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Abstract 

The Detection of rare variants responsible for human complex diseases has been receiving more and more 

attentions. However, most existing computational methods for this purpose require the selection of functional 

variants before statistical analysis. Based on the assumption that nonsynonymous single nucleotide polymor-

phisms (nsSNPs) associated with specific diseases should be similar in their properties, we propose a method 

that utilize conservation scores of nsSNPs and the guilt-by-association principle to prioritize the candi-date 

nsSNPs for specific diseases. Systematic validation demonstrates that our approach is effective in recovering 

the relationship between nsSNPs and diseases, with the Manhattan distance measure achieving the most pre-

cise prediction results. 
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1. Introduction 

Identification of genetic variants that are responsible for human inherited diseases has achieved remarkable 

success, represented by the fruits of genome-wide association (GWA) studies, in which hundreds of common 

variants in diverse complex traits have been reported [1]. One critical assumption held by the GWA studies is 

the common disease common variant (CDCV) hypothesis, which asserts that common diseases are caused by 

common variants with small to modest effects [2]. However, recent studies suggest an alternative hypothesis 

of common disease rare variant (CDVR), stating that the disease etiology is caused collectively by multiple 

rare variants with moderate to high penetrances, and the effective way to identify these rare variants is 

through direct sequencing [2,3]. Even so, due to the unaffordable cost of whole-genome sequencing, we 

should first quantify which variants are potentially functional or neutral, before statistical analysis of the se-

quence data. The results obtained from bioinformatics tools can be used to determine which variants should 

be included in the analysis. It has been pointed out that in an ideal situation, all variants that are included in 

the analysis are functional and no functional variants are excluded [2]. 
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Out of this consideration, we resort to existing functional databases about single nucleotide polymorphisms 

(SNPs), the most frequent type of human DNA variation [4], and we focus our study on protein-coding non-

synonymous single nucleotide polymorphisms (nsSNPs), whose presence result in amino acid substitutions, 

which potentially affect protein structures and functions, and further cause human disease [5]. A lot of previ-

ous studies have been conducted in identifying the disease nsSNPs against the neutral (non-disease) ones, 

which is often formulated as a binary classification problem, such as those of PolyPhen [4], SIFT [6] and 

KBAC [7]. With these studies, the yielding classification results contain only categories for each candidate 

nsSNP, either disease or neutral, without information about what specific diseases the nsSNP is related to. 

This raises questions about how to numerically evaluate the importance of the identified SNPs for arbitrary 

disease and select the top few susceptible ones, which would provide guidance for further prevention, diagno-

sis and treatment of the disease. 

For these purposes, we formulate the identification of disease nsSNPs from candidates as a one-class nov-

elty learning problem. We compute a score from multiple sequence alignment of proteins to quantify the 

strength of association between a query disease and a candidate nsSNP, and then we prioritize candidate 

nsSNPs according to their scores to facilitate the selection of susceptibility ones. The scoring approach com-

plies with the guilty-by-association principle [8], on the basis of the assumption that nsSNPs associated with 

the same disease should have more similarities (such as structure, physicochemical characteristics, conserva-

tive level, and etc.) than those that are not associated with this disease. Grounded on the features derived from 

the conservation scores of nsSNPs, an aggregation similarity score is defined to measure the strength of asso-

ciations between a certain nsSNP and a query disease in our model. We introduce two popular distance func-

tions to calculate the aggregation similarity score (Euclidean distance and Manhattan distance), as well as four 

control groups to demonstrate the effectiveness and predictive power of our approach. Systematic validation 

demonstrates that our proposed approach is effective in identifying the casual relationship between nsSNPs 

and diseases, with the Manhattan distance achieving the most precise prediction results. 

2. Materials and Methods 

2.1. Data Sources 

We collect from the Swiss-Prot database [9] nsSNPs and corresponding amino acid substitutions. Version 

2010_10 (released on Oct. 5th, 2010) of this database collects 62,430 amino acid substitutions in 12,401 hu-

man proteins, with each substitution annotated as “Disease,” “Polymorphism,” or “Unclassified.” We refer to 

amino acid substitutions with the annotation “Disease” as disease nsSNPs and those with the annotation “Pol-

ymorphism” as neutral nsSNPs, and we focus only on the disease nsSNPs that have the corresponding OMIM 

accession numbers. We collect from the Pfam database [10] multiple sequence alignments (MSA) of human 

proteins. Version 24.0 (released in Oct. 2009) of this database contains curated alignments and models for 

11,912 protein families. Focusing on nsSNPs that appearing in multiple sequence alignment of some human 

proteins, we finally collect 14,511 disease nsSNPs associated with 1,575 diseases and 13,735 neutral nsSNPs. 

2.2. Sequence Conservation Features 

We use the conservation scores of the original and the substituted amino acids as features to facilitate the 

prioritization of candidate nsSNPs, because previous studies have shown that these two scores have the most 

discriminant power in distinguishing disease nsSNPs from polymorphism ones [11,12]. The conservation 

scores are defined as the frequencies of occurrences of the amino acids (original or substituted) in the corre-

sponding column of the Pfam multiple sequence alignment [13]. Specifically, for the query protein, its ho-

mologous proteins are extracted from the Pfam database. With the supposition that the substitution occurs at a 

position corresponding to the column of the alignment, the conservation scores are then calculated as the rela
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tive frequency of occurrence for the original (or the substituted) amino acid in the corresponding column of 

the alignment. 

2.3. Guilt-by-association Model 

We ground the prioritization of candidate nsSNPs on the guilt-by-association model, which is constructed 

with the assumption that nsSNPs that are associated with the same disease should share similar features and 

be relatively close under some distance function. With this assumption, a set nsSNPs that have associations 

with a specific disease are defined as seeds, and the total similarity scores of a candidate nsSNP to the set of 

seeds are utilized as the score for prioritization. The aggregate similarity score to measure the proximity be-

tween candidate nsSNP i and the disease D is then defined as 
( )

D
D ij jV

S i z



, where VD is the set of all 

seed nsSNPs for disease D, and zij is the similarity score between nsSNPs i and j. Therefore, measuring the 

proximity between an nsSNP and a disease is translated to calculating the total similarities between the nsSNP 

and all the seeds pertained to the disease. 

We adopt two distance functions to evaluate the similarity between two nsSNPs in the feature space, and 

thus obtain the similarity between two nsSNPs. The first function is the Euclidean distance, which is consid-

ered as the most traditional and ordinary way to compare two points in the feature space. The second function 

is the Manhattan distance, which is also known as the rectilinear distance, L1 distance, city block distance, or 

taxicab distance. The Manhattan distance is the sum of the lengths of the projections of the line segment be-

tween the points onto the coordinate axes [14]. Specifically, the Manhattan distance d between two n-

dimensional feature vector x and y is 11
( ) n

i i id x y x y   x,y
. According to literature [14], the ad-

vantage of the Manhattan over the Euclidean distance is that it weighs differences more heavily. 

2.4. Validation and Evaluation Methods 

We adopt a large-scale leave-one-out cross-validation experiment to validate the performance of our ap-

proach in recovering known nsSNP-disease associations. In each validation run, we select an association be-

tween a seed nsSNP and a disease, assume that the association is unknown, and prioritize the nsSNP against a 

set of control nsSNPs. Performing such validation run for every seed nsSNP and every disease, we obtain a 

number of ranking lists. With these lists, we calculate two criteria to measure the performance of the prioriti-

zation method. The first criterion is the mean rank ratio of seed nsSNPs (MRR), which is the average rank 

ratio of all seed nsSNPs for a specific disease. The second criterion is the area under the receiver operating 

characteristic (ROC) curve (AUC). At a certain rank threshold, we define the sensitivity as the fraction of 

seed nsSNPs ranked above the threshold, and specificity the fraction of control nsSNPs ranked below the 

threshold. Varying the threshold, we are able to obtain a ROC curve. The area under this curve is then defined 

as the AUC score. 

We choose four control groups, say, 99 randomly selected polymorphism nsSNPs,  999 randomly selected 

polymorphism nsSNPs, 9999 randomly selected polymorphism nsSNPs, and all 13735 polymorphism nsSNPs.  

As the seeds of the same disease should be more similar than the other polymorphism nsSNPs, it is reasonable 

that all the seeds should rank at the top, and thus we could expect low MRR and high AUC. 
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3. Results 

3.1. Validation of the model 

We focus on diseases that have at least 10 seed nsSNPs and obtain 723 diseases. For each of these diseases, 

we perform the leave-one-out cross-validation experiment, and we calculate MRRs and AUCs under the four 

control groups with the two distance measures. We summarize the resulting MRRs and AUCs in Fig.1 and 2, 

respectively. In each figure, we further present three situations: (1) using the conservation score of the original 

amino acid (feature 1), (2) using the conservation score of the substituted amino acid (feature 2), and (3) using 

a vector composed of the two conservation scores (feature 1&2). 

 

 

Fig. 1. Distribution of mean rank ratios of all 723 diseases, against all 13735 polymorphism nsSNPs. A-C: Euclidean distance. D-F: 

Manhattan distance. A, D: feature 1. B, E: feature 2.  C, F: feature 1&2. 

 

Fig. 2. Distribution of AUC scores of all 723 diseases, against all 13735 polymorphism nsSNPs. A-C: Euclidean distance. D-F: Manhat-

tan distance. A, D: feature 1. B, E: feature 2.  C, F: feature 1&2. 
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The results show that nearly all seeds can be ranked at top 50% among the control groups. In other words, 

we can recover the relationship between a large number of seeds and the corresponding diseases. In addition, 

the four control groups provide similar prediction performances under a certain distance functions (data not 

shown). Taking Fig. 1 (B) as an example, we calculated that for 91.56% (662) diseases, the MRRs are less 

than 50%; for 32.64% (236) diseases, the MRRs are less than 20%; for 10.79% (78) diseases, the MRRs are 

less than 10%. We further run a Wilcoxon signed rank test against the alternative hypothesis that the median 

of the MRRs is less than 50% (random situation), and we find that no matter which features are used, the p-

value is less than 2.2e-16. In other words, it is statistically significant that our method can effectively priori-

tize seed nsSNPs among the top of candidate nsSNPs. 

3.2. Comparison between the Similarity Measures 

We also observe that MRRs tend to be smaller in the leave-one-out cross-validation when using the Man-

hattan distance. To further elucidate this observation, we run a Wilcoxon rank sum test against the alternative 

hypothesis that MRRs obtained using the Euclidean distance have a positive location shift over those using 

the Manhattan distance. The results show that the p-value is 0.3629 for feature 1, less than 2.2E-16 for feature 

2, and 3.51e-05 for feature 1&2. It is therefore clearly to see that the Manhattan distance measure is more 

suitable in measuring the similarity between two nsSNPs. 

Table 1. Prediction performances for Disease (MIM:143890) 

Condition 
99 Polymorphism 

nsSNPs 

999 Polymorphism 

nsSNPs 

9999 Polymor-

phism nsSNPs 

All Polymor-

phism nsSNPs 

Mean 

Rank 

Ratio 

Euclidean 

Feature 1 0.1951 ± 0.0272 0.1915 ± 0.0086 0.1930 ± 0.0010 0.1926 

Feature 2 0.4585 ± 0.0471 0.4484 ± 0.0113 0.4482 ± 0.0003 0.4481 

Feature 1&2 0.1752  ± 0.0254 0.1899  ± 0.0086 0.18752 ± 0.0009 0.1871 

Manhattan 

Feature 1 0.1388 ± 0.0176 0.1485 ± 0.0068 0.1479 ± 0.0009 0.1470 

Feature 2 0.2042 ± 0.0201 0.1937 ± 0.0077 0.1946 ± 0.0010 0.1955 

Feature 1&2 0.1350 ± 0.0129 0.1406 ± 0.0046 0.1419 ± 0.0006 0.1416 

AUC 

score 

Euclidean 

Feature 1 0.8104 ± 0.0277 0.8090 ± 0.0086 0.8070 ± 0.0010 0.8073 

Feature 2 0.5409 ± 0.0480 0.5515 ± 0.0113 0.5517 ± 0.0003 0.5519 

Feature 1&2 0.8311  ± 0.0258 0.8107 ± 0.0086 0.8125 ± 0.0009 0.8129 

Manhattan 

Feature 1 0.8678 ± 0.0174 0.8521 ± 0.0068 0.8521 ± 0.0009 0.8522 

Feature 2 0.8003 ± 0.0203 0.8067 ± 0.0078 0.8054 ± 0.0010 0.8045 

Feature 1&2 0.8715 ± 0.0127 0.8601± 0.0045 0.8581 ± 0.0006 0.8585 

 

3.3. Comparison between Features 

From Fig. 1, we roughly see that MRRs tend to be smaller in the leave-one-out cross-validation when fea-

ture 2 is used. To further elucidate this observation, we run a Wilcoxon rank sum test against the alternative 

hypothesis that MRRs obtained using feature 1 have a positive location shift over those using feature 2, and 

we obtain a small p-value (2.2E-16). That is to see, feature 2 has higher discriminant power than feature 1 in 

this prioritization problem. Similarly, we conclude that feature 2 has higher discriminant power than 1&2 (p-

value = 0.0001), and feature 1&2 has higher discriminant power than 1 (p-value = 4.541E-9). This result is 

consistent with the analysis of relative importance of the features in literature [12], which points out the con-

servation score for the substituted amino acid has the most powerful discriminative ability to identify the dis-

ease-associated nsSNPs against the neutral ones. 
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3.4. Case studies 

By prioritizing candidate nsSNPs, we aim at finding nsSNPs that are most relevant to the disease of inter-

est, thereby promoting the detection of potential functional rare variants in successive association studies. 

Taking Familial hypercholesterolemia (FH) [MIM:143890] as an example, we apply the proposed method 

with the use of feature 1&2 and the Manhattan distance measure, and we obtain overall MRR=14.16% and 

AUC = 85.85%. From the literature, we know that FH results from defective low-density lipoprotein receptor 

(LDLR) activity, mainly due to LDLR gene defects [15,16,17]. According to the ranking results, we can thus 

get the top five significant disease-related nsSNPs, which are D579Y, P608S, D221Y, D224V, and D221G in 

the gene LDLR and their relative ranks are all less than 1.00% (rank top 140 among 13736 nsSNPs).  

We also study some common complex diseases, such as Breast cancer (BC) [MIM: 114480]. It was found 

in the middle of 1990s that mutated variants in BRCA1 or BRCA2 gene significantly raised a person's odds of 

developing breast cancer [18]. In our study, the top 5 variants selected statistically significant association with 

breast cancer from our prediction results are T826K in BRCA1, T2515I in BRCA2, S2072C in BRCA2, 

H888Y in BRCA1, and G960D in BRCA1, and their relative ranks are all <6.74% (rank top 1000 among 

13736 nsSNPs). 

4. Conclusion 

In this paper, we model the problem of identifying nsSNPs underlying diseases against neutral ones for 

specific types of diseases as a one-class novelty learning problem, and we solve this problem from the view-

point of guilt-by-association principle. We implement our method using two distance measures with four con-

trol groups on the basis of two features. We demonstrate that the method is effective in ranking nsSNPs that 

are responsible for specific diseases among the top of candidates. We also analyze the effects of different fea-

tures and distance measures. 

Certainly, there are several limitations of the proposed approach. First, we use the Pfam multiple sequence 

alignment to extract conserved protein domains for the query protein sequence. As a result, we are limited to 

the mutations occurring in known protein domains. This limitation can be overcome by using some other mul-

tiple-sequence alignment methods, such as BLAST. Second, we currently use only the two conservation 

scores to construct our prediction model. In our future studies, we will combine some useful information such 

as the physicochemical characteristics of amino acids, or the structure information of proteins to form a more 

comprehensive feature set. Finally, our approach is limited to nsSNPs found in protein coding regions. How-

ever, mutations in other genome regions such as the transcriptional-factor binding sites and promoter regions 

are also known to cause diseases. Further studies are needed for these mutations. 
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