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Abstract 

In this paper, variational iteration method is applied for finding the solution of differential equations with 

piecewise constant arguments. A correction functional is constructed by a general Lagrange multiplier, which 

can be identified by variational theory. This technique provides a sequence of functions which converges to 

the exact solution of the problem without discretization of the variables. The flexibility and adaptation 

provided by the method have been verified by an example. 
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1. Introduction 

Recently, there has been much research concerning properties of solutions of differential equations with 

piecewise constant arguments (EPCA) [1-4]. In these equations, the derivatives of the unknown functions 

depend on not just the time t  before t . Since this is essentially expressing the derivatives on terms of the 

solution at discrete points of time before t , it is usually referred to as a hybrid system, other examples of the 

application of these equations to the problems of biology, cellular neural networks and mechanical systems 

can be found in [5-8]. 
EPCA has been under intensive investigation for the last twenty years. The first studies in this field have 

been given in [9,10], after this, stability, contractivity and existence of periodic solutions have been treated by 

several authors, see [11-13] and references therein. The general theory and basic results for EPCA have been 

thoroughly investigated in the book of Wiener[14]. Nowadays, much research has been focused on the  
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numerical solutions of  EPCA, including convergence[15], stability[16] and oscillation[17]. However, we 

can’t find any results concerning the approximate anaytical solution of EPCA have been published. In our 

paper, we will apply the well-known anaytical approximate technique: the variational iteration method to the 

follwing EPCA: 
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where 0, ,a b u R  and [ ]  denotes the greatest integer function.  The main goal of this paper is to 

extend the variational iteration method to find the solution of  (1). 

 The variational iteration method (VIM) [18-21], which is a well-established technique with wide 

applications for ordinary differential equations, partial differential equations and delay differential equations, 

etc. More materials of the classical solution techniques that are most commonly used to solve equations and 

systems, such as the Adomian decomposition method (ADM) are found in [22], Differential transformation 

method (DTM) [23], Homotopy analysis method (HAM) [24] and the Homotopy perturbation method (HPM) 

[25]. The VIM is the most effective and convenient one for both weakly and strongly nonlinear equations. 

This method has been shown to effectively, easily, and accurately solve a large class of linear and nonlinear 

problems. 

2. PrelimInaries 

Definition 1[14] A solution of (1) on [0, )  is a function ( )u t  that satisfies the conditions: 

(i) ( )u t  is continuous on  [0, ) , 

(ii) The derivative '( )u t  exists at each point [0, )t  , with the possible exception of the point 2t n , 

0,1,n  , where one-sided derivatives exist,  

(iii) Eq. (1) is satisfied on each interval [2 ,2( 1))n n  [0, )  . 

Theorem 1 [14]. If 0,| |a b a   , then the solution of (1) tends to zero as t   for  any given 0u  

3. VARIATIONAL ITERATION MRTHOD (VIM) 

The VIM is the general Lagrange method, in which an extremely accurate approximation at some special 

point can be obtained, but not an analytical solution. To illustrate the basic idea of the VIM we consider the 

following general differential equation 

( )Lu Nu g x            (2) 

where L and N are linear and nonlinear operator, respectively, and ( )g x  is the inhomogeneous term. In 

[26–29], the author proposed the VIM where a correction functional for (2) can be written as 

1
0

( ) ( ) ( )[ ( ) ( ) ( )]
x

nn n nu x u x t Lu t Nu t g t dt           (3) 

where   is a general Lagrange’s multiplier, which can be identified optimally via the variational theory, and 

nu  as a restricted variation which means 0nu  . It is to be noted that the Lagrange multiplier   can be a 

constant or a function. 
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 The VIM should be employed by following two main steps. It is required first to determine the Lagrange 

multiplier   that can be identified optimally via integration by parts and by using a restricted variation. 

Having   determined, an iteration formula, without restricted variation, should be used for the determination 

of the successive approximations 1( )nu x  of the solution ( )u x . The zeroth approximation 
0u  can be any 

selective function. Consequently, the solution is given by 

( ) lim ( )n
n

u x u x


 .           (4) 

Now, we apply the VIM to (1) . A correction functional is constructed as follows: 
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Taking variational on both sides of (5), we have  

'

1
0

( ) ( ) ( ) ( ) ,
n

t

n nu t u t s u s ds        

0
( ) ( ) ( ) '( ) ( ) ,

t

n n nu t t u t s u s ds         

0
(1 ( )) ( ) '( ) ( ) ,

t

n nt u t s u s ds        

this yields the stationary conditions: 
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Thus  

( ) 1,s               (7) 

and we obtain the following iteration formula 
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So we have 
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In order to overcome the difficulty from the greatest integer function [ ] , we can consider the above  

iteration formula in a series of intervals: [0,2) , [2,4) , [4,6) , …, [2 ,2( 1))n n  where 0,1,2,n  …. 

Following this way, each integral in iteration formulas will be easily computed. 

The above analysis yields the following theorem: 

Theorem 2. The VIM solution of (1) can be determined by (9) with the iterations (8). 
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In the next section, the VIM is successfully applied for solving a linear EPCA. 

4. APPLICATION 

In what follows, we will apply the VIM method to a physical model to illustrate the strength of the method. 

Let 2a  , 3b    and  
0 1u   in (1), this in turn gives the successive approximations by (8). 
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In a word, in the interval [2 ,2( 1))n n , 0,1,2,n   we have the following iteration formulas: 
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In view of  (9), we can obtain the approximate analytical solution. Usually, the 1m th approximation is 

used for numerical purposes. 

In Table 1, we compare the absolute errors of the VIM ( 4,5m  )  with the ones of the 1-Gauss-Legendre 

method[16] using 0.02h  . The graphs of the exact solution and 7th approximate solutions are shown in Fig. 

1. 

Table. 1.Comparison of the absolute errors 

t VIM 1-Gauss- Legendre 

method 

m=4 m=5 

0.7 3.09E-6 5.47E-7 2.33E-4 

1.4 4.14E-6 7.72E-7 4.16E-4 

2.1 5.16E-6 5.17E-6 3.81E-3 

2.8 4.34E-5 6.14E-6 5.42E-3 

3.5 5.51E-5 8.75E-6 8.15E-3 

4.2 7.36E-5 1.08E-5 1.96E-2 

4.9 3.84E-4 2.92E-5 2.37E-2 

5.6 8.26E-4 6.52E-5 4.73E-2 
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Fig. 1. Comparison of the exact solution with the VIM solution,  Upper: exact solution, Lower: 7th  VIM solution 

5. CONCLUSION 

In this paper, we have demonstrated the feasibility of the VIM for solving a EPCA model. We obtain high-

accuracy approximate solutions. The numerical results also show that the VIM offers a very effective and 

convenient approach to the approximate solution of EPCA. 
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