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Abstract 

The core idea of PSO is that each particle searches the best solution of optimization problems according to 

“information sharing” between surrounding particles and itself. PSO has fast convergence speed and high global 

search capability. For low accuracy and divergent results of elementary PSO, this paper proposes a kind of PSO 

with adaptive parameters and boundary constraints. Inertia weight and learning factors increase or decrease 

linearly with iterative process, in order that the particles search the global space in early period of the algorithm 

and converge towards the global optimum later. At the same time, the author sets particle boundary constraints 

to ensure the optimization accuracy. Theoretical analysis and numerical simulation results show the efficiency 

and high optimization accuracy of the designed method. 
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1. Introduction 

PSO is the new nonlinear optimization method, proposed by Dr. Kennedy and Dr. Ebherhart of US in 

1995[1].It originates from study of birds and fishes food searching behavior. The basic idea is that each particle 

searches the optimal solution through group collaboration and information sharing between particles. It has 

simple concepts, less parameters and fast convergence speed. But the accuracy of the algorithm has close 

relationships with parameter selections. Inappropriate parameters easily lead to divergent results. In optimization 

process of elementary PSO, particles may be beyond the range of effective solutions because there is no 

boundary constraint. 
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2. Particle Swarm Optimization 

2.1. Mathematical Description 

In the T-dimensional target searching space, there is a population of particles which represent N potential 

solutions of specific optimization problems. 
1 2{ , ,..., }ns x x x ,

1 2{ , ,..., }i i i itx x x x , 1,2,...,i n  means a vector point of 

the ith particle in the T dimensional solution space. 
1 2{ , ,..., }i i i itp p p p  means the optimal solution searched by 

the ith particle;
1 2{ , ,..., }g g g gtp p p p , 1,2,...,g n  means the optimal solution searched by all the particles; 

1 2{ , ,..., }i i i itv v v v  means the searching speed of the ith particle. Every particle adjusts itself to find the optimal 

solution by tracking 
ip  and gp . When the two extremes [2] are found, the particle updates its velocity and 

position according to (1) and (2) [3].  

1 1 2 2( 1) ( ) ( ( ) ( )) ( )( ( ) ( ))ij ij j ij ij j gi ijv t v t c r p t x t c r t p t x t                                                                                          (1) 

( 1) ( ) ( 1)ij ij ijx t x t v t                                                                                                                            (2) 

  : inertia weight;
1 2,c c : learning factors; 

1 2,r r : random variables which are uniformly distributed in the 

range of [0,1] ; t : the number of iterations.  

From view of physics, ( )ijv t  calls as the memory item, for better ability to expand the searching space; 

1 1 ( ( ) ( ))j ij ijc r p t x t  calls as the particle cognitive item ,for the optimal solution from its own experience; 

2 2 ( ( ) ( ))j gi ijc r p t x t  calls as the group cognitive item ,reflecting collaboration and information sharing between 

particles[4], [5]. 

2.2. Steps of Particle swarm optimization 

Steps of particle swarm optimization are as follows [6]: 

Step 1: Initialize the particles. Set the initial position 
ix  and initial velocity iv  of every particle randomly; 

Step 2: Calculate the fitness value of each particle. Determine the individual optimal solution
ip  and its 

corresponding particle, the global optimal solution 
gp  and its corresponding particle; 

Step 3: For each particle, compare its fitness value and that of its own optimal solution ip . Update ip  if the 

fitness value of the particle is better than that of ip ; 

Step 4: For each particle, compare its fitness value and that of the global optimal solution gp . Update gp  if 

the fitness value of the particle is bett er than that of gp ; 

Step 5:Adjust ix  and iv  according to (1)and (2)； 

Step 6: End the iteration process if the particle reaches the conditions; or transfer to step 2; 
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2.3. Defects of Elementary Particle swarm optimization 

The defects of elementary particle swarm optimization algorithm are as follows: 

(1)Accuracy of the algorithm has close relationships with parameter selections. Value of inertia weight is 

between 0.2 to 1.5, values of
1 2,c c  are both 2 in normal conditions. 

(2)The parameters of the algorithm are constants regardless of the specific optimization models and their 

iterative processes.  

Test and optimize the four standard benchmark functions, which are generally used to test and compare the 

performances of algorithms [7]. 

(1) Sphere function: 
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(2) Generalized Griewank function: 
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(3) Generalized Rosenbrock function: 
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30 30ix   , min( ( )) (0,0,...,0) 0f x f   

(4) Generalized Rastrigin function: 

30
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( ) [ 10cos(2 ) 10]i i

i

f x x x


  
                                                                                                           (6) 

5.12 5.12ix   , min( ( )) (0,0,...,0) 0f x f   

Sphere function is a nonlinear symmetric single-peak function; Griewank function is a rotated, variable-

dimensional function which cannot be separated; Rosenbrock function is the typical pathological and quadratic 

function; Rastrigin function is a typical complex multi-peak function with large number of local optimas.  
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Conclusion: As it is shown in Fig.1 to Fig 5, different values of 
1 2,c c  correspond different optimization 

results. The algorithms performances closely relate to parameter selections. Appropriate parameters determine 

higher accuracy of the algorithm, whereas accuracy will be reduced. 

3. Improved PSO 

3.1. The core idea of improved PSO 

For accuracy reduced of the algorithm because of improper parameter selections[8], this paper analyzes 

mathematical equation of elementary PSO. Inertia weight and learning factors increase or decrease linearly with 

the iterative process, so that the particles can search the entire space without falling into local optimum in the 

early period and find the global optimum in the end. Meanwhile, the improved PSO introduces differential 

mutation and random mutation, to increase the diversity of the particles group. At the end, this kind of PSO sets 

particle boundary constraints to ensure the effectiveness of solutions. 
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Fig. 1. (a) Sphere function: different , same
1 2,c c  
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Fig. 2. Sphere function: same , different 1 2,c c  
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Fig. 3. Griewank function: same , different 
1 2,c c  

0 20 40 60
0

20

40

60

80

100

120

140
c1=0.5,c2=1.2

iterative number

fit
ne

ss
 v

al
ue

0 20 40 60
0

20

40

60

80

100

120

140
c1=2,c2=2

iterative number

fit
ne

ss
 v

al
ue

 

Fig. 4. Rosenbrock function: same , different 
1 2,c c  
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Fig. 5. Rastrigin function: same , different 1 2,c c  

The improvements of PSO are as follows: 

(1) Inertia weight 

From the mathematical expression of PSO, we can conclude that larger inertia ensures a more effective global 

search of particles, smaller inertia weight means a more efficient local search. According to this theory, Shi and 

Eberhart proposed a strategy which inertia weight linearly decreases with the increase number of iterations [8]. 
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Expressed as follows： 

max max min( ) /k gen                                                                                                                                  (7) 

max  calls as the maximum inertia weight, 
min  calls the minimum inertia, gen  calls the total number of 

iterations for the algorithm, k  calls  the current number of iterations for the algorithm. 

(2) learning factors 

1 2,c c  respectively represents the abilities of local extremes and global extremes search. Larger
1c  and 

smaller
2c  make the particles search extremes in the entire feasible space at early of the algorithm; Smaller

1c  

and larger
2c  ensure the particles converge quickly to the global optimum value later.  

Expressed as follows: 

1 1 1 1( ) /start start endc c k c c gen                                                                                                                   (8) 

2 2 2 2*( ) /start end startc c k c c gen                                                                                                                  (9) 

Where
1 2,start startc c  call as the initial values for the learning factors, 

1 2,end endc c  call as the final values for the 

learning factors. 

(3)Introduction of differential and random mutation 

Introduce a differential variation when the particles fly and set the optimal position [7]. It results in a new 

particle swarm, aimed to increase the diversity of population of particles. 

Expressed as follows: 

1 2 3( , ) ( , ) ( ( , ) ( , ))xv i j x g j r x g j x g j                                                                                                             (10) 

Where r  is a random number in the range of [0,1]，
1 2 3, ,g g g  are the random values between [1, ]gen . x  is the 

position of particle before mutation and xv  calls as the position after mutation. 1 j T  and i  is greater than 

zero and less than n  (number of particles).Compare the fitness value of xv  with that of x , if better, then xv  

will replace x . Or the particle population keeps the same. The mutation enables particles to search optimal 

results, aimed to maintain algorithm accuracy and diversity of populations. 

Then introduce a random mutation after differential mutation. It happens on each particle following the 

mutation probability 1/p T  (T calls as the dimension of variables). This step ensures the particles to get out 

of the local optimal extremes and keep the diversity of populations. 

(4) Set the boundary constraints of particles. 

When the position of the particle is beyond the given position, redefine the particle’s position using 

following formulas, to make sure that the particle is in the range of feasible solutions. At the same time, this 

redefinition ensures the diversity of new particles for undetermined boundary constraints. 
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If
ijx l , mod( , )ij ijx u l x u l                                                                                                                 (11) 

If
ijx u , mod( , )ij ijx l x u u l                                                                                                               (12) 

Where u  is the upper bound and l  is the lower bound for the particle position, mod is the remainder 

operation. 

3.2. Steps of improved PSO 

Improve the elementary PSO and get the improved PSO flowchart (Fig.6). The implementation steps are as 

follows: 

Step 5: Update the position and velocity of the particle according to (1) and (2). 
1 2,c c  change linearly with 

the increase of iteration, which are no longer constants. Expressed as (8) and (9); 

Step 6: Introduce the differential mutation, expressed as (10) after determining the particle’s best optimal 

position. Compare the particle mutated and those of before mutation. If better, replace x  to xv .Or keep still; 

Step 7: Introduction of the random mutation. This occurs on each particle with the probability 1/p T . 

Step 8: If the particle’s position is beyond the given boundary, redefine the position of the particle based on 

(11) and (12); 

Step 9: End the iteration when the PSO reaches its conditions (maximum number of loops or the requirement 

of accuracy of algorithm). Or transfer to step 2; 

 

 

Fig. 6. the flowchart of Improved PSO 
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3.3. The results of Improved PSO 

The improved PSO algorithm is used in standard test functions (Sphere, Griewank, Rosenbrock, 

Rastrigin).The optimization results are shown in Tab. 1 and Fig. 7 to Fig 10. 

Table 1. Optimization results of Improved PSO 

Test functions Algorithm 
Iterative 

numbers 
Optimal results 

Optimal 

solution 

Sphere 

Elementary PSO 18 0.8052 0.2003 

Improved PSO 75 105.5412 10  
61 10  

Griewank 

Elementary PSO 13 0.0931 0.1005 

Improved PSO 76 114.6103 10  
66 10  

Rosenbrock 

Elementary PSO 25 1.1005 0.4201 

Improved PSO 45 0.5001 0.0793 

Rastrigin 

Elementary PSO 30 0.7643 0.1965 

Improved PSO 67 57.0703 10  
0.0002 

 

 

Fig. 7. The iterative results of Sphere function based on different PSO 

 

Fig. 8. The iterative results of Griewank function based on different PSO 
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Fig. 9. The iterative results of Rosenbrock function based on different PSO 

 

Fig. 10. The iterative results of Rastrigin function based on different PSO 

3.4. Evaluation of algorithm performances 

The performances of algorithms are evaluated using the following standards: (1) Evaluation of convergence 

rates (2) Evaluation of stability and quality of convergence. 

(1) Evaluation of convergence rate 

The convergence rates of algorithms can be reflected by test of average evolution generations. The average 

iterative number of elementary PSO is from 18 to 30 because of the advantage of “memory”. However, improved 

PSO owns more iterative numbers for the increase of calculation. 

(2) Evaluation of stability and quality of convergence. 

The indicators of evaluation are the average value which converges to optimal value and the average evolution 

generation. It is shown that the elementary PSO has poor 

local searching ability, low convergence rate and max error between the global optimal values. It can be seen 

that improved PSO improves the accuracy of the algorithm and stability of the global optimal value in Fig 7 to 

Fig 10. 

4. Conclusions  

In this paper, an improved PSO algorithm is proposed for the deficiencies of elementary PSO. 

(1)The improved PSO has its superiority. The results of four standard test functions show more accurate 

performances of improved PSO. 
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(2)PSO is a new evolutionary algorithm based on swarm intelligence [7]. But unlike the in-depth research of 

genetic and simulated annealing algorithms, there are many issues to solve. For example, there must be strict 

theoretical proof about convergence and global optimality of PSO. Another focus will be how to combine PSO 

and other evolutionary algorithms, and establish the appropriate PSO model for different optimization problems. 
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