable FIFO channels [2,

3, 4]. Now, we propose a coordinated checkpointing algorithm based unreliable non-FIFO channel. In

The research in this paper is based on project supported by the subject of Natural Science Foundation of Shandong Province of China

under grant Nos. Z2008G03.

* Corresponding author.

E-mail address:
a
shichuanqing123@163.com;

b
gsfyx@sdu.edu.cn

36 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

unreliable non-FIFO channel, the system can lose, duplicate, or reorder messages [5]. The processes may not

compute some messages because of message losses; the processes may compute some messages twice or more

because of message duplicate; the processes may not compute messages according to their sending order

because of message reordering. The above-mentioned problems make processes produce incorrect computation

result, consequently, prevent processes from taking consistent global checkpoints. Our algorithm can resolve

these problems, and our algorithm can prevent “domino effect” and live problems associated with rollback-

recovery.

The rest of the paper is organized as follows. Section 2 develops the necessary background. In Section 3, we

describe a checkpointing algorithm based unreliable non-FIFO channels. The correctness proof is provided in

Section 4. Section 5 concludes the paper.

2. Background

2.1. System Model

The distributed system considered in this paper consists of N+1 processes denoted by P 1 , P 2 , … , P n , P c .

The processes denoted by P 1 , P 2 , … , P n are ordinary processes and the process P c is the coordinate process.

The processes do not share a common memory or a common clock. Message passing is the only way for

processes to communicate with each other. Each ordinary process progresses at its own speed and messages are

exchanged through unreliable non-FIFO communication channel. P c is used to coordinate the creation of the

consistent checkpoints. We assume that P c communicates with each ordinary process through reliable FIFO

channel. The messages transmitted between ordinary processes are referred to as computation messages, and

the messages transmitted between coordinating process and ordinary process are referred to as system messages.

In order to ensure correct computation, if P i sends computation messages to P j , P j must compute the

computation messages from pi according to the sending order.

Each checkpoint taken by a process is assigned a unique sequence number. The checkpoint sequence

number of the process P i is denoted by csn i . The j th (j>0) checkpoint of process P i is assigned a sequence

number j and csn i is set to j. The j th checkpoint interval[6] of process P i denotes all the computation performed

between its j th and (j+1) th checkpoint, including the j th checkpoint but not the (j+1) th checkpoint.

Each computation message sent by P j is assigned a sequence number. The sequence number of each

computation message is denoted by mid. In i th (i>=0)checkpoint interval of P j , the mid of first computation

message sent to P k (k j)is set to 1, and the mid of subsequent computation message sent to P i increases

monotonically. mid of a computation message m is denoted by m.mid.

2.2. Checkpoints Creation

Chandy and Lamport [7] formally defined the concept of a consistent distributed system state. Briefly, a

consistent distributed system state is formed by a set of process states. A checkpoint is a saved state of a

process. A set of checkpoints, one per process in the system, is consistent if the saved states form a consistent

distributed system state.

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 37

Our algorithm saves two types of checkpoints on stable storage: tentative and permanent. A permanent

checkpoint can’t be undone, and a tentative checkpoint can be undone or changed to a permanent checkpoint.

Each ordinary process P
i
only computes the effective computation messages in the received messages. A

computation message m
1
is a effective computation message if and only if m

1
is first received by P

i
.

Definition 1. Suppose P
1
, P

2
, … , P

n
denote all ordinary processes in a distributed system; message sent

set of P
i
in h

th
checkpoint interval is defined as:

MS i ={ MS 1i , MS 2i ,…, MS in } , i=1, 2, …, n

Where, MS ij (i j)denotes the set of the messages that P i sends to P j in h th checkpoint interval.

Definition 2. Suppose P 1 , P 2 , … , P n denote all ordinary processes in a distributed system; message

received set of P i in h th checkpoint interval is defined as:

MR i ={ MR 1i , MR 2i ,…, MR in }, i=1, 2, …, n

Where, MR ij (i  j)denotes the set of the messages that P i receives from P j in h th checkpoint interval.

We assume that MR ij .Mid denotes the maximum mid of the messages in MR ij .

Definition 3. Suppose P 1 , P 2 , … , P n denote all ordinary processes in a distributed system; message

computed set of P i in h th checkpoint interval is defined as:

MC i ={ MC 1i , MC 2i ,…, MC in }, i=1, 2, …, n

Where, MC ij (i  j)denotes the set of the messages that P i computes from P j in h th checkpoint interval.

Theorem 1. If  m k ,m k MS ij  m k MC ji (i=1,2,…,n; j=1,2,…,n; i  j), then the system has a

consistent distributed system state.

Proof. Since MS ij (i  j)denotes the set of the messages that P i sends to P j in h th checkpoint interval,

MC ji (i  j)denotes the set of the messages that P j computes from P i in h th checkpoint interval;

Ifm k ,m k MS ij  m k MC ji (i j), which denotes that P j has computed all the messages that P i has

sent. Ifm k , m k MS ij  m k MC ji (i=1, 2, …, n; i j), which denotes that P j has computed all the

messages from other processes. If  m k ,m k MS ij  m k MC ji (i=1,2,…,n; j=1,2,…,n; i  j), which

denotes that all the processes has computed all the messages from other processes. In conclusion, the system

has a consistent distributed system state. So the conclusion is true.

From the meaning of computer clock, the interprocess communication is not synchronous because different

computer clock is difficult to achieve synchronization. The improved vector logical clock[8,9,10] is proposed

in this paper in order to better describe communication of inter-process.

38 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

Definition 4. Suppose P
1
, P

2
, … , P

n
denote all ordinary processes in a distributed system; the improved

vector logical clock of P
i
is defined as:

R
i
=(R

1i
, R

2i
,…, R

in
), i=1, 2, …, n

Where, R ij (i j) is a nonnegative integer variable maintained by P
i
. Its value is one larger than maximum

mid of messages in MC ij .

Definition 5. Suppose P
1
, P 2 , … , P n denote all ordinary processes in a distributed system; the sending

vector of P i is defined as:

S i =(S 1i , S 2i ,…, S in), i=1, 2, …, n

Where, S ij (i  j) is a nonnegative integer variable maintained by P i . Its value is equal to maximum mid of

messages in MS ij .

Theorem 2. If R ij =S ji +1(i  j), then the messages that are sent to P i by P j are computed by P i .

Proof. Since the value of R ij is one larger than maximum mid of messages in MC ij , the value of S ji is

equal to maximum mid of messages in MS ji , so the conclusion is true.

Theorem 3. If R ij =S ji +1(i=1,2,…,n; j=1,2,…, n; i j), then the system has a consistent distributed system

state.

Proof. Since the value of R ij is one larger than maximum mid of messages in MC ij , the value of S ji is

equal to maximum mid of messages in MS ji . According to theorem 1 and theorem 2, so the conclusion is true.

The process of checkpointing is as follows: When P c initiates a checkpointing process, it propagates

checkpointing request to the ordinary processes. When P i receives a checkpointing request, P i will take a

tentative checkpoint if R ij = MR ij .Mid (j=1,2,…, n; i j). If R ij =S ji +1(i=1,2,…,n; j=1,2,…, n; i j), we

know that the tentative checkpoints are consistent according to theorem 3; so P c informs the ordinary processes

to make the tentative checkpoints permanent.

2.3. Identification of problems

In unreliable non-FIFO channel, the system can lose, duplicate, or reorder messages [5].

The relation of between a computation message m k and MC i is as follows: When P i receives a computation

message m k from P j , if m k  MS ji m k .mid= R ij , P i will computes m k and m k will be put into MC ij .

R ij adds 1 automatically. If only  m l MR ij m l  MS ji  m l .mid= R ij , P i will computes m l and

m l will be put into MC ij .

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 39

We assume that cp-state
i
is a Boolean which is set to 1 if P

i
is in the checkpointing process.

Definiton 6. Suppose P
1
, P

2
, … , P

n
denote all ordinary processes in a distributed system; If

m
k

, (m
k MS ij m

k
.mid<MR ji .mid m

k
 MR ji) (m

k MS ij  cp-state
i
=1m

k
.mid >=

R ji),which denotes message m
k

is lost.

Definition 7. Suppose P
1
, P 2 , … , P

n
denote all ordinary processes in a distributed system; P j receives a

computation message m
k

from P
i
.If m k MS ij m

k
.mid>R ji m MR ji , which denotes message m

k
is

reordered..

Definition 8. Suppose P
1
, P 2 , … , P

n
denote all ordinary processes in a distributed system; P j receives a

computation message m k from P i . If (m k MS ij   m l MR ij  m k .mid=m l .mid) (m k
 MS ij),

which denotes message m
k

is duplicate.

In Fig.1, the system has taken (i-1)
th

(i>=1)consistent checkpoint. P 1 sends the computation message m1 ,

m 2 , m 3 and m 4 to P 2 in (i-1) th checkpoint interval. m1 .mid, m 2 .mid, m 3 .mid and m 4 .mid are assigned 1, 2,

3 and 4 respectively according to the sending order of messages. MS 12 ={ m 1 , m 2 , m 3 , m 4 }. Message

m 1 first resent by P 1 is denoted by m
1

1 , and message m 1 resent a second time by P 1 is denoted by m
2

1 .

After P 2 receives message m 3 and m 4 , MR 21 is equal to { m 3 , m 4 } and MC 21 is NULL. MR 21 .mid is

equal to 4. Now, m1 and m 2 are in MS 12 , but m1 .mid and m 2 .mid are less than MR 21 .mid and m1 and

m 2 are not in MR 21 ; so m1 and m 2 are lost during delivery and P 2 will never obtain the messages.

When P 2 receives message m 3 , MR 21 is NULL and MC 21 is NULL. R 21 is equal to 1. Now, m 3 is in MS12 ,

but m 3 .mid is larger than R 21 and m 3 is not in MR 21 ; so m 3 is reordered. When P 2 receives message m 4 ,

MR 21 is equal to { m 3 } and MC 21 is NULL. MR 21 .mid is equal to 3 and R 21 is equal to 3. Now, m 4 is in

MS 12 , but m 4 .mid is larger than R 21 and m 4 is not in MR 21 ; so m 4 is reordered.

After P 2 receives message m
2

1 , MR 21 is equal to { m
2

1 ,m 3 , m 4 }. Because m
2

1 .mid is equal to R 21 , so

P 2 computes message m
2

1 and m
2

1 is put into MC 21 . R 21 adds 1 automatically. After P 2 receives message m
2

2 ,

MR 21 is equal to { m
2

1 , m
2

2 , m 3 , m 4 }. Because m
2

2 .mid is equal to R 21 , so P 2 computes message m
2

2 and

m
2

2 is put into MC 21 . R 21 adds 1 automatically. P 2 computes message m 3 and m 3 is put into MC 21 because

m 3 .mid is equal to R 21 and m 3 is in MR 21 .It is the same with message m 4 . When P 2 receives message m
1

2 ,

MR 21 is equal to { m
2

1 , m
1

2 ,m
2

2 , m 3 , m 4 }. Because m
1

2 .mid is equal to m
2

2 .mid, so m
1

2 is a duplicate. When

P 2 receives message m
1

1 in i th checkpoint interval, because m
1

1 is sent by P 1 in (i-1) th checkpoint interval, so

m
1

1 is a duplicate.

In order to take a consistent set of checkpoints, our coordinated checkpointing algorithm must resolve

message losses, message reordering and messages duplicate. The reason of livelocks [3] is that a process

40 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

receives the same computation message twice when the process rollback recovery. We can resolve the livelocks

by using the measure of resolving the messages duplicate.

2.4. Handing the problems

In order to get correct computation and guarantee a correct recovery following a failure, we must take a

consistent set of checkpoints. So we should ensure that the above-mentioned problems are resolved correctly.

1. Message Losses

Message losses is defined that some messages are lost during delivery. Message losses can lead to the

incorrect computation result and inconsistency. We let ordinary processes resend the lost computation

messages to resolve the message losses. So we must save the determinants of each computation message on the

stable storage of the sender process.

Definition 9. Suppose P 1 , P 2 , … , P n denote all ordinary processes in a distributed system; the set of

sending lists is defined as:

SQ i ={SQ 1i , SQ 2i , …, SQ in }, i=1, 2, …, n

Where, SQ ij is a list of records maintained by each process P i for sending the computation message to P j in

k th (k>=0)checkpoint interval. Each record has the following fields: Mid and Contents. Mid is the mid of the

sent message. Contents is the contents of the sent message. SQ ij [k] is the k th record of P i ’s SQ ij list;

The process P i will save the determinants of message m k to SQ ij [k] on the stable storage after process

P i sends a computation message m k to P j in b th (b>=0)checkpoint interval. SQ ij [k].Mid and SQ ij [k].Contents

are k and m k respectively. P j will send resending message request when P j checks that message m l from P i is

lost. P i receives the resending message request and resend the message m l saved in SQ ij to P j .

In order to make more efficient use of stable storage, each process P i will empty SQ ij (j=1,2,…,n) if

(b+1) th consistent checkpoint is taken.

2. Message Reordering

Message reordering is defined that some messages are reordered. If we compute the messages according the

receiving order, the system may lead to the incorrect result. In order to resolve the message reordering, we must

let each process computes the messages from the same process according to sending order.

Definition 10. Suppose P 1 , P 2 , … , P n denote all ordinary processes in a distributed system; the set of

receiving lists is defined as:

RQ i ={RQ 1i , RQ 2i , …, RQ in }, i=1, 2, …, n

Where, RQ ij is a list of records maintained by each process P i for saving the reordered messages from P j in

k th (k>=0)checkpoint interval, where each record has the following fields: Mid and Contents. Mid is the mid of

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 41

the received message. Contents is the contents of the received message. RQ ij [k] is the k
th

record of P
i
’s

RQ ij list;

The process P
i
receives a computation message m

k
(k>1)from P j . If message m

1k
has not been computed,

message m
k

is reordered. So process P
i
will save the determinants of message m

k
to RQ ij [n](n>=1) on the

stable storage. If message m
1k
has been computed, P

i
will compute message m

k
. If only message m

1k
is

saved in RQ ij [m](m>=1), P i computes the message m 1k got from RQ ij [m] and remove the RQ ij [m] from

RQ ij .

3. Message Duplicate

When a process P i receives a computation message m k from P j , P i will detect whether the message m is a

duplicate. In our algorithm, when m is a duplicate message, we will drop the message.

3. A Checkpointing Algorithm Based Unreliable Non-fifo Channels

We suppose that the coordinate process Pc initiates the checkpointing process every a fixed time; and

suppose that the checkpointing process must be finished in a fixed time. If the checkpointing process is not

finished in the fixed time, the checkpoints can not be taken and the algorithm exits because of timeout.

3.1. The Notations and The Data Structures

The following notations and data structures are used in our algorithm:

 cp-state i : A Boolean which is set to 1 if P i is in the checkpointing process.

 csn i : checkpoint sequence numbers (csn) at each process P i .

 minMid i [j]: A nonnegative integer variable maintained by P i . Its value is equal to minimum mid of

messages from P j that were saved in RQ ij by P i .

 scount i [j]: A nonnegative integer variable maintained by P i . Its value is equal to the number of records in

SQ ij .

 rcount i [j]: A nonnegative integer variable maintained by P i . Its value is equal to the number of records in

RQ ij .

 request: It has three fields:

P d : the identification of a process;

Min: Its value is equal to the minimum mid of messages that should be resent;

Max: Its value is one larger than the maximum mid of messages that should be resent;

 If P d =NULL, the request denotes checkpointing request, otherwise the request denotes resending

message request.

 reply: It is set to 1 if ordinary processes can make the tentative checkpoints permanent; otherwise it is set to

0 if all ordinary processes should undo the tentative checkpoints and the algorithm exits because of timeout.

42 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

cp-state
i
, csn

i
, S ij , minMid

i
[j], scount

i
[j]and rcount

i
[j] of P

i
are initialized to 0. SQ ij and RQ ij of P

i
are

initialized to NULL. R ij of P
i
is initialized to 1.

3.2. Checkpointing Algorithm

In this section, we present our blocking checkpointing algorithm.

1. Checkpointing Initiation

The coordinator P c can initiate a checkpointing process. When P c initiates a checkpointing process, it

propagates checkpointing request to the ordinary processes.

2. Reception of a request message

A process P i receives a request from the coordinator P c . If cp-state i =0 request.P d =NULL, the request is

a checkpointing request; otherwise the request is a resending message request.

When the request is a checkpointing request, cp-state i will be set to 1 and P i sends S i and R i to coordinator

P c . If RQ i =NULL, which denotes that all the computation messages received by P i has been computed,

P i will take a tentative checkpoint.

When the request is a resending message request, P i will resend the messages whose mid is equal to or

larger than request.min and less than request.max to the process request.P d .

3. Sending a Computation Message

When process P i sends a computation message to process P j , it will attach the following information: mid

and csn i .

4. Receiving a Computation Message

When process P i receives a computation message from process P j , it will first check if rec-mid= R ij  rec-

csn j = csn i . If so, P i will compute the message and increase R ij . And then it check if the message whose mid

is equal to R ij is saved in the RQ ij until RQ i is NULL or the message whose mid is equal to R ij is not saved in

the RQ ij . If so, P i gets the message from RQ ij , then P i computes and removes the message from RQ ij .

P i increases R ij and minMid i [j] is set to the minimal mid of the messages in RQ ij . If RQ ij =NULL,

minMid i [j] is set to 0; otherwise minMid i [j] is set to the minimal mid of the messages in RQ ij .

P i will drop the message if the message whose mid is rec-mid has been saved in the RQ ij . If rec-

mid<minMid i [j] rec-mid > R ij  rec-csn j = csn i , P i saves the message in the RQ ij and minMid i [j] is set

to rec-mid. P i sends a resending request message to P c in order to inform P j to resend the messages whose mid

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 43

is equal to or larger than R ij and less than minMid
i
[j] . If rec-mid>minMid

i
[j]  rec-csn j = csn

i
, P

i
saves

the message in the RQ ij .

After process P
i
finishes the above actions, it will check if cp-state

i
is equal to 1. If cp-state

i
is equal to 1,

P
i
will take the tentative checkpoint if RQ

i
is NULL.

5. Actions in the second phase for the coordinator P
c

P
c
receives R

i
and S

i
of each process P

i
. If R ij  S ji +1, P

c
will inform P

i
to resend the messages whose

mid is equal to or larger than R ij and less than S ji +1. For each process P i , P c will inform P i to make its

tentative checkpoint permanent if R ij = S ji +1. When time is timeout, P c will inform each process P i to cancel

its tentative checkpoint.

3.3. Algorithm Description

Actions taken when P i sends a computation message to P j :

if cp-state i = 0 then

send(P i , P j , message, mid, csn i);

S ij := mid; scount i [j]:= scount i [j]+1;

SQ ij [scount j].mid:=mid;

SQ ij [scount j].contents:=message;

Actions at process P i , on receiving a computation message from P j :

receive(P j , P i , message, rec-mid, rec-csn j);

if rec-mid= R ij  rec-csn j = csn i then

compute the message;

R ij := R ij +1;

while R ij =minMid i [j] do

 temp:=1;

while temp<= rcount i [j] RQ ij [temp].mid  R ij then

 temp:=temp+1;

Get the message from RQ ij [temp].

 Compute the message;

 Remove RQ ij [temp] from RQ ij ;

 rcount i [j]:= rcount i [j]-1; R ij := R ij +1;

 if RQ ij =NULL then

44 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

 minMid
i
[j]=0;

 else

 temp:=1; minMid
i
[j]:= RQ ij [temp].mid;

 while temp<= rcount
i
[j] then

 If RQ ij [temp].mid< minMid
i
[j] then

 minMid
i
[j]:= RQ ij [temp].mid;

 Temp:=temp+1;

else

 if rec-mid<minMid
i
[j] rec-mid > R ij  rec-csn j = csn

i
then

 minMid i [j]:=rec-mid; rcount i [j]:= rcount i [j]+1;

 RQ ij [rcount i [j]].mid=rec-mid;

 RQ ij [rcount i [j]].contents=message;

 Send(P i , P j , R ij , minMid i [j]);

 else

if rec-mid> minMid i [j] rec-csn j = csn i then

 if RQ ij  NULL then

 temp:=1;

 While temp<= rcount i [j] RQ ij [temp].mid  rec-mid then

 temp:=temp+1;

 If temp> rcount i [j] then

 rcount i [j]:= rcount i [j]+1;

 RQ ij [rcount i [j]].mid=rec-mid;

 RQ ij [rcount i [j]].contents=message;

 else

 Drop the message;

else

 drop the message;

if cp-state i =1 then

if RQ i =NULL then

 if tckp i =1 then

 undo the tentative checkpoint;

tckp i :=0;

send(U i , T i , mark i);

take tentative checkpoint;

tckp i :=1;

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 45

Actions at process P
c
, on receiving a resending message request from P

i
:

receive(P
i
, P j , R ij , minMid

i
[j]);

request. P
d

:= P j ; request.min:= R ij ;

request.max:= minMid
i
[j];

Send(P
i
, request);

Actions in the first phase for the coordinate process P
c
:

request. P
d

:= NULL;

for i:=1 to N do

send(P i , request);

Actions at process P i , on receiving a request from P c :

receive(P i , rec-request);

if cp-state i =0 rec-request.P d =NULL then

 cp-state i :=1;

 send(S i ,R i);

 if RQ i =NULL then

 take tentative checkpoint;

else

k:= rec-request.min;
while k< rec-request.max do

 temp:=1;

 While temp<= scount i [rec-request. Pd] SQ Pd request.-reci [temp]  k do

 Temp:=temp+1;

 Get the message from SQ Pd request.-reci [temp];

send(P i , rec-request.P d , message, k, csn i);

 k:=k+1;

Actions in the second phase for the coordinate process Pc:

receive(S i ,R i);

num:=num+1; ack:=0;

if num=N then

 for i:=1 to N do

 tag:=0;

for j:=1 to N do

 if R ij  S ji +1 then

 request. P d = P j ;

request.min:= R ij ;

request.max:= S ji +1;

46 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

send(P
i
, request);

tag:=1

 if tag=0 then

 ack:=ack+1;

 while ack<N do

while not timeout do

 receive(S
n

, R
n

, rec-mark
n

);

 if mark
c
=rec-mark

n
 then

 Tag:=0;

for j:=1 to N do

 if R nj  S jn +1 then

 request. Pd:= P j ; request.min:= R nj ;

request.max:= S jn +1; send(P i , request);

tag:=1

 if tag=0 then

 ack:=ack+1;

if timeout then

 reply:=0; mark c := mark c +1;

 for i:=1 to N do

 send(P i , reply);

 exit the algorithm;

reply:=1; mark c :=0;

for i:=1 to N do

send(P i , reply);

Actions at other process P i on receiving a reply message:

receive(P i , reply);

if reply=0 then

 cp-state i :=0; mark i =mark i +1;

else

 make the tentative checkpoint permanent;

 mark i :=0; csn i :=csn i +1; cp-state i :=0; tckp i :=0;

scount i :=0; rcount i :=0; S i :=0;R i :=0; SQ i :=NULL;

4. Algorithm Analysis

Theorem 4. The algorithm can create consistent global checkpoints.

Proof. When P c initiates a checkpointing process, it propagates checkpointing request to the ordinary

processes. Each process P i will send S i and R i to P c , and then P i takes a tentative checkpoint if RQ i is NULL.

 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels 47

If R ij =S ji +1(i=1,2,…,n; j=1,2,…, n; i j), which denotes the computation messages sent by all the sender

process have been computed by their own receiver process. P
c
informs each process P

i
to make its tentative

checkpoint permanent. Now, these checkpoints are consistent. If R ij  S ji +1(i=1,2,…,n; j=1,2,…, n; i j),

P
c
will inform P j to resend the lost messages to P

i
until R ij is equal to S ji +1(i=1,2,…,n; j=1,2,…, n; i j).

The algorithm will exit and undo the tentative checkpoints if time is timeout. In conclusion, the checkpoints

created by our algorithm are consistent global checkpoints.

Theorem 5. Each process can compute the messages correctly.

Proof. Our algorithm ensures that each process computes the messages from the same process according to

their sending order. When some messages are lost, the algorithm will let the sender process resend the lost

messages in order that all the messages can be computed. When a process receives a duplicate message, the

process don not computes the message in order that each process computes the message only once. In

conclusion, each process can compute the messages correctly.

We assume that n is the number of processes; m is the number of lost messages before checkpointing phase;

h is the number of lost messages and t is the number of processes that lost messages in checkpointing phase.

Before checkpointing phase, process P i checks that a computation message is lost and it inform P c . P c inform

the sender process to resend the lost message. In checkpointing phase, P c sends checkpointing request to each

process and each process sends a system message to P c . Eventually, P c needs to send a reply to each process.

P c will inform the sender processes to resend the lost messages if h is not equal to 0; and then the receiver

processes need to send a system message to P c . So the number of system messages is O(3n+2m) if h is equal

to 0. The number of system messages is O(2n+2m+h) if h is not equal to 0.

5. Conclusion

In this paper, We propose a coordinated checkpointing algorithm based unreliable non-FIFO channel. In

unreliable non-FIFO channel, the system can lose, duplicate, or reorder messages. The processes may not

compute some messages because of message losses; the processes may compute some messages twice or more

because of message duplicate; the processes may not compute messages according to their sending order

because of message reordering. The above-mentioned problems make processes produce incorrect computation

result, consequently, prevent processes from taking consistent global checkpoints. Our algorithm assigns each

message a sequence number in order to resolve above-mentioned problems. During the establishing of the

checkpoint, the consistency of checkpoint can be determined by the sequence number of sending and receiving

messages. We can identify the lost messages, reordering messages and duplicate messages by checking the

sequence number of sending and receiving messages. We resolve above-mentioned problems by resending the

lost messages, buffering the reordering messages and dropping the duplicate messages. Our algorithm makes

processes take consistent global checkpoints.

References

[1] B. Lampson and H. Sturgis, "Crash recovery in a distributed storage system," Xerox Palo Alto Research

Center, Tech. Rep., Apr. 1979.

[2] Elnozahy, E. N., D. B. Johnson and W. Zwaenepoel, “The Performance of Consistent Checkpointing,”

Proc. 11th Symp. Reliable Distributed Systems, pp. 86-95, Oct. 1992.

48 A Checkpointing Algorithm Based Unreliable Non-FIFO Channels

[3] Koo, R. and S. Toueg, “Checkpointing and Rollback-Recovery for Distributed Systems,” IEEE Trans.

Software Eng., vol. 13, no. 1, pp. 23-31, Jan. 1987.

[4] Silva, L.M. and J.G. Silva, “Global Checkpointing for Distributed Programs,” Proc. 11th Symp. Reliable

Distributed Systems, pp. 155-162, Oct. 1992.

[5] K. Bhatia, K. Marzullo and L. Alvisi. “The relative overhead of piggybacking in causal message logging

protocols,” In Proceedings of the Seventeenth Symposium on Reliable Distributed Systems, pp. 348—353, 1998.

[6] R. Netzer and J. Xu, “Necessary and Sufficient Conditions for Consistent Global Snapshots,” IEEE Trans.

Parallel and Distributed Systems, pp. 165-169, Feb. 1995.

[7] K. Chandy and L. Lamport. “Distributed snapshots: Determining global states of distributed

systems,”ACM Trans. Comput. Systems, vol. 3, no. 1, pages 63-75, February 1985.

[8] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System,” ACM

Communications,21(7),558-565, July 1978.
[9] Mattern F. “Virtual time and global states of Distributed Systems,” Proc.of Parallel and Distributed

Alogrithms Conf. 215-254,1988.

[10] Shengfa Gao,Xin Li, Ruihua Zhang. “The Extended Finite State Machine and Fault Tolerant Mechanism in

Distributed Systems,” 2009 Seventh ACIS International Conference on Software Engineering Research,

Management and Applications.33-38, 2009.

Fig. 1

