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Abstract—In 2009 Craig Gentry proved that Fully 

Homomorphic Encryption can be applied and realized in 

principle. Homomorphism allowed us to perform 

arbitrary computations and calculations on encrypted 

data. With RSA being the first cryptosystem to hold 

homomorphic properties, there came other additive and 

multiplicative cryptosystems. However, fully 

Homomorphic encryption proved to be the ultimate 

cryptographic solution to ensure security of data on cloud. 

It enables processing and computing arbitrary functions 

over the encrypted data thereby reducing the probability 

of accessing the plain text. 

 

Index Terms—Homomorphism, Additive/Multiplicative 

Homomorphism, Somewhat Homomorphic encryption, 

Fully Homomorphic encryption. 

 

I. INTRODUCTION 

Homomorphic encryption ―Fig .1,‖ works on the 

concept of encrypting cipher text based on specific types 

of calculations and computations and generates an 

encrypted output which on decryption gives the result of 

calculations performed on the plaintext. [5] 

Fully homomorphic encryption is a kind of ring 

homomorphism. Ring Homomorphism preserves the ring 

structure. We know real numbers are rings. Also the set 

of all 2×2 matrices is also a ring (under two matrix 

operations - addition and multiplication). If we define a 

function, f, between these rings as follows: 
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Where   is a real number, then     is a homomorphism 

of rings, 
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The above expression shows that   preserves additive 

homomorphism. 

 

F    .     = [
     
    

] = [
  
  

]. [
  
  

] 

=                                       (2) 

 

The above expression shows that F preserves 

multiplicative homomorphism. 

 

 
Fig.1. Homomorphic Property 

Taking an Example, this explains the additive and 

multiplicative homomorphism.  

Example 1: 

Consider a set of natural numbers with addition     
operation. 

 

           

 

Any function which preserves addition 

homomorphism should follow property stated in equation 

(1)  

 

                       
 

Now using the equation (1),            can be 

written as 

 

                                          
 

Example 2:  

Consider a set of natural numbers with 

multiplication     operation. 

mailto:alisha15csp001@ncuindia.edu
mailto:mehakkhurana@ncuindia.edu
mailto:drmeenakumari@yahoo.in
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_addition
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number


 Homomorphic Cryptosystem 45 

Copyright © 2017 MECS                                                I.J. Computer Network and Information Security, 2017, 5, 44-51 

           

 

Any function which preserves multiplication 

homomorphism should have the property stated in 

equation (2) 

 

                       } 

 

Now using the equation (2),           can be written 

as 

 

                                           
 

II. HOMOMORPHIC ENCRYPTION TECHNIQUES 

There are many homomorphic encryption techniques 

which are explained below. 

A. Multiplicative Homomorphic Encryption 

1) RSA: If the RSA public key is modulus   and 

exponent g, then the encryption of a message M is 

given by[14][16] 

 

                                      (3) 

 

The homomorphic property unpadded RSA holds is: 

 

              
 
  

 
       

         
                             (4) 

 

Thus if we consider two plaintext messages M1 and M2, 

multiply them and then encrypt the result using RSA, we 

get a cipher text.  

The multiplicative property says that you can also 

encrypt each plaintext individually and then multiply the 

two corresponding cipher texts together and you can 

obtain exactly the same result.  

However, for security reasons RSA has to add padding 

bits to a plain text message before encrypting it. This 

padding of the message results is losing the 

homomorphic property. [1] Also, RSA is only Partially 

Homomorphic since the additive property does not apply. 

Thus, it can be said that RSA is not                    . 

[15] 

 

2) ELGAMAL Cryptosystem: It is defined over 

acyclic group G, this encryption scheme consists of 

following three sections, first is encryption, 

decryption and key generation. 

Key Generation 

There exists a cyclic group G of order d with generator 

g 

Alice randomly selects x such that x ϵ {1,…..,d−1} 

 

Calculate                                  (5) 

 

Public Key:           
Private Key:    

Encryption 

With Public key            Bob follows the following 

steps to encrypt plain text. 

Chooses a random                 , calculates 

 

                                         (6) 
 

Calculates a shared secret 

 

                                          (7) 

 

Converts his secret message   , into        and 

calculates 

 

                                          (8) 

 

Sends the following cipher text to Alice. 

 

                                          (9) 

 

Equation (9) becomes the cipher text to be sent to 

Alice.  

Although if one knows    he can easily find      . 

Consequently, in order to improve security a new    , is 

generated for every message. Therefore   is also called 

an ephemeral key. 

Decryption 

To decrypt cipher text pair          obtained in 

equation (9) with her private key  , 

Alice computes the shared secret      
  and calculates 

 

       
             

                     
                                              (10) 

 

Homomorphic Property 

ELGAMAL encryption scheme is a homomorphic 

scheme. This can be proved using example (3). 

Let us consider example with two encryptions 

Example 3: 

(                    
        

                    
      

 

Where       are randomly chosen from          
   and           , one can compute  

 

                            =                     

 (              
        

      ) 

 (                 
      )                (11) 

 

B. XOR Homomorphic Encryption 

3) Goldwasser–Micali Encryption Scheme: A 

probabilistic public-key encryption algorithm, the 

GM Encryption scheme has proven to be secure 

under standard cryptographic assumptions. [3] 
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It is the first semantically secure encryption scheme 

under the assumption that solving the quadratic residues 

problem is hard [4].  However, in GM encryption scheme 

cipher texts may be several times larger than the initial 

plaintext. This is because this scheme encrypts each bit 

of information and the length (size) of the resultant 

cipher text is equal to the length of the composite number 

  used in the scheme. Therefore it is not an efficient 

cryptosystem.  

It consists of following three sections: 

Key Generation 

Choose two distinct random prime numbers   and   of 

similar bit-length.  

Calculate        

Find a non-residue   such that 

 

  
       

          , 

  
       

                                 (12) 

 

                     
                   

Encryption 

To encrypt plain text   with public key       , 
Bo  first encodes   as a string of bits 

               
For every bit   , Bob generates a random value     , 

such that,              . 

Calculate  

 

     
                                 (13) 

 

Decryption 

Alice receives (              as cipher text from 

equation (13). 

For each  , if    is a quadratic residue,          else 

         
Therefore message 

 

                                      (14) 
 

Goldwasser–Micali Encryption Scheme can be 

illustrated using example (4). 

Example 4: 

Key Generation 

Let          

Where                
Thus,          

Let    , where 

 

                                          
 

Public Key:        
Private Key:        

 

Encryption  

To encrypt 3-bit message            .  

Choose                            
Compute 

 

                    
                    
                    

 

Ciphertext is            

Decryption  

To decrypt Cipher text (24, 54, 25) 

Compute 

 

                     
                     
                       
                    

 

This shows that     is quadratic residue and    and    

are quadratic non-residue and thus the resultant plaintext 

is     

Homomorphic Property 

If        are the encryptions of bits          

Then                will be an encryption of 

  ⨁   

Let us consider  

 

     
             

     
             

 

We have 

 

         
         

              
                               

   
                             (15) 

 

Analyzing equation (15),  

When        is either 0 or 1, we have 

 

               . 

 

When            ,              and 

            is a quadratic residue and thus it is an 

encryption of 0. In this case also we have  

 

               

 

C. Additive Homomorphic Encryption 

1) Paillier Encryption Scheme: Paillier Cryptosystem 

is a probabilistic asymmetric key encryption 

scheme which uses different pairs of public and 

private key to encrypt and decrypt any plaintext. 

Paillier cryptosystem depends on a random element 

  for encryption per message bit. 

Key Generation 
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Choose two large prime numbers   and   at random 

such that 

 

                      

 

Calculate 

 

     
 

Calculate 

 

                                   (16) 

 

Select generator  , such that         
 , 

 

                               

 

Calculate 

 

                           ,                
 

where             . 

This function is only used on input values u that 

actually satisfy u = 1 mod n [6].  
 

Public Key:       
Private Key:       

Encryption 

Plaintext, where        

Select random   where     
  

Compute cipher text as: 

 

                
                     (18) 

Decryption 

As implied from equation (18),  

Cipher text       
   

Compute message: 

 

                                       (19) 

 

Paillier Encryption Scheme can be illustrated using the 

following example (5). 

Example 5: 

Key Generation 

Let 

 

                    

                    
                         
                                
Choose a random,                 

               
               

 

Public Key:                         
Private Key:                         

Encryption 

Plaintext,               

r =           

Cipher text 

 

                  = 

                                               

                        

                      

Decryption  

    (         )            

                                     
                                

               
            

 

Homomorphic Property 

Paillier Cryptosystem holds the property of additive 

homomorphism. 

The product of two ciphers gives the sum of their 

corresponding plaintexts on decryption. 

 

 (                  )        

                                       (20) 

 

III. FULLY HOMOMORPHIC ENCRYPTION 

Let (P,C,K,E,D) be an encryption scheme where [2][11] 

 

P: Plaintext 

C: Ciphertext  

K: Keyspace  

E: Encryption Algorithm 

D: Decryption Algorithm. 

 

Assume that the plaintexts form a ring            
and the ciphertexts form a ring  

          the encryption algorithm   is a map from 

the ring   to  ,  i.e. , 

 

         , 

 

where       is either a secret key or a public key . 

For all   and   in   and k in  , if 

 

                                     (21) 

 

                                                   (22) 

 

then the encryption scheme is fully homomorphic. 

A. Classification of Fully Homomorphic Encryption 

Let us begin with a space            plaintext space, 

and a family   of functions from tuples of plaintexts to  , 

expressed as a Boolean circuit on its inputs, referred by  . 
[7] 

Input tuple (            ) denotes the plain text. 
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The classification of fully homomorphic encryption is 

depicted in Fig. 2. Corresponding definitions and 

explanation about each classification can be found in the 

following subheadings. 

1)   – Evaluation Policy 

Let   be a set of circuits. A   –evaluation policy for   

is a tuple of probabilistic polynomial–time algorithms 

                        such that: 

 

The key generation algorithm               , takes 

two inputs, security parameter   and an auxiliary input  , 

and outputs a key triplet             where   denotes the 

public encryption key used for encryption,   denotes the 

secret key used for decryption and   denotes the 

evaluation key used for evaluation. 

The encryption algorithm,            takes a 

plaintext   and the public encryption key   and as inputs 

and outputs a cipher text  . 

The evaluation algorithm,                    , takes a 

circuit      , the evaluation key   and a tuple of inputs 

that can be a mix of ciphertexts and previous evaluation 

results as inputs and  generates an evaluation output. 

The decryption algorithm,       , accepts the secret  

key   and either a ciphertext or an evaluation output and 

produces a plaintext    
Assuming the following convention, 

 

  denotes the ciphertext space  

  denotes the space of evaluation outputs, and  

  is the union of both X and Y. 

   contains arbitrary length tuples made up of 

elements in Z. 

 

The key spaces are denoted by       and    , 

respectively for     and  .  

The public key contains a description of the plaintext 

and ciphertext spaces.  

  is the set of permissible circuits, i.e. all the allowed 

circuits which the evaluation policy can evaluate. 

The domain and range of the algorithms are given by 

 

KeyGen:                  

Encr:           

Decr:           

Eval:                  

 

where           and   is an auxiliary space. 

Formally, 

 

      |  [            ]          ,      (23) 

 

  in equation (23) can be considered an image of 

encryption. 

And 

 

        |  [                       ]                 
            ,                          (24) 

 

  in equation (24) can be considered an image of 

evaluation. 

a) Strict Decryption 

Any –evaluation policy (                       

is said to correctly decrypt if for all      , 

 
  [                     ]     ,           (25) 

 

Where   and   are outputs of              . 
This means that we must be able to decrypt a cipher 

text to the correct plaintext, without any error. [8] 

b) Strict Evaluation 

Any –evaluation policy                         
is said to correctly evaluate all circuits in   if for all 

       where                  for every       , 

and some negligible function  , it satisfies equation (26). 

 

  [    (                     )              ]   

                                        (26) 

 

Where           are outputs of                
This means that decryption of the homomorphic 

evaluation of an allowed circuit yields the correct result. 
[7][12,Def 3.3] 

Thus, it can be said that a  - evaluation scheme is 

correct if it has the properties of both correct evaluation 

and correct decryption. 

Consequently the encryption scheme is Somewhat 

Homomorphic. 

2) Somewhat Homomorphic Encryption 

Any –evaluation policy (                       
that holds a correct and valid decryption as well as an 

evaluation is called Somewhat Homomorphic Encryption 

Scheme (SHE). 

This level of homomorphic encryption doesn‘t require 

Compactness, and as a result the size of the cipher text 

can substantially increase with each homomorphic 

operation. Also, while making the set of permissible 

circuits, C, there is no requirement to mention which 

circuits this must include.  

Secret Key Somewhat Homomorphic Encryption 

      : From some interval    [       ], choose an 

odd integer which acts as a secret key for encryption. 

          : In order to encrypt plain text bit, 

        : 
Choose an integer whose residue       has the same 

parity as the plaintext and set the cipher text as this 

integer. 

Namely, set 

 

              ;                     (27) 

 

Where   and   are chosen randomly in some other 

intervals, such that     is greater than    in absolute 

value.
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           : Given a cipher text   and the secret 

key  , output 

 

                     

   (                )        

                                                              (28) 

Example 6: 

Suppose p    ; bit to encrypt    , 

Then                       , 
where         

Now to decrypt it back to m, 

 

                      
                                             

 

Property of Fully Homomorphic Encryption 

Suppose we have two cipher texts, 

 

   
                  

 

     
 

                    
 

Then  

 

   
      (                               )  

                                                                                      (29) 

 

   
                         

   
       

 
  
     

                  
   

                      
    

    
                                                                                      (30) 
 

When 

 

                    
     

   
                   

 

Thus we have, 

 

    
                                  (31) 

 

    
                                    (32) 

 

Example 7: 

Let 

 

          
 

   
     

                  
         

 

                     
                     

Now, 

 

    
                   

= (               )        

                    
            

         

 

And 

 

    
                   =       

 
                 

                  

             
        

 

However, it has been seen that while using the fully 

homomorphic property to evaluate a Boolean function 

               where            , given     , the 

encryption of   , for              
As the number of the additions and multiplications in 

the Boolean function grow so does the size of the noise 

component   in the resultant cipher text. Consequently 

the size of the noise component is proportional to the 

number of operations. 

And hence only low-degree Boolean functions 

(circuits) can be evaluated over encrypted data.  

This is the reason this scheme is termed Somewhat 

Homomorphic.  

a) Compactness 

A Somewhat Homomorphic Scheme (SHE) is said to 

be compact if there exists a polynomial q = q(λ) , such 

that for any key-triplet         generated by 

             , any circuit        and all cipher texts 

      , the size of the output from Eval (e,C, c1,…..,  cn) 

is at most q(λ)  bits long (regardless of the number of 

inputs or C). 

According to Craig Gentry, if in addition the run time 

of the decryption circuit depends only on λ  nd not on 

any of its inputs, the scheme is said to compactly 

evaluate C. (Gentry, 2014) 

However it was observed [8] that any    – evaluation 

policy                         compactly evaluates 

all circuits in   if the scheme is compact and correct. 

This implies that the cipher text size doesn‘t grow 

much during homomorphic operations and the output 

size depends on the security parameter, λ, only. 

b) Circuit Privacy 

Any – evaluation policy                          
is said to be perfectly/statistically/computationally circuit 

private if for any key-triple         output by         , 
for all circuits C   C  and all       , such that        
            the two distributions on   

 

                                                           (    
 

And 

 

                                                       (34) 
 

both taken over the randomness of each algorithm, are 

perfectly, statistically or computationally 

indistinguishable, respectively.[8] 
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3) Levelled Homomorphic Encryption 

A  – Evaluation                                
is said to be ―levelled homomorphic‖ if its key 

generation algorithm, KeyGen, accepts an auxiliary input 

      which clearly identifies the maximum depth (size) 

of circuits that can be evaluated. Also the encryption 

should be correct, compact and the length of evaluation 

output should not depend on depth,  of the circuit. ([7], 

Def. 3.6) 

4) Fully Levelled Homomorphic Encryption 

A   – Evaluation policy                         
is said to be ―fully levelled homomorphic‖ if the set   is 

the set of all binary circuits with depth atmost    
Apparently, in Somewhat Homomorphic Encryption, 

the depth of the circuit can vary depending on a 

parameter. This means that the length of cipher text will 

increase depending on the depth of the permissible 

circuits. However, this is not the case with Levelled 

Homomorphic Encryption in which the length of the 

cipher text does not depend on the depth  , of the circuit. 

5) Fully Homomorphic Encryption  

A fully homomorphic encryption scheme is a   -

evaluation                         that is compact, 

correct and where   is the set of all circuits. ([7], Def. 3.5)[9]. 

                 is a condition in which the degree 

of the evaluation polynomial that is to be applied on 

cipher text exceeds the degree of the decryption 

polynomial. Once the scheme becomes bootstrappable it 

can be converted into a fully homomorphic encryption 

scheme by entering the encryption of the secret key bits 

inside the public key. [10]. According to Gentry, a 

somewhat encryption scheme can be converted into fully 

homomorphic encryption using boot strapping  [12] 

Given a homomorphic scheme, we can 

homomorphically compute any function. Theoretically 

we can: [13] 

 

 Encrypt the encrypted data with a new key 

 Encrypt the old key with the new one 

 Evaluate the decryption procedure 

homomorphically, thereby resulting in a cipher 

text encrypted with the second key.  

 

B sed on Gentry‘s  ppro ch, two different fully 

homomorphic schemes  re known: Gentry‘s scheme [11] 

based on ideal lattices and a scheme by van Dijk, Gentry, 

Halevi and Vaikuntanathan (DGHV) over the integers 

which appeared at Eurocrypt 2010 [9]. 

 

 

 

 

 

 

 

 

 

 

Fig.2. Classification of Fully Homomorphic Encryption 

 

IV. CONCLUSION 

This paper provides its readers with the basic idea and 

mechanism involved in the recently evolved 

homomorphic and fully homomorphic encryption 

schemes. 

Using homomorphic encryption to secure data 

prevents plain text from being exposed. Thus, 

homomorphic encryption has given a new dimension to 

cloud storage and security. There are various 

homomorphic cryptosystems available and now there is a 

need to develop Fully Homomorphic cryptosystems 

which meet all the criteria of being compact, correct and 

applicable on all functions/circuits. With the advent of 

Fully Homomorphic Cryptosystem, the data has become 

semantically secure.  
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