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Abstract 

Estimating the irregular function with multiscale structure is a hard problem. The results achieved by the 

traditional kernel learning are often unsatisfactory, since underfitting and overfitting cannot be simultaneously 

avoided, and the performance relative to boundary is often unsatisfactory. In this paper, we investigate the 

data-based localized reweighted regression model under kernel trick and propose an iterative method to solve 

the kernel regression problem. The new framework of kernel learning approach includes two parts. First, an 

improved Nadaraya-Watson estimator based on blockwised approach is constructed; second, an iterative 

kernel learning method is introduced in a series decreased active set to choose kernels. Experiments on 

simulated and real data sets demonstrate that the proposed method can avoid underfitting and overfitting 

simultaneously and improve the performance relative to the boundary effect. 
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1. Introduction 

Here introduce the paper, and put a nomenclature if necessary, in a box with the same font size as the rest 

of the paper. The paragraphs continue from here and are only separated by headings, subheadings, images and 

formulae. The section headings are arranged by numbers, bold and 10 pt. Here follows further instructions for 

authors. Learning to fit data with noise is an important research problem in many real-world data mining 

applications. Kernel tricks have attracted more and more research attention recently. Fro given data 

set 1{( , )}n

i i iS x y  , the solution of the kernel learning problem is of the form 

1

( ) ( , )
n

i i

i

m x K x x


          (1) 
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Where i  are the coefficients to be learned from examples, while K is positive definite kernel associated 

with RKHS H . Recently, using multiple kernels instead of a single one can enhance the interpretability and 

improve performance [1]. In such cases, a convenient approach is to consider: 

1 1

( , ) ( , ), . . 1, 0
N N

i i i i

i i

K x x c K x x s t c c
 

           (2) 

Where N is the total number of kernels. In general, the correct number of kernels is unknown, and 

simultaneously determining the required number of kernels as well as estimating the associated parameters of 

MKL is a challenging problem [1]. 

For non-flat functions which comprise both the steep variations and the smooth variations, it is sometimes 

unsuitable to use one kernel even if a composite multiple kernel with several global bandwidths to estimate the 

unknown function [2]. First, the kernels are chosen prior to learning, which may be not adaptive to the 

characteristics of the function so that underfittings and overfittings occur frequently in the estimated function 

[3]. Although, the localized multiple kernel learning proposed in is adaptive to portions of high and low 

curvature, it is sensitive to initial parameters. Second, how to determine the number of kernels is unanswered. 

Finally, classical kernel regression methods exhibit a poor boundary performance [5] [6] [7]. 

The rest of this correspondence is organized as follows. In section 2, we proposed an iterative localized 

regression to deal with nonflat function regression problem. Section 3 presented regression results on 

numerical experiments on synthesis and real-world data sets while section 4 concludes the paper and contains 

remarks and other issues about future work. 

2. Localized reweighted regression method 

2.1. Related Work 

Nadarya (1964) [8] and Watson (1964) [9] proposed to estimate ( )m x  using a kernel as a weighting 

function. Given the sample data set 1{( , )}n

i i iS x y  : 

1

1
1

( , )
ˆ ( ; ) ( ; )

( , )

n
n

h i ii
i in

ih ii

K x x y
m x S w x S y

K x x






 





  

Where 
1

1

( ; ) [ ( , )] ( , )
n

i h i h i

i

w x S K x x K x x



   is the Nadaraya-Watson weights, such that 

1

( ; ) 1,
n

j

j

w x S x


   

And 
1( ) ( / )hK x h K x h  is a kernel with bandwidth h . 

Associating blockwise technique, we propose an improved localized kernel regression estimator which 

achieves automatic data-driven bandwidth selection. Suppose the initial data set S  is partitioned into p  

blocks denote by 1 2, ,..., pSS SS SS  with length 1 2, ,..., pd d d  such that 

1

p

j

j

b n


 [11]. For given x , if 

there is some block xSS  such that 
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min{ | } max{ | }i i x i i xx x SS x x x SS     

Then the blockwised Nadaraya-Watson estimator is given as follows 

( , )
ˆ ( ; ) ( ; )

( , )

i x

i x
i x

h i ix SS

x i x i

x SSh ix SS

K x x y
m x SS w x SS y

K x x





 





 

As thus, the localized estimator presents the unknown function m  without a complicated parameters 

selection procedure. 

2.2. The new regression method 

Given a dataset {( , ), , }n

i i i iS x y x R y R   . Assume that ( )m x H , where H  is some reproducing 

kernel Hilbert space called active space, with respect to the reproducing kernel K . The square norm related to 

the inner product by 
2

,
H H

f f f . Consider the problem, 

1

min ( ) ( , ( )) ( )
n

i i

i

H m L y m x P m


         (3) 

Where   is a positive number which balances the trade-off between fitness and smoothness; L  is a loss 

function; 
2

( )
H

P m m  is penalized function By the represent theory, the solution of equation (3) is [12], 

1

ˆ ( ) ( , )
n

i i

i

m x K x x


          (4) 

A generalized framework of kernel is defined as 

1

( , ) ( , )
N

i i

i

K x x c K x x


           (5) 

Where , 1,...,iK i N  are N  positive definite kernels on the same input space X , and each of them 

being associated to a RKHS iH  whose elements will be denoted if  and endowed with an inner product 

,
i

  , and 1{ }N

i ic   are coefficients to be learned under the nonnegative and unity constraints 

1

1, 0,1
N

i i

i

c c i N


             (6) 

How to determine N  is an unanswered problem. For any 0ic  , iH   is the Hilbert space derived from 

iH  as follows: 

{ | : }iH

i i

i

f
H f f H

c
      

Endowed with the inner product 

1
, ,

iH i
i

f g f g
c

  

Within this framework, iH   is a RKHS with kernel ( , )i i iK c K x x  , since 
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( ) ( ), ( , ) ( ), ( , )
i i

i i iH H
m x m K x m c K x


       

Then, we define H  as the direct sum of the RKHS
iH  . Substituting (5) into (4), an updated equation of (2) 

is obtained as follows, 

1

1 1

1 1 1

ˆ ( ) ( , )

( , )

( , ) ( )

n

i i

i

n N

i j j i

i j

N n N

j i j i j

j i j

m x K x x

c K x x

c K x x m x









 

  





 



 

  

       (7) 

Instead of the equation (3), we convert to consider the models for 1,...,j N , 

1

min ( ) ( , ( )) ( )
n

j j i j i j j

i

H m L y m x P m


         (8) 

Then, the kernel learning problem can thus be envisioned as learning a predictor belonging to a series of 

adaptive hypothesis space endowed with a kernel function. The forthcoming part explains how we solve this 

problem. Assume that a kernel function 1( , )K    and corresponding reproducing kernel Hilbert space 1H   are 

included, and then we get the initial estimator, 

1

1

1

( , )
ˆ ( )

( , )

i j

i j

p

h i ij x SS

p

h ij x SS

K x x y
m x

K x x

 

 


 

 
        (9) 

The residual function can be obtained, 

1 1 1
ˆ( ) ( ) ( )res x m x m x V H H                      (10) 

If we have introduced t  kernels 1{ }t

j jK  , then the estimator can be updated as 

1 1 1

ˆ ˆ( ) ( ) ( , )
t t n

j

j i j i

j j i

m x m x K x x
  

    

And the residual function, 

ˆ( ) ( ) ( )tres x m x m x                    (11) 

If the measurements of tres  fulfilled certain thresholding criteria, here we employ 2-norm, N t  

represents the number of introduced kernels and puts an end to iteration procedure. If not, considering the 

problem in the decreased subspace 1tH 
 , compute ˆ ( )i i ires y m x   and update the sample set 

{( , )}i iS x res  which can be treated as the limited of the initial data set in 1tH 
 . 

Employing iteration, we will consider a new regression problem on the updated sample data set in a 

decreased subspace. 

Compared with the general MKL, the first advantage is that it needs not to select weights i  which will 

reduce much more computation burden and just need to select one kernel bandwidth at each iteration step. 
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Furthermore, the new method is adaptive to the local curvature variation and improves the boundary 

performance as a result of the introduction of blockwised Nadaraya-Watson estimate technique. At last, the 

number of kernels introduced will change according to real data settings based on iteration which will avoid 

underfitting and overfitting problem effectively. 

2.3. Alogorithm 

The complete algorithm of Iterative Localized Kernel Reweighted Regression can be briefly described by 

the following steps: 

1) Input S , the maximum iterarion step M , threshold  , 1N  ; 

2) Initialize the pilot estimator ˆ ( ) 0m x  , and pilot residual e y ; 

3) Update the data set 1{( , )}n

j j jS x e  ; 

4) Select kernel K , compute the estimator ˆ ( ; )m x S with equation (9); 

5) Update the estimator ˆ( ) ( ) ( ; )m x m x m x S  ; 

6) Update  the residuals ( )e y m x  , and 1N N  ; 

7) Calculate the norm of residual e . 

Repeating the steps from 3) to 7), this process is continued until the norm of residual e  is smaller than the 

pre-determined value   or the iteration step N  is larger than the pre-determined value M . 

In order to select parameters, we choose 10-fold cross-validation: randomly divide the given data into ten 

blocks and consider the Generalized Cross Validation function is given as 

( ) 21
ˆ( ) ( )

10

j

j

GCV m m    

Where   represents the set of relevant parameters, and 
( )ˆ jm 

 is the estimator of m  without the jth  

block samples of S . 

3. Experiment results 

We have conducted studies on simulated data and real-world data using the proposed method. 

3.1. Application to Simulated Data 

The test function is the mixture of Gaussian and Laplacian distributions define by 
2( 2)

0.7 22
1 0.7

( )
42 2

x
x

m x e e



  

   

The number of data points for experiment is 200, and the experiment was repeated 50 times. Figure 1(a) 

shows the target values which were corrupted by white noise. The performance of the experiment was shown 

in Figure 1, in which the slender line present the true test function and the bold line represented the estimated 

results. Figure 1(b) represented the estimated curve using the proposed method with two step iteration which 

deals well with different portions with different curvature; Figure 1(c) demonstrated the standard single kernel 

regression based on Gaussian kernel with a global bandwidth. For this example, it can be seen that the 

Iterative Localized Kernel regression method achieved the better performance. Compared with the proposed 

method, the single kernel regression could not avoid underfitting and overfitting simultaneously and sensitive 

to noise at the boundary area. 
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Fig. 1. The test function (slender line) and the approximation function (bold line). Figure (a) shows simulated data with white noise 

(SNR=20); Figure (b) shows the estimated curve using the new method; Figure (c) demonstrates the standard single kernel regression 

result. 

3.2. Application to real data: Burning Ethanol Data 

To evaluate the performance of our proposed method in practice, we analyzed the Burning Ethanol Data set. 

Figure 2(a) shows the data set of Brinkmann (1981) that has been analyzed extensively. The data consist of 88 

a measurement from an experiment in which ethanol was burned in a single cylinder automobile test engine. 

Because of the nature of the experiment, the observations are not available at equally-spaced design points, 

and the variability is larger for low equivalence ratio. 

 

 

Fig. 2. Figure (a) shows Burning Ethanol Data; The blue bold lines in figure (b) and (c) show different estimated curves with two and 

three kernels. 

 

As we all know, it is a difficult problem to control the pump around 0.8. Figure 2 shows the regression 

results with different parameters and iteration steps. The red line represents the single kernel estimator. The 

blue in figure 4(b)-(c) represent the estimators after two and three steps iteration with different kernel 

bandwidths which are determined by GCV. From the experimental results, several advantages can be drawn. 

First, all the estimated curves have not a spurious high-frequency feature when the equivalence ratio is around 

0.8 which is the drawback other regression methods must deal with cautiously. Second, compared with [13], 

the proposed method is not sensitive to the pilot estimator and the kernel bandwidth selection. Finally, all the 

fitting results show the good boundary performance. 

4. Conclusions and discussion 

In this paper, we consider the kernel trick and proposed an iterative localized reweighted kernel regression 

method which includes two parts. At first, an improved Nadaraya-Watson estimator is introduced based on 

blockwised approach, which improves the classical Nadaraya-Watson estimator to be adaptive to different 

portions wit different curvatures; Then, considering the shortcoming of general MKR, we proposed a novel 

kernel selection framework during iteration procedure which avoids underfitting and overfitting effectively. 
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The simulation results show that the proposed method is less sensitive to noise level and pilot selection. 

Furthermore, experiments on simulated and real data set demonstrate that the new method is adaptive to the 

local curvature variation and improves boundary performance. It is easy to extend the method to other type 

additive noise. Kernel function plays an important role in kernel trick and can only work well in some 

circumstances, so,  how to construct a new kernel function according to the given sample data settings is 

another direction we will keep up with. 
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