
I. J. Computer Network and Information Security, 2017, 4, 48-56
Published Online April 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.04.06

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

A Survey on Graph Queries Processing:

Techniques and Methods

Hamed Dinari
Research Assistant, Web and Search Engines Lab, Department of Computer Engineering Iran University of Science and

Technology (IUST) Narmak, Tehran, Iran

E-mail: dinari@comp.iust.ac.ir, dinari.hamed@yahoo.com

Abstract—Graphs are widely used to model complicated

structures and link them with each other. Some of such

structures are XML documents, social networks, and

computer networks. Information and model extraction

from graph databases is a graph mining process. Efficient

query search in graph databases, known as query

processing, is one of the heated debates in the field of

graph mining. One of the query processing techniques is

sequential search over the whole dataset and

isomorphism test on all sub-graphs in the database, which

is not an optimal technique as to response time and

storage. This problem brought in the issues of indexing

graph databases to improve query processing

performance. As the method implies, part of the database

where the answer is expected to be found there is pruned

and the number of needed isomorphism tests decreases. It

might not be easy to compare the methods and techniques

of graph query techniques as different techniques have

different objectives. For instance, similarity search

techniques reduce query time, while they cannot compete

with exact matching techniques as to accuracy and vice

versa. Input data volume might be also effective on query

time as with immense datasets, similarity search

techniques are more preferred than exact matching

techniques. The present study is a survey of graph query

processing techniques with emphasis on similarity search

and exact matching.

Index Terms—Graph Mining, data mining, graph

database Indexing, graph query processing, pattern

matching.

I. INTRODUCTION

Databases are widely used for structured and

complicated data management including stringdata,

stream data, video, images, trees, and graphs [1]. Graph

data is more complicated and general structure and it is

widely used to picture combination of proteins and

compare their structure [2], relationship networks,

medicine design [3], social networks [4-5], road networks

[6], video indexing [7], web information [8] computer

vision, pattern detection, and chemical/biological

informatics. Searching graph to extract required

information is one of the main fields of graph mining [9-

10]. In most of the cases, value and applicability of a

graph data application depends on performance of its

graph query. This is one of the key issues in graph

mining field, which by definition suppose a graph query

q and a graph database D = { } the

answer of query is the number of isomorphism graphs

in database D by the query. The preliminary graph query

techniques extracted all isomorph super-graphs by a

graph query in the database. Clearly, this technique is not

so efficient and like isomorphism test, sequential scan of

each database graphs needs great processing and storage

resources. To accelerate graph query process, therefore,

we need to index the database. As a simple type of graph

query, several techniques have been proposed for XML

databases indexing [7, 11-13]. There are, however, key

issues to deal with in graph query processing such as 1-

how to store database graphs to achieve more efficient

processing? 2- how to define similarity of graphs? 3-

How to create an efficient indexing structure to accelerate

pattern match and graph search and improve the

performance? [14] The rest of the paper is designed as

follows. The next section discusses the basic concepts of

graph mining and the readers with graph mining

background can skip it. Section three discuss available

graph query processing techniques from different aspects

such as patterns exact matching, patterns inaccurate

matching (similarity), mining and non-mining query

processing techniques and methods, data structures to

store indices, and input graphs to improve performance.

Finally, conclusion and future works are represented by

section four.

Basic Concepts: Some technical terms and definitions

about graph mining are introduced in what follows:

Graph: a graph is displayed as , where stands

for a set of heads and is a set of edges that

connect the heads.

Subgraph: suppose two graphs

 and ,

where and are the subgraphs that meet the

following conditions:

In addition, G2 is a supergraph of G1.

 A Survey on Graph Queries Processing: Techniques and Methods 49

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

Isomorph Graphs: two graphs are isomorph when there

is one-by-one correspondence between the heads and the

edges. For instance, graphs G and H are isomorph

 , when the following conditions are met:

 ∊ ∊

Single Graph Database: the data are represented as a

supergraph (e.g. Facebook, Twitter, Google +, or

telecommunication connections).

Transactional Graph Database: The data are

represented as a set of several independent graphs (e.g.

protein, amino acids, and chemical/biological informatics

databases). Fig. 1. illustrates a graph database comprised

of 3 graphs.

Support: the number of possible repetition modes of

pattern S in graph database . For instance, suppose

) stands for number of possible repetitions of

pattern in the database, and stands for the database

size, then is defined as equation (1).

 (1)

In this type of support, is equal with number

of graphs where the pattern takes place. In addition,

pattern is counted once even when it appears in a graph

for several times.

Frequent pattern: The pattern of which the support is

more or equal with a threshold defined by the operator.

Closed pattern: The pattern for which any possibly

bigger pattern has the same number of supports. In other

words, if a patters, bigger than the first pattern, exists

with the same number of support, then the second pattern

is closed.

Query Processing: suppose a database
and query . graph query processing; Graph query

process (q) refers to all s belonging to including the

query .

Figure 1. Illustrates a graph database and Figure 1.(d)

illustrates a graph query where the answer of graphs

query is .

Fig.1. Graph Database Including 3 Graphs and One Query [1]

II. RELATED WORKS

In [15], several programming languages including

GraphLog [16],G [17], and GraphDB [18], which have

developed during 25 years ago to process graph queries,

have been considered from diverse aspects such as syntax,

and applications used. Furthermore, the types of graphs

on which these languages perform such as

directed/undirected/labeled/unlabeled graphs as well as

graph representation to process the queries have been

discussed. Some of these languages first transform input

graphs and queries into collections of strings, distinct

paths, and algebraic expressions, then process them.

GOOD is another graph query language based on an

object-oriented model [19]. In this paper, methods that

are used for exact pattern matching, finding similar

queries, and ranking answers of queries are discussed.

The main idea of [20] is to improve the processing of

graph queries using parallel techniques and frameworks

such that MapReduce (Hadoop). In addition to

weaknesses and restrictions of these methods, techniques

to resolve them is pointed out. In [21] in order to process

the queries the frameworks that use multi-join for

processing is applied which employ relational databases

and don’t store graphs. as well as top-k graph pattern

problem is argued.

In [22] pattern matching problem is argued such as:(1)

50 A Survey on Graph Queries Processing: Techniques and Methods

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

pattern graphs that specify search conditions and

(bounded) connectivity, and (2) bounded simulation.

In [23] the features which is extracted from graphs, is

used to process similar queries (similarity search),

moreover some of the algorithms is considered plus

weakness and the strengths of them.

In [24] some of the methods that is used for processing

of queries is discussed such as: Exact vs. inexact

matching, Optimal vs. approximate solutions ،Structural

vs. semantic matching, as well as in terms of graph

database types that queries search on them is done such

as Single-graph vs. graph- transaction setting. In [25] tree

patterns matching techniques, efficient join-based

algorithms, and optimization techniques for graph

pattern matching is discussed comprehensively. In [26]

applications and algorithms that is used for finding graph

and tree patterns on the graph databases is mentioned,

furthermore some of the algorithms in grate details, as

well as the way that is index constructed and stored for

processing of the queries is discussed.

III. CLASSIFICATION OF GRAPH QUERY PROCESSING

A. Non-minding based indexing techniques

Rather than indexing few selected indices, the

techniques under this classification index all structures of

the database. Some of disadvantages of this method are

1- poor pruning power and 2- expensive comparisons

during filtering. Regarding the advantages, updating

capability with no expense to update the selected features

as index and rebuilding are notable. Ullmann [27]

proposed a subgraph matching algorithm based on state

space search using back tracking technique. Given that

this method is featured with testing isomorphism of

subgraphs (an NP-Complete problem), it is not effective

on supergraphs or where number of the database graphs

increases [28].

A.1 GraphGrep technique

The technique, called path-based, was proposed by

Giugno and Shasha (2002). Index structure uses counted

paths as the index features to filter the irrelevant graphs.

All the available paths to a maximum length are counted

and number of the occurrences number of each path is

stored. Thus, each row and column in the index table

represents a path and a graph respectively. In addition,

each entry of the table represents number of path

occurrence in the graph. To find the candidate graphs sets,

which include the paths in the query structure, and to

check whether the number of the paths exceeds the

threshold of query, indexed paths are used by the query

process. Afterward, each candidate graph is surveyed at

verification stage using isomorphism of the subgraph to

obtain the results. An advantage of this path is that path

indexing process is fast for the paths with limited length;

however, with increase of the graph database size, the

size of indexing paths increases exponentially while the

expense of verification increases with increase of

candidate set size. The technique is recommended for

small databases with small number of graphs [29].

A.2 GD-Index

The technique was proposed by Williams in 2007. As

the technique implies, all the subgraphs connected to and

induced from a graph are determined at first. Then, a

graph of the size of encompassing subgraphs, each

labeled with unique label is generated. However, due to

isomorphism among the graphs determined by one

complete graph, the subgraphs with the same labels

might in turn be decomposed to more subgraphs. When

all the labels are identical, a complete graph with the size

of is decomposed into subgraphs. A directed

acyclic graph (DAG) is used to model the decomposed

graphs and the links between them. DAG always has a

node that represents the whole graph and a node that is

known as null graph. Children of the node are the

graphs encompassing with a directed link between

 and in the DAG. In addition, grandchildren of the

node are all the nodes of DAG accessible from . This

technique is not recommended for large graphs. Figure 2.

pictures an example of reducing the graph size through

GD-Index method [11].

Fig.2. Parsing a Graph by GD-Index Technique [10]

A.3 GString

Jian (2997) introduced Gstring as a method to examine

the structural concepts and put more emphasis on

modeling biochemical objects with basic structures such

as line, star, and cycle structures that bear concepts and

are used as features of index.The line structure is

comprised of connected heads, the cycle structure is

 A Survey on Graph Queries Processing: Techniques and Methods 51

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

comprised of heads that form a closed loop, and finally,

star structure is comprised of a head at center that is

connected to several other heads. For a given graph ,

GString first extracts all cycle structures followed by star

structures and line structures (Figure 3) GString

transforms the graphs and queries on the graphs as a

sequence of strings and transforms the subgraph search

into a sub-string matching problem. In addition, the

strings are displayed by a prefix tree structure. A prefix

tree data structure is used to display all strings and match

the strings in an efficient way GString is comprised of

three elements including 1- type; 2-size; and 3- edited

sets.

Number of heads is given for the line and cycle and in

the case of star, capacity of the central node is known. A

disadvantage of GString is transformation of searched

queries to matching problem, which is nowhere near

efficiency especially when the size of graph database or

query increases. Additionally, GString is mainly used for

decomposition of chemical compounds into basic

structures that represent biochemical concepts. The

method is not recommended for other applications [30].

Fig.3. Graphs under GString Technique [10]

A.4 GraphREL

Sakr introduced GraphREL in 2009 for graph query

processing. The graph database, under this method, is

encoded as a head-edge relationship table (Figure 4).

Afterward, graph query is encoded as a SQL string to

work on the stored table. One of the issues of GraphREL

is the expense of joining large number of the tables for

further processing. Main GraphREL optimization

technique is based on observations that influence mid

results and performance of SQL scripts. Therefore, it

stores frequency of the nodes and the edges in simple

tables of graph database [10].

Fig.4. Encoding the Graphs by GraphREL [10]

In a graph query , statistical information is stored to

determine pruning points on the structure (nodes and

edges with lower frequency are filtered). In the case of

large graph queries, GraphREL uses a decomposition

mechanism to convert large and complicated SQLs into

mid-query strings (using temporary tables before

computing the final results). Using the statistical

information stored, the decomposition mechanism

attenuate mid-results obtained at each stage.

B. Mining-based Graph indexing techniques

Mining-based graph indexing runs a graph mining

algorithm on graph database, and indexing patterns are

implemented on these patterns after mining. Some of the

52 A Survey on Graph Queries Processing: Techniques and Methods

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

most common techniques and methods of this type are

discussed in what follows.

B.1 Gindex (Graph-based Index)

Yan (2004) introduced the first pattern mining

technique based on graph database indexing. His method

was based frequent graphs as the base indexing unit. The

key point of the proposed method was that the graph-

based index considerably improves query performance

comparing with path-based indexing. However, a

limitation of using subgraphs as indexing unit is that the

number of graphing structures is usually more than the

paths in a graph database. To solve this, GIndex method

only surveys the frequent subgraphs. Therefore, to avoid

uncontrolled increase of frequent graphs, support

threshold increases when number of the subgraphs

increases. Suppose a graph query denoted by , if it is a

frequent subgraph, then the set of the query’s answers is

reviewed with no need to check the candidate as is

indexed. When graph query of is infrequent, the

subgraph exists only in few graphs in the graph database,

which means, number of graph isomorph tests is

decreases [31] [10].

B.2 Tree+Delta (Tree-based Mining)

A method based on frequent sub-trees as indexing unit

for TreePI graph structures was introduced by Zhang

(2007). The idea behind this technique is based on two

key points: i) the data are arranged in tree structure, routs

patterns are more complicated and the trees can store

more structural information of the frequent subgraph

pattern; ii) frequent sub-trees mining process is relatively

simpler than that of the subgraphs. Thus, by mining

frequent trees on the graph database and then selecting a

set of frequent tress, TreePI is an index pattern. To

process query for the graph query and obtain a

candidate set, the frequent sub-trees of are determined

and compared with a set of index features. For

verification, isomorphism of the stored information is

tested. Considerable improvement of indexing and

searching query can be achieved as a canonical form of

each tree is computed in multinomial time frame.

Additionally, comparing with graphs, operations such as

isomorphism or normalizing are performed easier on

trees. Such operations on graphs usually are of NP-

Complete problems [10] .Many key structures in biology

and chemistry are trees (e.g. RNA).

B.3 FG-index

The process starts by mining the closed frequent

subgraphs, then, an inverse index is created on the

frequent subgraphs. The invers index includes:

1. An array called Graph Array (GA), which is used

to store the closed frequent subgraphs. So that,

GA[i] is the entry of GA and showed by .

Suppose G is a set of frequent subgraphs, then the

relevant set is displayed by when

encompasses a set of subgraphs and is the

frequent subgraphs of the set. What we have here

is a nested list so that GA[i] refers to .

2. An array called Edge Array (EA), which stores a

set of different edges of .

3. Every different edge in EA refers to an ID-entries

list and each ID-entries in turn refers to a list of

arrays known as ID-entries. Each ID-array

includes a set of IDs, and the IDs in turn are set of

graphs. For instance, if are a

set of closed frequent subgraphs and , and

are sets of the different edges of the frequent

subgraphs. Edge Array – i.e. EA[0] – can be seen

in the first row (Figure.1) so that edge in GA[2]

 mentioned in Size-2 ID-entry, occurs once

(the left side number of the entry). Moreover, the

same edge in Size-4 ID-entry occurs for three

times in a subgraph in GA[6] . The query

operation can be accomplished using this table

and the nested lists. An advantage of this method

is its pace when the input query is a closed

frequent subgraph; otherwise, the query is

performed using inverse index and subgraph

search techniques. Figure. 5. illustrates inverted

index for processing graph queries [32].

Fig.5. Inverted index [32]

This method, however, is recommended only for

applied programs with small sub-structures. In addition,

CDIndex [33] is used for the graph with limited size so

that all the subgraphs in a database are determined first

and then stored in a mixing table using canonical labeling

code technique. The obtained table is used to answer the

 A Survey on Graph Queries Processing: Techniques and Methods 53

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

queries. Moreover, C-tree [12] employs R-tree data

structure to index and answer graph queries.

C. Similarity search methods and techniques

Similar subgraph query is one of the areas of interest

[34]. These methods are featured with a query and a

database of graphs and the aim is to find subgraphs

similar to the query. Thus, these methods can employ

node mismatch and node gap (node gap is the node that

cannot be mapped to other nodes in the database) along

with structural differences of the graphs. Graph

approximated matching techniques are used for crowded

databases or when part of the data is missed. These

techniques outperform exact matching with such data.

Similarity queries can be divided into two general groups

[9-10]:

1. K-NNs query

2. Range query

K-NNs queries return data with more similarity as

answer of query, while range query returns all the graphs

that match a default range of the queried data. There is

variety of similarity measures including:

1. Edit distance

2. The longest distance of common subgraph, which

is used frequently

Edited distance between two graphs represents

minimum expense for transforming a graph. The

transformations have to do with adding or removing

heads and edges. MCS distance between two graphs G1

and G2 is defined as equation (2):

 =

 (2)

Where, , , and are number of heads of the

graphs MCS, G1, and G2 respectively.

C.1 Daylight Finger Print method

As the method implies, all the routs to a specific length

(length 7) are extracted as descriptor and a molecule is

indexed by its descriptor as a bit string [35].

C.2 Grafil (Graph Similarity Filtering) method

Yan (2005) proposed a feature-based structural

filtering algorithm, called Grafil, to find similar queries

in a graph database. Among the features of this method is

that the queries are modeled as a set of features of the

model and that it filters several graphs though comparing

similarity. Two matrix data structures – graph features

matrix and edge features matrix - are used to find similar

queries. Graph features matrix is used to compute

difference between features of a graph query and graphs

available in a dataset; so that the columns represent a

graph in the database graph and the rows represent the

indexed features. On the other hand, edges features

matrix uses multi filter decomposition strategies so that

each filter utilizes a specific set of features. The filters

are made based on one dimensional lustering algorithms

and hierarchy; while the features are grouped into set of

features based on similar selectivity. Throughout matrix

query processing, Features of the graph are used to

compute number of different features between each

members of graph database and query q and when the

differences > the graph is removed from

comparison list and the candidate answer set is

comprised by the remaining matrices [10].

C.3 G-Hash method

The method starts by extracting all features of the

nodes and edges of the graphs and then the index is built

using a hashing table. To process the queries, the method

needs extracting features of the nodes and edges and

returns k closest index records of data query as the output.

The method achieves a great reduction in the time needed

to build the index and to find query answer thanks to

hashing table [10].

C.4 Substructure index-based approximate graph

alignment (SAGA) matrix

SAGA is an approximate matching graph query

method that computes similarity between graphs with

equal distance from each other so that similar graphs are

closer to each other. Distance model includes 3 elements:

1. StructDist: refers to structural difference to match

pair-nodes in two graphs;

2. Node-Mismatches: the expense of matching two

nodes based difference;

3. Node gaps: measures expense of gap nodes based

on graph query.

SAGA index is built on fragment indices of the graphs

in a database. Each piece is a set of k nodes in the graphs

of a database and k is defined by the operator. The index

does not count all the sets with k nodes. The parameter

 , which is defined by the user is used to

avoid indexing each pair of nodes in a piece of graph

when the distance measure > . SAGA pieces

do not always answer the linked subgraphs. To have an

efficient assessment of subgraph distance, another index

called ―distance index‖ is stored between graph query

and database graph. The new index is used to go through

the pre-computed distance between each pair of nodes in

a graph. The matching process is featured with three

steps:

I. The search space is divided into smaller fragments;

then, ―fragment index‖ is probed to find database

pieces similar to query pieces.

II. Larger candidates are generated when the probing

is successful. An edge is removed when the

probing the index is successful and only and if

only two pieces of queries are zero or more nodes

are shared.

III. To generate the answer of the set, each candidate

must be tested. Gap node percentage for each

candidate is checked and the candidate matching

54 A Survey on Graph Queries Processing: Techniques and Methods

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

is neglected when the gap node percentage is

bigger than the user defined threshold ;

otherwise, Distance Index is probed to compute

subgraph-matching distance. When the distance of

two matches is equal and one is sub-match of the

other, only the bigger matching is examined [10].

C.5 A Tool for approximate Large graph matching

(TALE)

The method is known as NH-Index from the rooted

Neighborhood Index. Index volume in some methods that

use rout, tree, and subgraph to build index is increased

considerably with increase of database size. However,

TALE uses neighborhood of each node as the index

structure as it is used for very large databases and it

prunes great deal of the data graph (Most Pruning Power).

Index structure size in this method increases with the size

of database. Moreover, NH-index is a disk-based index

that enables it to handle graph database without needing

extra memory space. Each neighbor node is defined as an

induced subgraph from the same node and the neighbors

(adjacent nodes). Three features of the index used to

describe the neighbors are number of neighbors, the way

the neighbors are linked to each other, and the neighbors’

label. Moreover, TALE method is recommended for

implementing index structure based on structure of the

data such as bit array and B+-tree thanks to its high

performance [14]. Furthermore, the PIS method [36]

selects several similar graphs, based on the query, and

builds the preliminary set. APEX method [37], on the

other hand, employs index structures matching to process

graph queries. Figure 6. illustrates general classification

of the graph query processing methods and the

techniques. And Table 1, Table 2, and Table 3 list graph

query processing methods and techniques with their

strengths and weaknesses.

Fig.6. General Classification of the Graph Query Processing Methods and Techniques

Table 1. Non-Mining-based Graph Query Processing Approaches

Approaches Index Features Strength Weakness

GraphGrep
Save all paths to a specified

length
Good performance with small databases

-Failure to detect loops, chains, and
closed loops

-Increase of index volume with

increase of database size

GDIndex
Save all the connected

subgraphs

- High accuracy with small databases
- No need to rebuilding the index after transforming

the graphs

Poor performance with big

databases

GString

Save linear, star, cycle

structures That have special
meaning

Good performance in chemical databases
Do not use in areas with the

exception of chemistry

GraphREL Node and Edge Features-based
(Vertex-Edge Schema)

SQL syntax compatible and no need for writing
codes

join tables to each other is
expensive with large databases

 A Survey on Graph Queries Processing: Techniques and Methods 55

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

Table 2. Mining-based Graph Query Processing Approaches

Approaches Index Features Strength Weakness

GIndex
Save frequent

subgraphs

-Performance improvement
if query indexed and not need to candidate

verification

-Updating and rebuilding index in the case of graph

change

C-Tree

Save frequent

subtrees

- Performance improvement if query
is indexed and not need to candidate

verification

-Subtrees mining simpler than subgraphs

-Updating and rebuilding index in the case of graph

change

- Not a good pruning the state space

FG-index
Save closed frequent

subgraphs
Good performance if query is indexed

- Index construction is costly because frequent

closed subgraphs must be mined

-Updating and rebuilding index in the case of graph
change

Table 3. Strengths and Weaknesses of Graph Processing Methods

Method

Technique

Strength Weakness

Non-Mining-

based

Isomorphism-based

- High accuracy with small databases

- No need to rebuilding the index after transforming
the graphs

- Poor performance with big databases

- Isomorphism test

Path-based

- Good performance with small databases

- Failure to detect loops, chains, and closed
loops

- Increase of index volume with increase of

database size

Sql-based

- High accuracy with small databases

- SQL syntax compatible and no need for writing

codes

- join tables to each other is expensive with

large databases

Mining-
based

Tree+Graph-based

- Performance improvement

- No need to check the candidate (during indexing
query)

- Needed time to build the index

- Updating and rebuilding index in the case of
graph change

- Needed memory to store subgraphs

Similarity-
based

Node and Edge
Features-based

- poor accuracy (approximate answers) - Good performance with large databases

IV. CONCLUSION AND FUTURE WORKS

After a brief review of graphs and their applications,

some of the common terms and definitions pertinent to

graph mining were introduced. Section three brought in

some of the techniques and methods of graph mining and

section four gave a general classification of graph query

processing such as non-mining and mining methods and

techniques and many other methods known for

processing graph queries. One may conclude that

methods with better pruning performance promise higher

performance regarding needed memory space and faster

isomorphism tests. Future works may focus on using

graph nodes (min, max, total) and nodes label for pruning

state space. Moreover, the algorithm used for frequent

patterns mining on dynamic graph databases can be

employed for online query processing and to eliminate

delay to build inverse index.

REFERENCES

[1] S. Zhang, M. Hu, and J. Yang, "TreePi: A Novel Graph

Indexing Method," in IEEE 23rd International

Conference on Data Engineering, Istanbul, 2007, pp. 966-

975.

[2] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J.

Prins,and A. Tropsha, "Mining Protein Family Specific

Residue Packing Patterns from Protein Structure Graphs,"

in in Proceedings of the 8th Annual International

Conference on Research in Computational Molecular

Biology (RECOMB), 2004, pp. 308-315.

[3] C.Borgelt, and Michael, R. Berthold, "Mining Molecular

Fragments: Finding Relevant Substructures of

Molecules," in International Conference on Data Mining

(ICDM), 2002, pp. 51-58.

[4] Pizzuti, Clara. , "GA-Net: A genetic algorithm for

community detection in social networks.," Parallel

Problem Solving from Nature–PPSN, 2008; pp. 1081-

1090.

[5] Misra, Sudip, Romil Barthwal, and Mohammad S.

Obaidat, "Community detection in an integrated internet

of things and social network architecture," in Global

Communications Conference (GLOBECOM), IEE 2012;

pp. 1647-1652.

[6] H.Dinari, H.Naderi, "A Survey of Frequent Subtrees and

Subgraphs Mining Methods," International Journal of

Computer Science and Business Informatics, Jun. 2014;

vol. 14:1, pp. 39-57.

[7] B. T. Messmer, and H. Bunke, "A Decision Tree

56 A Survey on Graph Queries Processing: Techniques and Methods

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 4, 48-56

Approach to Graph and Subgraph Isomorphism

Detection," Pattern Recognition, Dec. 1999; vol. 32, no.

12, pp. 1979-1998.

[8] S. Raghavan and H. Garcia-Molina, "Representing Web

Graphs," in IEEE Inernationall Conference on Data

Engineering , 2003, pp. 405-416.

[9] Wang, Haixun. Ed. Charu C. Aggarwal. , Managing and

mining graph data, V. 40, Ed. New York, USA: Springer,

2010.

[10] S.Sakr, E.Pardede, Graph Data Management: Techniques

and Applications. United States of America: Information

Science Reference (an imprint of IGI Global), 2012.

[11] Johansson, "Graph Decomposition Using Node Labels,"

Doctoral Dissertation, Royal Institute of Technology,

2001.

[12] He, Huahai, and A.K. Singh, "Closure-tree: An index

structure for graph queries," in 22nd International

Conference on Data Engineering (ICDE), Atlanta,

Georgia, 2006; pp. 38-50.

[13] Chen, Zhiyuan, et al, "Index structures for matching XML

twigs using relational query processors," in Data &

Knowledge Engineering, 2007; pp. 283-302.

[14] Tian, Yuanyuan, and J. M. Patel, "Tale: A tool for

approximate large graph matching," in IEEE 24th

International Conference on Data Engineering (ICDE),

2008; pp. 963-972.

[15] Wood, Peter T, "Query languages for graph databases,"

ACM SIGMOD Record ,2012; vol. 41, no. 1, pp. 50-60.

[16] M. P. Consens and A. O. Mendelzon, " Expressing

structural hypertext queries in GraphLog," In ACM

Hypertext,1989; pp. 269–292.

[17] F. Cruz, A. O. Mendelzon, and P. T. Wood, "A graphical

query language supporting recursion," In SIGMOD, May

1987; pp. 323–330.

[18] R. H. G üting, " GraphDB: Modeling and querying

graphs in databases," In VLDB, 1994; pp. 297–308.

[19] M. Gyssens, J. Paradaens, and D. V. Gucht, " A graph-

oriented object database model," In PODS,1990; pp. 417–

424.

[20] Doulkeridis, Christos, and Kjetil Nørvåg, "A survey of

large-scale analytical query processing in MapReduce,"

The VLDB Journal, 2014; vol. 23, no. 3, pp. 355-380.

[21] Cheng, Jiefeng, and Jeffrey Xu Yu. , "A Survey of

Relational Approaches for Graph Pattern Matching over

Large Graphs," Techniques and Applications Graph Data

Management, 2011; pp. 112-141.

[22] Fan, Wenfei, et al. , "Graph pattern matching: from

intractable to polynomial time," " Proceedings of the

VLDB Endowment, 2010; vol. 3, no. 1-2, pp. 264-275.

[23] Yan, Xifeng, et al. , "Feature-based similarity search in

graph structures," ACM Transactions on Database

systems (TODS), 2006; vol. 31, no. 4, pp. 1418-1453.

[24] Gallagher, Brian, "Matching structure and semantics: A

survey on graph-based pattern matching," AAAI FS 6,

2006; pp. 45-53.

[25] Bhargavi, B., and K. P. Supreethi, "Graph pattern mining:

A survey of issues and approaches," International Journal

of Information Technology, 2012; pp. 401-407.

[26] Shasha, Dennis, Jason TL Wang, and Rosalba Giugno,

"Algorithmics and applications of tree and graph

searching," Proceedings of the twenty-first ACM

SIGMOD-SIGACT-SIGART symposium on Principles of

database systems.ACM, 2002.

[27] J. R. Ullmann, "An algorithm for subgraph isomorphism,"

ACM, 1976; pp. 31-42.

[28] M. R. Garey and D. S. Johnson, "Computers and

Intractability: A Guide to the Theory of NP-

Completeness.," W. H. Freeman & Co., 1979.

[29] Giugno, Rosalba, and D.Shasha, "Graphgrep: A fast and

universal method for querying graphs," in IEEE, 16th

International Conference on Pattern Recognition, 2002;

pp. 112-115.

[30] Jiang, Haoliang, et al, "Gstring: A novel approach for

efficient search in graph databases," in 23rd International

Conference on Data Engineering(ICDE) IEEE, 2007; pp.

566-575.

[31] Yan, Xifeng, S.Philip Yu, and J.Han. , "Graph indexing: a

frequent structure-based approach," in ACM SIGMOD

international conference on Management of data, 2004;

pp. 335-346.

[32] Cheng, James, et al., "Fg-index: towards verification-free

query processing on graph databases," in ACM -

international conference on Management of

data(SIGMOD), 2007; pp. 857-872.

[33] Williams, W.David , J.Huan, and W.Wang, "Graph

database indexing using structured graph decomposition,"

in 23rd International Conference on Data

Engineering(ICDE) IEEE, 2007; pp. 976-985.

[34] X. Yan, P. S. Yu, and J. Han, "Substructure similarity

search in graph databases," in international conference on

Management of data. ACM, 2005; pp. 766-777.

[35] James, C. A., D. Weininger, and J. Delany , "Daylight

Theory Manual. Daylight Chemical Information

Systems," 2003.

[36] Yan, Xifeng, et al, "Searching substructures with

superimposed distance," in 22nd International Conference

on Data Engineering (ICDE). IEEE, 2006; pp. 88-88.

[37] Chung, Chin-Wan, Jun-Ki Min, and K. Shim , "APEX: An

adaptive path index for XML data," in SIGMOD

international conference on Management of data, 2002;

pp. 121-132.

Authors’ Profiles

Hamed Dinari received his B.SC. Degree in

Computer Engineering (Software) from

University of Ilam, Ilam, IRAN, M.SC. in

Computer Engineering (Software) from Iran

University of Science and Technology

(IUST), Tehran, IRAN, in 2012, 2014

respectively. His research interests are about

Database Systems, Data Mining, Graph Mining, and indexing.

How to cite this paper: Hamed Dinari,"A Survey on Graph Queries Processing: Techniques and Methods",

International Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.4, pp. 48-56, 2017.DOI:

10.5815/ijcnis.2017.04.06

