
I. J. Computer Network and Information Security, 2017, 6, 21-29
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.06.03

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

On a Novel Grid Computing-Based Distributed

Brute-force Attack Scheme (GCDBF) By

Exploiting Botnets

Mohammad Reza. Hasani Ahangar
Imam Hossein University/ Department of Computer Engineering, Tehran, Iran

E-mail: mrhasani@ihu.ac.ir

Mohammad Reza. Esmaeili Taba and Arash.Ghafouri
Amirkabir University of Technology (Tehran Polytechnic)/Department of Computer Engineering, Tehran, Iran, Imam

Hossein University/ Department of Computer Engineering

E-mail: mreza.taba@aut.ac.ir, krghafouri@ihu.ac.ir

Abstract—Brute-force attacks are known to be the

promising way to break into even most complicated

systems by trying every possible permutation of the keys.

But since cryptosystems began to use longer and more

complex keys, brute-force attacks has lost their usability,

because of relatively high complexity of trying every

possible permutation with respect to computational power

and computation time that was available to crypto

breakers. Although computational power is increasing

continuously, its increasing rate is less than that of key

length and complexity. Having these assumptions in mind,

it is infeasible for centralized traditional computing

architectures with limited computation power to break

into modern cryptosystem by compromising the key with

implementing schemes like conventional brute-force. In

this paper authors aim for devising a novel brute-force

scheme which integrates a modern computing

architecture (grid computing) with botnets in order to

perform brute-force attacks with lower computation time

and lower equipment cost for individual cryptobreakers

who have no access to supercomputers. In summary,

GCDBF uses a portion of computation power of each of

the infected nodes belonging to a botnet in a grid-based

environment in order to process a portion of total

workload of a brute-force attack which is needed for

breaking a specific key. This approach neutralizes the

need of acquiring supercomputers for individual hackers

while reducing the required time for breaking the key

because of using grid computing architecture. For the

purpose of evaluation, GCDBF is implemented in

different scenarios to prove its performance in

comparison to centralized brute-force scheme.

Index Terms—Brute-force, grid computing, distributed

computing, botnets.

I. INTRODUCTION

Brute-force attacks have been recognized as one the

most basic and promising ways for breaking ciphers for a

long period of time. In order to neutralize this kind of

attack, cryptosystems designers began to further

complicate their systems which results in more

complexity for breaking them. On the other hand,

computing power has also increased. These two

approaches create a close competition between

cryptosystems designers and cryptobreakers. Since then,

cryptosystems designers found a way to overcome this

issue which was: increasing the key space. For a key with

length of n binary bits, we have the probability space (or

key space) of . In average an effort of order is

required to find the actual key. Therefore, a key with

long-enough length (i.e., 128bits) requires a very long

time to break and it is also computationally expensive to

perform. This amount of computational effort and time

makes centralized brute-force attacks infeasible in terms

of computation time and equipment cost.

Therefore, nowadays brute-force attacks are not as

effective as they were at the beginning. In this paper, we

devise a novel scheme (GCDBF) which itself basically

consists of a combination of three main concepts:

1. Brute-force attacks

2. Botnets

3. Grid Computing

Each of which will be briefly described respectively.

A. Brute-force Attack

Brute-force attacks are designed to find keys (such as

passwords) with guessing or trying every possible key.

For example, cryptobreakers assume that users choose

their passwords from a small subset of the full password

space, e. g., short passwords, dictionary words, proper

names, and lowercase strings [1, 2]. In this case, the

attackers attempt to login to user accounts by trying

almost all of the possible passwords until the actual one is

found. If the cryptobreakers exploit a predetermined list

of common or usual passwords, they will be able to

perform a dictionary attack, otherwise they space of

22 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

passwords will be searched by using brute-force attack.

Brute-force attacks divide into simple or distributed

attacks. In simple attacks or centralized attacks, the

cryptobreaker uses only one host that searches for the

actual password. In distributed attacks, many

cryptobreakers send relatively small numbers of requests

at once [2]. It is noteworthy that GCDBF distribution is

different than [2] or other similar works, since it conducts

brute-force by implementing it by the means of grid

computing concepts and botnets’ components.

Brute-force attacks require significant amount of time

and processing power when the key space is long. A

computer program is usually used to conduct a brute-

force attack. The effort of brute-force should start with

one digit password number and cover all possibilities in a

worst case [3, 4].

B. Botnets

A botnet is a network of thousands of computers

(known as bots, zombies or infected nodes) that are

infected by a particular malware and are controlled by a

bot master (or bot herder) [5]. Bot herder (person who

creates the bot and is able to control it remotely) send

commands to a server, which relays those commands to

infected nodes. Upon executing the commands, nodes

will inform the bot herder about the results. In this paper,

we do not determine any specific means to create a botnet,

since it is not our contribution nor our concentration.

Botnets usually include these components [6]:

• Command and control: it is the infrastructure

including servers and other technical infrastructure

needed to control the malware and subsequently,

to control the botnet.

• Zombie node (also known as infected node): a

zombie node is a computing device with internet

connection which is being controlled by a hacker

after infection by the means of a malware.

Generally, following steps are in common for

constructing a botnet:

1. Bot herder builds/purchases a malware and/or an

exploit toolkit (in the applications or operating

system).

2. Bot herder uses the acquired tool (bot) to infect the

computing devices.

3. Bot on infected devices logs into predetermined

command and control (C&C) server.

4. Bot herder uses these devices to perform desired

set of operations.

C. Grid Computing

Grid computing comes from a new computing

architecture [7] and is changing into a common

technology for large-scale resource sharing and

distributed system integration [8, 9].

Grid computing can also be used for computing-

intensive tasks. As some of the most anticipated public

projects, SETI@Home [10] and Distributed [11] are

using grid computing to reach their goals. A

computational grid is the cooperation of distributed

computer systems where user jobs can be executed either

on local or on remote computer systems. On one hand

grid computing provides the user with access to locally

unavailable resource types, especially for individual

cryptobreakers and on the other hand there is the

expectation that a larger number of resources are

available. It is expected that this will result in a reduction

of the average job response-time [12].

D. Overview of GCDBF

In summary, our main contribution is to integrate the

concept of grid computing with the concept of botnets to

perform brute-force attacks with a practical and low-cost

equipment and in low-computation time in a distributed

manner. GCDBF works as follows: First, it is assumed

that there exists a botnet. This botnet will be used for

processing a portion of an overall process with the use of

grid computing concept, in contrast to other works that

exploit botnets for DoS and DDoS [5, 13]. In order to use

this botnet, a main control and command center divides

the whole process of breaking a key into several

(thousands) of sub-processes and assign each sub-process

to an infected node. Each infected node uses a portion of

its idle computing component (i.e., processor) to perform

the assigned process. This way we can gain a granularity

which was not available in the traditional brute-force

schemes. Upon finding the actual key, the infected node

in which the actual key is found informs the control

center about its success and sends the actual key along

with informing message. Therefore, instead of having a

limited set of computers with limited granularity which

was the result of not being able to scale in centralized

brute-force schemes, we have a large set of independent-

distributed computing devices with large granularity that

exploit a portion of their idle processing powers to

perform the overall process. The rest of this paper is

organized as follows: first, we study about some related

works; Then, GCBDF is described in details and in the

evaluation section implementation of proposed schemes

is examined in different scenarios.

II. RELATED WORKS

There are several works in which brute-force attacks

are examined, but to the scope of authors’ knowledge

there has been no organized scheme for performing brute-

force attacks in a distributed manner by exploiting

botnets. However, there are several works in the context

of brute-force attacks, grid computing and botnets which

have been used in this paper.

In the context of brute-force attacks, authors in chapter

5 of [14] present some information about the definition

and applications of brute-force attacks. In [2] researchers

presented a review on brute-force attacks along with

network behavior of these attacks and a scheme to

encounter them. Authors in [4] propose a new scheme for

defending against distributed brute-force attacks and

 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets 23

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

presents some information about distributed brute-force

attacks.

In the context of botnets, researchers in [6] presented a

survey on life cycle and categories of botnets and

countermeasures against them. Authors in [5] discuss the

application of botnets in performing DDoS attacks.

Researchers in [13], discussed mobile botnets as one of

the most recent threats in connected environments such as

organizations or home networks. Authors in [15-17]

propose taxonomies on mobile botnets. In [18, 19]

researchers propose new schemes to exploit cloud

environments for botnets.

In the context of grid computing, authors in [20]

discussed some information about grid computing

including its history and existing works. Researchers in [9]

devise a workflow management scheme for grid-based

environments and in [12] authors established grid

computing applications for parallel job scheduling.

III. PROPOSED SCHEME (GCDBF)

In GCDBF, we aim for performing a brute-force attack

in a distributed manner (specifically, grid computing)

through a botnet. GCDBF can be divided into five main

phases:

1. Botnet Construction: Creating a botnet by using a

malware.

2. Main-Process Division: Dividing the whole

operation (breaking the key with brute-force) to

thousands of equal sub-operations in the control

center.

3. Chunk Assignment: Assigning each sub-operation

to an infected node in a random manner.

4. CPU Scavenging: Forcing the infected node to

perform the sub-operation with its idle computing

power.

5. Code-Breakage Alarm: Upon finding a collision,

the bot should inform C&C center.

Architecture of GCDBF and details of each phase will

be described respectively.

3.1. Architecture of GCDBF

As it will be described in the next sub-section, since

GCDBF is an integration of botnets into grid computing,

it has components from both contexts. The overall

architecture of GCDBF is illustrated in Fig. 1.

As illustrated in Fig. 1, the BotHerder (or BotMaster)

is the cryptobreaker who is in control of the bots. This

BotHerder should set up a control and command center

with required server(s) and communication infrastructure.

Number of required servers is determined by

parameters such as botnet size (number of infected nodes),

main-process (key space) and processing power of each

server. If more than one server is required, there should

exist a Main Controller which is responsible for dividing

the main task as well as dispersing it in a balanced

manner (from the perspective of processing load) to each

of the servers and from there, assigning it to

corresponding bots. Otherwise, the server itself is

responsible for dividing the main task and assigning it to

the bots.

From there, servers connect to grid of infected nodes

through Internet and bots start to perform the required

sub-process. Upon success, bots will inform their

corresponding server and therefore, BotHerder will be

aware of actual key.

3.2. Explaining GCDBF Phases

Phase 1- Botnet Construction: As the first step, a

botnet should be created. There exist many schemes to

create a botnet (see section II) but in this work we use

client-server approach to create an IRC botnet. In IRC

botnets, infected nodes access a predetermined location

(Internet relay chat networks or domains) and wait for

command from a predesigned server [6].

In our scheme, these bots will not be used to perform a

DoS attack, but to perform a portion of operations of a

brute-force attack. It is noteworthy that the size of

required botnet to feasibly perform the brute-force attack

is proportional to the probability space of the key which

is desired to be broken.

Fig.1. Architecture of GCDBF

On the other hand, we have the concept of distributed

computing and specifically grid computing that

aggregates multiple computing devices to perform a

single but large task. As mentioned in [12], both

distributed and grid computing are counted as a special

forms of parallel computing which uses several complete

computers (devices with processors, storage, power

supply and network interface) which is connected to a

network (such a s internet) to perform a single large task

by dividing it into several smaller tasks running on

several computers instead of a single large task running

24 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

on a conventional or super computer.

By comparing the concept of botnets and grid

computing, in this work these two concepts are merged

together and mapped to each other: using a

grid/distributed set of computers (bots) which are

connected through a network (internet) to perform a large

task (a brute-force attack).

The logic behind choosing botnet/grid computing to

perform a brute-force attack is to reduce the

computational time and computational cost (in terms of

high-end equipment and infrastructure) which is required

to break keys with large probability spaces. Achieving

this goal will make brute-force attack on long keys

feasible for individual cryptobreakers in terms of

operation-time and cost while it does not need high-end

infrastructure and can be performed via commonly used

hardware.

Phase two - Main-Process Division: One of the basic

features of grid computing is dividing the large task into

several smaller chunks (units of operation). Usage of this

feature in GCDBF is that the task of performing the brute

attack to break a specific key must be divided into

smaller chunks. Explaining further, the large task is to

examine every probable key in the key space in order to

find the correct key. Dividing this task means dividing

the size of the key space with number of infected nodes

with the condition that size of the key space should be

divisible by number of infected nodes. In other words, the

number of chosen infected nodes should be the closest

number to number of infected nodes that divides the size

of key space. Meaning that greatest common divisor (gcd)

of number of infected devices and size of the key space

should be calculated in the Main Controller-or the server-

(grid computing context) which placed in the command

and control center (botnet context). The algorithm for this

phase can be described as follows:

1. Calculate the size of key space (KSS) (number of

all of the probable keys).

2. Calculate the number of infected nodes (inodes).

3. Compute the .

4. Divide the KSS by

To compute the chunk size (number of keys to be

examined by each infected node.)

Phase 3 - Chunk Assignment: The command and

control center creates chunks with the size of j out of the

key space and assign each of these i chunks to an infected

node in a randomly distributed manner. Here, the C&C

doesn’t keep track of assigned chunks but the infected

node should keep record of its assigned chunks. Using of

random distribution and not storing chunks can lead to

higher execution speed and therefore lower computation

time.

Phase 4 - CPU Scavenging: CPU Scavenging or Cycle

Scavenging is a technique which is introduced in grid

computing context and uses idle processors instruction

cycles to perform the assign chunks of processing task.

CPU scavenging has multi models of implementation,

one of which is to create an opportunistic environment

that harvest idle computer for performing

computationally intensive tasks, known as enterprise

desktop grid (EDG)[8, 9, 20]. These methods often

include a job querying policy, scheduling mechanism and

etc. that will help reducing the complexity of

implementation.

At this step, the infected node has the assigned chunk

and is able to perform the given commands (i.e.

examining its assigned set of keys for finding a hash

collision, deciphering a cipher text in a, etc.) coming

from C&C.

Phase five - code-breakage alarm: Upon finding a

desired result (i.e. a hash collision) the infected node in

which the collision occurs must contact the C&C and

notify it about the collision. This contact should include

the chunk and the possible key which results in a

collision. By receiving this notification, C&C knows the

key and hence, it is able to retrieve the key. To figure axis

labels, use words rather than symbols. Do not label axes

only with units. Do not label axes with a ratio of

quantities and units. Figure labels should be legible,

about 9-point type.

Color figures will be appearing only in online

publication. All figures will be black and white graphs in

print publication.

IV. PROPOSED SCHEME (GCDBF)

In this section, GCDBF scheme is being examined in

different scenarios to prove its feasibility and

performance (with respect to relevant performance

metrics in each scenario) against centralized brute-force

attacks. A common assumption in all scenarios is that it is

assumed we already have the required botnet. Having this

assumption does not simplify the proposed work, since

the contribution of this paper is to exploit botnets for

performing a brute-force attack (instead of a DDoS attack)

and therefore explaining details on constructing a botnet

is out of this work’s scope. In the first scenario, the

performance of centralized brute-force is compared to

that of GCDBF to show how the botnet size (computation

power) affects performance in terms of computation time.

Another important parameter is the key length which its

effect on performance of centralized brute-force and

GCBDF is examined in 2nd scenario. 3rd scenario is

designed to show how different key structures affect the

performance of GCDBF scheme in comparison to

centralized brute-force with respect to computation time.

Prior to describing the scenarios, there are some

parameters which must be defined.

Average Assigned Workload (AAW): AAW in

distributed processing applications is the average portion

of total workload assigned to be solved by a specific

processor. Assigned workloads consider average

processor capability, average processor utilization and an

average online and available time. Currently, AAW is 2

to the 33 power of CPU capability for ½ hour of CPU

availability per session at less than 10% of CPU

utilization for Pentium processors which is equal to

almost 17 billion entry tries per hour [11].

 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets 25

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

Feasibility of an Attack: we defined the feasibility of

an attack with respect to these conditions:

 Computation time: the time required to break a

specific key. If the process of breaking a key

exceeds a certain deadline, it would be counted as

infeasible. The mentioned deadline should be

determined with respect to application and context.

 Computation cost: the cost of computation

equipment and communication infrastructure: In

this paper it is assumed that it is impossible for

hackers to completely acquire super computers

and are not able to use such processing capabilities.

 Key Space: total number of all of the possible

comparisons needed to decrypt an encrypted

stream of characters.

 Law of Averages: considering that it is required to

find a specific key by trying to examine every

possible key, if the key space be n, we will have:

 Best Case: first examined key is the actual key. So

the order of the effort is of .

 Worst Case: last examined key is the actual key.

So the order of the effort is of .

 Average Case: the possibility of occurring best

case or worst case is significantly low (the

probability of each one is). In fact actual key can

be found anywhere in the key space, therefore in

average case of key space through all of

the possibilities should be tried to find the actual

key and the order of the effort is as order of .

 Total Workload: all of the possible keys that must

be tried to decipher a given code which is .

Some of the calculations of this work such as dividing

the main-process task into chunks are done with the help

of Brute-Force Calculator [21, 22].

Fig.2. First Scenario

4.1. First Scenario

In this scenario, parameters are assumed as follows:

 Performance Metric: computation time (time that

is needed to process the total workload) in hours.

 AAW: is in hour which is in

an hour (assumed computation power of each

computer (infected node) in the botnet in the

proposed scheme).

 Total GCDBF’s Computation Power: since this

scenario aims to show the effect of botnet size on

performance, botnet size is gradually increased

and will be selected from the set of

, , .

 Centralized brute-force’s (CBF) computation

power: we assume that cryptobreaker utilizes

100% of his/her processor’s power, the

corresponding computation power will be

 floating point processes

(in fact he/she has more computation power

in comparison to a single infected node).

 Key: in this scenario, key randomly consists of 12

characters including integer numbers (0-9).

 Key space: (1 quadrillion combinations)

 Total workload: floating point processes.

As we can see in Fig. 2, the total workload is constant

for GCDBF and Centralized Brute-force (CBF). It is

observed that at first, GCDBF (black-colored line) has

lower performance in comparison to CBF (white dot) in

terms of computation time. Namely, with 1 bot the

performance of the GCDBF is about 10% of that of CBF.

With 5 bots, although we observe performance

improvement in GCDBF but still its computation time is

about 50% of that of CBF. Upon increasing the size of

botnet (meaning adding bots to botnet) the aggregate

computation power increases and therefore, at the point

26 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

of 10 bots, performance of GCDBF and CBF converges

in 2.9 hours of computation time for a total workload of

 floating point processes. From this point on,

GCDBF outperforms CBF in terms of computation time.

For example, with 25 bots, its performance is more than

twice of that of CBF. With 1000 bots, the key will be

broken in 0.02 hours (about 1.2 minutes). So as it is

obvious, the task which requires 2.9 hours of computation

time at 100% utilization, can be done within 7.2 seconds

at 10% idle processor time in 10000 computers. This

outperformance in GCDBF comes from the fact that

centralized systems are unable to scale. This is why we

have a line for GCDBF and a point for CBF (since its

computation power cannot change).

Another important point about size of botnets is that,

they vary from thousands to millions [5, 6], so it is not

impractical to assume that our botnet has 100000 bots or

more.

4.2. Second Scenario

In this scenario, parameters are assumed to be as

follows:

 Performance metric: computation time (time that

is needed to process the total workload) in hours.

 AAW: is in hour which is in

an hour (assumed computation power of each

computer (infected node) in the botnet in the

proposed scheme).

 Total GCDBF’s Computation Power: in this

scenario we consider the size of the botnet equal to

10000 so total computation power of GCDBF

would be floating point processes.

 CBF’s computation power: we assume that

cryptobreaker utilizes 100% of his/her processor’s

power, the corresponding computation power will

be floating point

processes (in fact he/she has 10x more

computation power in comparison to a single

infected node).

 Key: since the effect of key length on performance

metric is going to be examined in this scenario, the

key length would be gradually increased and will

be chosen from the set of {10,11,12,13,14,15,16}.

Key consists of integer numbers from 0-9.

 Key space: would be different in accordance to

key length.

 Total workload: would be different in accordance

to key length.

As we can see in Fig. 3, GCDBF deploys 10000 bots

and therefore it outperforms CBF from the beginning. For

a key with length of 10 which requires floating

point processes to break, GCDBF will find the actual key

in 0.036 seconds while CBF needs about 72 seconds. For

a key with length of 11 which requires floating

point process to break, GCDBF will do the work in 0.36

seconds while CBF needs about 17 minutes. As the key

length increases, the difference in performance between

GCDBF and CBF increases too. For example, for a key

with the length of 16 with the total workload of ,

GCDBF needs 29.1 hours (about 1.2 days) of process

with 10000 bots at 10% utilization (which is a relatively

small botnet with relatively low utilization) while CBF

requires 29103.8 hours (about 1212 days or about 3.3

years) of process at 100% utilization.

Data set for this scenario is attached below the Fig. 3.

Fig.3. Second Scenario

4.3. Third Scenario

In this scenario, parameters are assumed as follows:

 Performance metric: computation time (time that

is needed to process the total workload) in hours.

 AAW: is in hour which is in

 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets 27

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

an hour (assumed computation power of each

computer (infected node) in the botnet in the

proposed scheme).

 Total GCDBF’ s Computation Power: in this

scenario we consider the size of the botnet equal to

10000 so total computation power of GCDBF

would be floating point processes.

 CBF’s computation power: we assume that

cryptobreaker utilizes 100% of his/her processor’s

power, the corresponding computation power will

be floating point

processes (in fact he/she has 10x more

computation power in comparison to a single

infected node).

 Key: in this scenario, the key length is considered

to be 10 but the key structure varies in order to

show how it affects the performance metric. Key

structure would be as follows:

o Set 1: Randomly selected integer numbers

from 0 to 9.

o Set 2: randomly selected alphanumeric

(lowercase or uppercase English Alphabet

letters)

o Set 3: randomly selected alphanumeric (both

lowercase and uppercase English Alphabet

letters)

 Key space: would be different in accordance to

key length.

 Total workload: would be different in accordance

to key length.

As we can see in Fig. 4, for the first set of key

characters, we have the total workload of

floating point processes required to break a key of length

10, GCDBF will find the actual key in about 0.036

seconds, while CBF finds the key in 72 seconds. For the

second character set, which results in total key length of

36 (26 for upper/lower case letters plus 10 for numbers

from 0 to 9) that requires total workload of .

Considering this set, GCDBF needs hours to

break the key, while CBF requires hours to

find the actual key. As it is obvious in the Fig. 4, again

we can see the outperformance of GCDBF against CBF,

which will result in lower computation time by hundreds

of time, while it doesn’t need acquiring expensive

hardware such as supercomputers.

In this section, GCDBF is compared against CBF to

show how it outperform centralized brute-force schemes.

In addition to decreased computation time which make

GCDBF a feasible solution for many applications in

terms of required time to break the key, this scheme is

practical since in our evaluation we used statistics of Intel

Pentium processors which are commonly used since their

introduction about 14 years ago. This is an important

point since many of desktop computers has moved to the

next generations of Intel CPUs which have tens of times

more processing power in comparison to Pentium CPUs.

As a result it can be stated that practical implementations

of GCDBF over average desktop computers will have

even less better performance in terms of computation

time.

Fig.4. Third Scenario

V. CONCLUSION

In this paper, authors devise a new brute-force attack

scheme GCDBF, in which they integrate concepts of grid

computing paradigm with components of botnets in order

to reduce the computation time required for breaking a

key with the brute-force scheme. Along with the

reduction of computation time, this scheme does not need

any expensive equipment such as supercomputers and

28 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

because of that, it makes the brute-force attack on long

keys feasible for individual cryptobreakers who has

access to average-sized botnets. Several evaluation results

show that GCDBF significantly outperforms centralized

and conventional brute-force attack schemes in terms of

computation time needed to break a key. Future works on

GCDBF includes exploiting mobile botnets, devising a

scheme based on GCDBF for performing mobile brute-

force attacks and implementing GCDBF in a real world

environment.

REFERENCES

[1] Alfred J. Menezes and Paul C. Van Oorschot and Scott A

Vanstone and R. L. Rivest, “Handbook of Applied

Cryptography, chapter 5: Identification and Entity

Authentication” CRC Press, 1997.

[2] J. Vykopal, “flow-based brute-force attack detection in

large and high-speed networks”, PhD thesis, Masaryk

Universty, pp13-14, September 2013.

[3] A. Jesudoss and N. Subramaniam, “A survey on

authentication attacks and countermeasures in a

distributed environment”, IJCSE, vol. 5 no. 2, May 2014.

[4] A. Muhanad, H. Dongjun, “DBFST: Detecting Distributed

Brute-force Attack on a Single Target”, International

Journal of Scientific & Engineering Research, vol. 6,

Issue 3, pp 740-743, March 2015.

[5] N. Hoque, D. K. Bhattacharyya, J. K. Kalita, “Botnet in

DDoS Attacks: Trends and Challenges”, Communications

survey and tutorials, IEEE, vol. 17, Issue: 4 pp 10-11, July

2015.

[6] I. Ullah, N. Khan, H. A. Aboalsamh, “Survey on Botnet:

Its architecture, detection, prevention and mitigation”,

10th International conference on Networking, Sensing and

Control (ICNSC), IEEE, pp 660, April 2013.

[7] I. Foster, and C. Kesselman ”The Grid: Blueprint for a

New Computing Infrastructure”, Morgan-Kaufmann

Publication, 1998.

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid

Services for Distributed System Integration”, Computer,

IEEE, vol. 35, no. 6, pp. 37-46, August 2002.

[9] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd, “GridFlow:

Workflow Management for Grid Computing”,

Proceedings of the 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid

(CCGRID03), IEEE/ACM, pp 199-204, May 2003.

[10] SETI@Home, https://setiathome.berkeley.edu, Accessed

3 March 2017.

[11] Distributed.Net, http://www.distributed.net, Accessed 3

March 2017.

[12] C. Ernemann, V. Hamscher, U. chwiegelshohn, R.

Yahyapour, “On Advantages of Grid Computing for

Parallel Job Scheduling”, Proceedings of the 2nd

International Symposium on Cluster Computing and the

Grid (CCGRID.02), IEEE/ACM, pp 1-4 , May 2002.

[13] M. Eslahi, R. Salleh, M. Anuar, “MoBots: A New

Generation of Botnets on Mobile Devices and Networks”,

International Symposium on Computer Applications and

Industrial Electronics, IEEE, pp 263-264, December 2012.

[14] L. R. Knudsen, M. Robshaw, “The Block Cipher

Companion”, chapter 5: Brute-force attacks, Springer

Science & Business Media Publication, 2011.

[15] A. Karim, S. A. Ali Shah, R. Salleh, “Mobile Botnet

Attacks: A Thematic Taxonomy”, New Perspectives in

Information Systems and Technologies vol. 2, Springer,

pp 153-164, 2014.

[16] Z. Lu, W. Wang, C. Wang, “On the Evolution and Impact

of Mobile Botnets in Wireless Networks”, Transactions

on Mobile Computing, IEEE, vol 15, Issue: 9 pp 2-6,

October 2015.

[17] A. Malatras, E. Freyssinet, L. Beslay, “Mobile Botnets

Taxonomy and Challenges”, European Intelligence and

Security Informatics Conference, IEEE, pp 149-151,

September 2015.

[18] W. Chen, Ch. Yin, Sh. Zhou, X. Yan, “Cloud-based

Mobile Botnets Using Multiple Push Servers”, Seventh

International Symposium on Parallel Architectures,

Algorithms and Programming, IEEE, January 2015.

[19] Sh. Zhao, P. L. Lui, X. Guan, X. Ma, J. Tao, “Cloud-

Based Push-Styled Mobile Botnets: A Case Study of

Exploiting the Cloud to Device Messaging Service”,

Proceedings of the 28th Annual Computer Security

Applications Conference, ACM, pp 121-122, December

2012.

[20] A. Iosup, D. Epema, “Grid Computing Workloads”,

Internet Computing, IEEE, vol. 15, Issue: 2, pp 19-20,

April 2011.

[21] Brute-Force Calculator, www.mandylionslab.com,

Accessed 8 March 2017.

[22] Brute-forceCalculator, http://calc.opensecurityresearch.

com, Accessed 8 March 2017.

Authors’ Profiles

Mohammad Reza Hasani Ahangar is an

associate professor of computer engineering

in the school of computer engineering of

Imam Hossein University. He directs the

research laboratory of artificial intelligence.

He is mainly interested in intelligent

systems, solutions, and applications,

particularly for use in various fields of

science. He received his PhD in computer engineering from Iran

University of Science and Technology in 2011.

Mohammad Reza Esmaeili Taba was

born in Qom, Iran in 1990. He received his

Master of Science in computer engineering

with area of study of computer networks

from Amirkabir University of Technology

(Tehran Polytechnic, Tehran, Iran) in 2015.

He currently works as Research Assistant

at Innovative Computer Architectures Lab

in Amirkabir University of Technology, supervised by Dr.

Hossein Pedram. His current research interests include cognitive

radio networks, distributed computing, cellular and wireless

networks, and network security.

Arash Ghafouri is a researcher of

computer engineering in the school of

computer engineering of Imam Hossein

University. He was born in Tehran, Iran in

1990. He received his Master of Science in

computer engineering with area of study of

distributed systems from Iran University of

Science and Technology in 2014. His

current research interests include distributed and high

performance computing, virtualization technology, network

security, and data science.

 On a Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets 29

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 6, 21-29

How to cite this paper: Mohammad Reza. Hasani Ahangar, Mohammad Reza. Esmaeili Taba, Arash.Ghafouri,"On a

Novel Grid Computing-Based Distributed Brute-force Attack Scheme (GCDBF) By Exploiting Botnets", International

Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.6, pp. 21-29, 2017.DOI:

10.5815/ijcnis.2017.06.03

