
I.J. Engineering and Manufacturing, 2011, 6, 57-63 
Published Online December 2011 in MECS (http://www.mecs-press.net) 

DOI: 10.5815/ijem.2011.06.09 

Available online at http://www.mecs-press.net/ijem 

 

The Analysis for the Two-stage Model on Scale-free Networks 

Maoxing Liu, Yunli Zhang 

Department of Mathematics North University of China Taiyuan, P.R. China, 030051 

Abstract 

In this paper, we will study a two-stage model by complex networks. The dynamic behaviors of the model on a 

heterogenous scale-free (SF) network are considered, where the absence of the threshold on the SF network is 

demonstrated, and the stability of the disease-free equilibrium is obtained. 
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1. Introduction 

Mathematical models have been applied to the study of infectious diseases since more than a century ago. The 

last four decades have witnessed a burst of interest in quantitatively understanding the transmission dynamics of 

a large number of diseases [1]. One of the key aims of epidemiological mathematical models, and certainly the 

most relevant in terms of policy making, is the assessment of the effectiveness of control strategies to curb 

disease spreading. For many infectious diseases, the most widespread prevention measure is mass vaccination. 

However, if for a given disease vaccines are not known, or vaccination is not effective, other control measures 

have to be adopted. 

Compartmental model is often used to describe the spread of infectious diseases, such as HIV, rabies, SARS, 

TB. In 1927, Kermack and McKendrick suggested an SIR model, which well indicated the number of infected 

population during the plague [2].The contact process was introduced by Harris [3]. In a contact process, 

individuals in the population have two life stages, young and adult, only adults can give birth and each new 

offspring is young. Transition from young to adult occurs at constant rate, and individuals die at rates that 

depend on their life stage. Krone [6] gives a very nice analysis of this process by the construction of a multi-type 

dual process. Models of this class have proven particularly useful for the study of Chlamydia and gonorrhea [4], 

[5]. 

We consider a population formed by N agents, situated at the nodes of a network. Individuals are modeled as 

nodes, and possible contacts between individuals are linked by edges. It has been shown that there is an 
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epidemic threshold on the homogeneous Watts-Strogatz (WS) small-world network model, while the epidemic 

model on SF networks has no epidemic threshold; infections can be proliferated, whatever small infection rate 

they have. This result disproves the threshold theory in epidemiology. Recently, there are some related research 

works on complex networks, for example, with infective medium [14], even with two species or pathogens 

spreading [15], [16]. 

These studies have extended and detailed the epidemic model on complex networks. It has shown that 

networks of two-stage contact process are scale-free [6], [7], [8], and [17] i.e. the distribution of the number of 

contacts over all individuals in the network has a long upper tail which exhibits power-law behavior. To study 

such a spreading characteristic, this paper extends the standard model to qualitatively understand and describe 

the mechanism of epidemics spreading based on biological means. It is shown that the main features and 

theoretical results obtained here are different from those in general SIS models [7], [8], [9]. 

The state-transition rules of the two-stage contact process have been put forward in Ref. [17]. It differs from 

the SIRS model in that the transition rate from 0 to 1 is proportional to the density of the neighbors with state 2 

(not 1) of a state-0 vertex. This model corresponds to dynamics with two life stages. The states can be 

interpreted as 0: vacant, 1: occupied by young individuals, and 2: occupied by adults. Only adults are 

reproductive and generate offspring in neighboring vacant sites at a birth rate equal to   In other words, a birth 

event occurs at a vacant site at a rate proportional to    and the number of neighboring adults. Youngs (state 1) 

spend random time of mean 


 before becoming adult (state 2). They are also subject to random death events at 

a rate of . Adults die at a rate of 1, which gives normalization of the entire model. Alternatively, we can 

interpret the three states as 0: vacant, 1: partially occupied, and 2: fully occupied colonies. Then, only fully 

occupied colonies are potent enough to colonize vacant lands. Based on these state-transition rules, we will 

establish and consider this model on scale-free networks. 

The organization of this paper is as follows: Section 2 derives the mean-field epidemic spreading model of SF 

network, especially Barabasi-Albert(BA) model with connectivity 
3( )p k k

 is obtained, and the existence of 

the steady-state solution is analyzed. Section 3 discusses the stability of the disease-free equilibrium. Finally, a 

brief discussion is given in Section 4. 

2. The model 

To derive mean field dynamics for populations with heterogeneous contact rates, let us denote by kp
 the 

probability that a vertex has degree k . Obviously , 1
1

N

kk
p




. 

In this paper, there are two types of nodes in a network, one is composed of N first-stage individuals and the 

other is composed of N second-stage individuals. All nodes can exist only in one of the two discrete states, 

healthy or infected. And the disease transmission is described as in the paper [7], [8]: 

At each time step, each susceptible (healthy) node is infected with rate    if it is connected to one or more 

infected nodes. 

At the same time, infected nodes are cured and become again susceptible with rate   defining an effective 

spreading rate 

/   . Without lack of generality, we can set 1  . All nodes in this network run stochastically through 

the healthy-infected-healthy cycles. So in this paper, we are interested in studying the following dynamical 

model 
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1, 1, 2, 2 1,(1 ) ( ) ,k k k kk           
                                                                                     (1a) 

2, 1, 2, .k k k   
                                                                                                                              (1b) 

we note that the effective birth rate (the first term in the first equation (1a) is proportional to 2k
, which is the 

average number of state-2 vertices in the neighborhood of a degree- k  vertex. When we choose an arbitrary edge, 

the probability that a specific vertex is connected to this edge is proportional to its degree k  [7], [8], [10], [11], 

[13], where 1, 2,( )k k 
 denotes the density of infected first-stage and second-stage individuals with 

connectivity k in the networks, the edge-conditioned probability 0 · £2(t) · 1 describes a link pointing to an 

infected individual [7], [8], which satisfies: 

2,

2

( )
( ) .

k kk
kp t

t
k


 



                                                                                                                 (2) 

where 
kk

k kp
, kp

 is the connectivity distribution of the vertex individuals. 

In the steady state 

1, 2,0, 0,k k  
                                                                                                                            (3) 

one has 

1, 2, 2 1,(1 ) ( ) 0,k k kk          
                                                                                     (4a) 

1, 2, 0.k k  
                                                                                                                               (4b) 

it is easy to see that model has a disease-free equilibrium: 0 (0, ,0)E 
. As far as the possibility of 

spreading is concerned, the following lemma holds: 

Theorem 2.1. If and only if 

2

( ) k

k

 





 , 

then there exists a unique endemic equilibrium 
* * * * *

1 1( , , , , , )N NE x x y y . 

proof: From (4), we can get 

2
1,

2

,
(1 )

k

k

k




   




   
                                                                                                          (5a) 

2
2,

2

.
(1 )

k

k

k




   




   
                                                                                                         (5b) 

And substituting them into (2), we get 
2

2
2 2

2

1
( ).

(1 )

k

k

k p
f

k k



   


  

   
                                                                               (6) 

For Eq.(6) is satisfied when 
2 0  , corresponding to the disease-free state. When 

20 1   state 2 

survives, Eq.(6) implies 1, 2,0, 0k k    in this situation. Accordingly, 
2 0   is equivalent to the {0, 1, 2} 
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phase. It is easy to verify that 
2( )f   is a convex and increase function, and 

22 1( ) 1f     , so if there is 

another solution 
20 1  , it must satisfy

2

2
0

2

( )
1,

df

d
 





 

that is 

2

( ) k

k

 





 , 

where 
2 2

kk
k k p . Through the unique endemic equilibrium 

*E  is determined. This agrees with the 

results for the percolation, the contact process, and the SIR model. 

Remark 2.1. 

(1) Let 
2

( )

k
R

k



 



                                                                                                                                 (7) 

In mathematical biology, R  is called the basic productive number, which determines whether the disease is 

transmittable or not. 

(2) If we consider , ( 2).
c

v

k k k cp Ck k   The network is homogenous, ,ck k so 

ck
R



 



                                                                                                                                            (8) 

When 1R  , the disease-free equilibrium is local asymptotically stable, while 1R  , there is an endemic 

equilibrium. Moreover, R  is an increasing function of   and
ck . In order to make 1R  , we need decrease 

  and
ck . (3) By using a continuous k  approximation that allows a practical substitution of series with 

integrals [18], the full connectivity distribution can be obtained as 
2 32 / ,kp m k where m is the minimum 

number of connections at each individual node, and  

2 .k
m

k kp dk m


   

Furthermore, here  
2 22 ln( / ).ck m k m  

Substituting them into yields 

ln( / )
.cm k m

R


 



                                                                                                                        (9) 

If we consider the maximum connectivity 
ck  to N  by ck m N , so 

ln( )
.

2( )

m N
R



 



                                                                                                                                 (10) 

3. The stability of the disease-free equilibrium (dfe) 
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In this section we consider the stability of the disease-free equilibrium. First, Jacobin matrix at an 

equilibrium is 

,
A B

J
C D

 
  
 

 

where 

2

2

( ) 0

,

0 ( )

A

N

  

  

    
 

  
     

 

1 2B B B  , where 

2

1

2

0

,

0

B

N





  
 

  
   

 

1 1

2

2

1

,

N N

N N N

p h Np h

B
k

Np h N p h


 
 

  
 
 

 

where 1, 2,1 ,( 1, , ).i i ih i N      

1 0

,

0 1

C 

 
 

  
 
 

 

1 0

.

0 1

D

 
 

  
  

 

So we can easily get the Jacobin matrix at disease-free 

equilibrium is 

,
A B

J
C D

  
     

 

where 

( ) 0

,

0 ( )

A

 

 

  
    
   
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1

2

1

,

N

N

p Np

B
k

Np N p


 
    
 
 

 

1 0

,

0 1

C 

 
    
 
 

 

1 0

.

0 1

D

 
    
  

 

 

The matrix J   has 2 1N   eigenvalues equal to ¡1: 1( 1, 2 1),i i N     the 2Nth is 

2

2 1 .
( )

N

k

k




 
  


 

Having established these premises, we may immediately demonstrate the following theorem: 

Theorem 3.1. If 1R  then the disease-free equilibrium of (1) is asymptotically stable in the set 
2[0,1] N

, 

otherwise there exists a unique endemic equilibrium 
* * * * *

1 1( , , , , , )N NE x x y y . 

Remark 3.1. 

The biological consequence of this result is that if the epidemic threshold R  is not exceeded the disease will 

disappear. On the contrary if 1R  , then there is an endemic solution which is reached independently of the 

initial state of the disease. In other words, however complex the system may be and whatever the initial state of 

the first-stage and the second-stage individuals are, whether the disease will eradicate or not only depend on the 

basic reproduction number. 

4. Conclusion 

In this paper, a new model for two-stage contact process on complex networks has been proposed and 

simulated. Different from the classical epidemic model, in the new model infection between two-stage contact 

processes is taken into account. Moreover, spreading thresholds of the two-stage contact process model are 

determined, and the stability of the disease-free equilibrium is given, but as to the stability of the endemic 

equilibrium, which can show the global behavior of the solutions of the model, we have not mentioned in this 

paper. These and some other related issues will be further studied in the future. 
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