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Abstract—Intrusion detection systems (IDS) are gaining 

attention as network technologies are vastly growing. 

Most of the research in this field focuses on improving 

the performance of these systems through various feature 

selection techniques along with using ensembles of 

classifiers. An orthogonal problem is to estimate the 

proper sample sizes to train those classifiers. While this 

problem has been considered in other disciplines, mainly 

medical and biological, to study the relation between the 

sample size and the classifiers accuracy, it has not 

received a similar attention in the context of intrusion 

detection as far as we know.  

In this paper we focus on systems based on Naïve 

Bayes classifiers and investigate the effect of the training 

sample size on the classification performance for the 

imbalanced NSL-KDD intrusion dataset. In order to 

estimate the appropriate sample size required to achieve a 

required classification performance, we constructed the 

learning curve of the classifier for individual classes in 

the dataset. For this construction we performed nonlinear 

least squares curve fitting using two different power law 

models. Results showed that while the shifted power law 

outperforms the power law model in terms of fitting 

performance, it exhibited a poor prediction performance. 

The power law, on the other hand, showed a significantly 

better prediction performance for larger sample sizes. 

 
Index Terms—Intrusion detection, Nonlinear regression, 

Naive Bayes, Learning curve, Power law. 

 

I.  INTRODUCTION 

In machine learning, the process of collecting training 

samples can be very expensive and scarce especially in 

clinical studies [1]. Therefore, the need to predict the size 

of a training sample to achieve a target classification 

performance has become crucial. This caused the need to 

study how the learning algorithm or a classifier behaves 

with respect to various sample sizes. One of the most 

common approaches to study the behavior of machine 

learning algorithms for a given dataset is to model the 

classification performance as a function of the training 

sample sizes. This function is called the learning curve of 

the algorithm [2]. This curve can be used to model the 

classifiers accuracy of identifying the correct class of an 

input record, or the error rate of mapping a record to an 

incorrect class, both describing the performance of the 

classifier in identifying the correct class of a given input. 

It is important to remark that the performance of a 

classifier depends on the real class of a given record. In 

particular, records that belong to majority classes, i.e. 

classes that include relatively large number of instances 

in the dataset, may be easily classified while records that 

belong to minority classes are hardly classified correctly 

since few examples of these latter classes are introduced 

in the training set. Therefore in our study we consider 

multiple learning curves for the classifier, one for each 

class in addition to an overall curve that describes the 

average performance of the classifier. 

The behavior of an IDS depends on the dataset as well 

as the type of the underlying classifier. However all IDSs 

share the property that the classification performance is 

improved as more training examples are introduced, i.e. 

as larger training samples are used. Of course this 

improvement is reflected by the learning curve which 

therefore can be used for forecasting the performance at 

larger sample sizes. From a different perspective, the 

resulting learning curve can be used to determine the size 

of the training sample required to reach a predefined 

accuracy [3]. 

The construction of the learning curve is based on 

finding a mathematical model/formula that best fits the 

set of points, which describe the classifier performance at 

various sizes for the training sample. This process is 

known as curve fitting [4]. Once a good model is found, it 

can be used to predict the performance at larger sample 

sizes by extrapolation [5]. 

In this paper, we adopted an experimental approach to 

investigate the relation between the classifier 

performance and the size of the training sample. More 

precisely we focus on the simple probabilistic Naïve 

Bayes classifier and construct its learning curves. For this 

purpose we use NLS-KDD intrusion dataset and vary the 
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training size from 0% to 50% of the total size of the 

original dataset while the rest of the dataset is used for 

testing. We use two power law models, namely the 

simple 2-parameter power law and the 3-parameters 

shifted power law to construct the learning curves of the 

classifier. We construct a learning curve for every class in 

the dataset and describe the quality of the resulting curves 

in terms of two measures: the fitting performance and the 

prediction performance. The former measure describes 

the goodness of the fit while the latter describes the 

quality of the curve in predicting the classifier accuracy at 

larger sample sizes. 

We conduct our experiments and evaluation using 

JAVA programming language along with the library 

classes provided by WEKA machine learning tool. 

The rest of the paper is organized as follows: Section II 

presents related work on sample size determination 

techniques. Section III presents some preliminaries on 

Naïve Bayes classifier, learning curves, and techniques of 

curve fitting. Section IV describes the used intrusion 

dataset. Section V details the process of evaluating the 

classifier performance, while Section VI describes the 

construction of the learning curves. In Sections VII and 

VIII we evaluate the quality of these curves with respect 

to fitting performance and predictive performance 

respectively. Finally in Section IX, we conclude our 

results and describe possible directions for future work. 

 

II.  RELATED WORK 

Improving the performance of intrusion detection 

systems is a widely studied topic by researchers. Several 

methods for improving these systems have been 

introduced using various approaches [6], [7], [8]. 

One common approach is using more than one 

classifier for the training phase, i.e., an ensemble of 

classifiers. Using ensembles of classifiers proved to be an 

efficient way for improving IDS. For example, the 

authors of [9] used a new hybrid radial basis (RB) and 

support vector machines (SVM), while the authors of [10] 

used SVM with genetic algorithms (GA). 

Another research approach focuses on the 

preprocessing phase prior to classification. This phase 

involve reducing the number of features either by feature 

reduction [11], [12], [13], [14], [15], where the number of 

features is reduced by selecting a set of features from the 

original feature set, or through feature extraction [16], 

[17], which produces a new set of features by 

transforming the original feature space to a smaller 

feature space, so as to reduce the dimension. 

Another way for increasing the efficiency of 

classification involves using the method of discretization 

[18], which converts numerical features into nominal 

ones. This process greatly improves the overall 

classification performance, in addition to saving storage 

space since the discretized data requires less space. 

We remark that while the above approaches aim at 

optimizing the performance of the classifiers given a 

fixed training set, an orthogonal direction to improve the 

classification performance is to use larger samples for 

training. The larger training sample is used, the better 

classification performance is achieved. This raises many 

research questions about the relation between the training 

sample size and the performance. Several researches 

proved the presence of a positive relationship between the 

training sample size and the classification accuracy [19], 

[20]. Going in depth into this problem, different methods 

are used by researchers for the process of sample size 

determination (SSD). Authors of [21] used the SSD in 

order to achieve a sufficient statistical power. The 

statistical power of a test is defined by Cohen [22] as the 

probability that the test will lead to the rejection of the 

null hypothesis which is defined as the hypothesis that the 

phenomenon in question is, in fact, absent. 

Other approaches predict the sample size needed to 

reach a specific classifier performance [23], [24], [25]. 

Researchers in [26] proposed an algorithm that calculates 

the minimum sample size required for the evaluation of 

fingerprint based systems. For the biomedical field, 

sample size calculation is highly needed. Authors in [27] 

tried to calculate the necessary sample sizes to test a good 

classifier and demonstrate how one classifier outperforms 

another. 

In this paper, we address the problem of selecting the 

sample size to train an intrusion detection system (IDS). 

Our approach is based on constructing the learning curve 

of the classifier using two power law models. We 

compare between the qualities of the two models in terms 

of fitting and predicting performances. 

 

III.  PRELIMINARIES 

A.  Naïve Bayes Classifiers 

A Naive Bayes classifier is a simple classifier that has 

a probabilistic basis given by the Bayes theorem as 

follows. For a given input record having a set of features 

A={a1,…,am}, let P(Ci|A) be the probability that this 

record belongs to Class Ci given that it has the features A. 

Then the Bayes theorem allows evaluating this 

probability using other probabilities that are easily 

evaluated incrementally throughout the learning process 

as follows [28]. 

 

)()()|()|( APCPCAPACP iii  .             (1) 

 

In the above equation P(Ci) is the marginal probability 

that the input record belongs to Ci, and is easily evaluated 

in the training process by measuring the proportion of 

class Ci in the training set. P(A|Ci) is the joint probability 

of the features A given that the input record belongs to the 

class Ci. To evaluate this probability it is assumed that the 

elementary features of A are independent [29] making 

P(A|Ci) = ∏k P(ak|Ci). Note here that the probabilities 

P(ak|Ci) are again easily evaluated through the training 

process by measuring the proportion of records having ak 

in the records belonging to Ci in the training sample. 

The Naive Bayes classifier operates as follows. Given 

a record having features A, the classifier uses (1) to 
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evaluates the posterior probability P(Ci|A) for every class 

Ci, and then reports the most likely class. Note that P(A) 

is constant for all classes and therefore it is easily 

evaluated as the normalization constant that satisfies  

 

∑i P(Ci|A) = 1. 

 

We finally remark that the above independence 

assumption is the reason why the classifier is called 

‘naive’. 

B.  Classifier Performance and Learning Curve 

The performance of a classifier with respect to a given 

class C is typically measured by its accuracy to recognize 

the records of class C correctly. In this paper we quantify 

this accuracy by the sophisticated F-measure which takes 

into account the precision and recall of the classifier. The 

precision of the classifier with respect to C quantifies 

how accurate the classifier is when it reports C. Its recall 

quantifies the completeness of C reports, i.e. the number 

of correctly reported C records relative to the number of 

all C records in the testing set. In terms of the numbers of 

true positives TP, false positives FP, and false negatives 

FN, the precision and recall of the classifier are given by 

the following equations. 

 

 
FPTP

TP
Precision


 .                   (2) 

 

 
FNTP

TP
Recall


 .                       (3) 

 

The F-measure of the classifier is a combination of the 

above two aspects of the classifier accuracy, and is 

defined as 

 

 2
RecallPrecision

RecallPrecision
F-measure




 .           (4) 

 

Note that both the precision and recall vary from 0 to 1, 

and therefore it is easy to see that the F-measure has also 

the same range. Larger values of the F-measure indicate 

better quality of classification. Extremely, the classifier is 

‘perfect’ when its F-measure is 1, in which case both its 

precision and recall are also 1. 

A learning curve models the relationship between the 

sample size and the classifier accuracy. When this 

accuracy is measured by the F-measure as described 

above, the learning curve can be approximated by the 

power-law [3] which is given by the following equation. 

 

 )Acc( xax  ,                       (5) 

 

where x is the sample size, a is a nonzero positive number 

representing the learning rate, and α is also a nonzero 

positive number representing the growth speed of the 

curve. The values for these parameters differ according to 

the dataset and the classifier used. 

Finally, for completeness, we remark that the 

performance of a classifier can be alternatively measured 

in terms of the expected error rate instead of its accuracy. 

In this case it was shown by [30], [31], [32] that the 

learning curve can be approximated by the inverse 

power-laws e(x) = a x-α. 

C.  Curve Fitting 

Curve fitting techniques are generally used to construct 

a curve (or a function) that fits, i.e. approximates, a set of 

measures. In our application we use curve fitting to 

construct the learning curve of the classifier using a set of 

performance measures at various sizes of the training 

sample. In order to perform the curve fitting, a model that 

specifies the shape of this curve must be chosen. In the 

following we describe two types of fitting, namely ‘linear 

regression’ and ‘non-linear regression’. 

D.  Linear Regression 

Linear regression simply finds a line that best predicts 

the value of a variable y from the value of another 

variable x. If the relationship between x and y can be 

graphed as a straight line, then linear regression is the 

best choice for our data analysis [33]. 

E.  Nonlinear Regression 

When the data points (xi,yi) do not form a line, 

nonlinear regression is an appropriate choice. A non-

linear regression model is a parameterized function (i.e. a 

curve) fβ that assigns to every xi a predicted value fβ(xi) 

where β is a vector of parameters controlling the behavior 

of the function. The values of fβ(xi) are required to be as 

close as possible to the real data observations yi. This is 

why the goodness of the regression model is measured by 

the Sum of Squared Errors (SSE) given by the following 

equation. 

 

  
i

ii xfySSE
2

)(
.                      (6) 

 

Given a parameterized function fβ, the best-fit curve is 

defined by the setting of parameters β that minimizes the 

above SSE of the data points. This curve is obtained by a 

procedure known as the least-squares method (c.f. [34]). 

This procedure finds the required optimal values of the 

parameters β of the non-linear regression function fβ in an 

iterative fashion. It starts with a set of initial values for 

each parameter, and then adjusts these parameters 

iteratively to improve the fit (i.e. to reduce the SSE). The 

initial values for the parameters need not be so accurate, 

we just need estimates for them. This can be done be 

examining the model carefully and understanding the 

meaning of every parameter in the function fβ . 

 

IV.  INTRUSION DATASET 

Our dataset is the NSL-KDD dataset [35], which is 

suggested to solve some of the problems in the original 

KDD CUP 99 dataset [36]. The records of this dataset 

have 41 features and are classified into 5 main classes. 

One of these classes includes the records that reflect the 
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normal traffic and the rest of the classes correspond to 

different types of attacks. These attacks fall into the 

following four main categories. 

 

 Denial of Service (DoS): Attacks of this type aim 

to suspending services of a network resource 

making it unavailable to its intended users by 

overloading the server with too many requests to 

be handled. 

 Probe attacks: In these attacks the hacker scans 

the network aiming to exploiting a known 

vulnerability. 

 Remote-to-Local (R2L) attacks: Here an attacker 

tries to gain local access to unauthorized 

information through sending packets to the victim 

machine. 

 User-to-Root (U2R) attacks: Here an attacker 

gains root access to the system using his normal 

user account to exploit vulnerabilities. 

 

In our experiments we extracted 62,984 records from 

the NSL-KDD dataset, where 53% of the records are 

normal, and the remaining 47% are distributed over the 

four attack types (DoS, PROBE, R2L, U2R). The 

distribution of the attack classes in the extracted sample is 

shown in Figure 1. Through the rest of this paper we will 

always refer to the extracted sample as the dataset. 

 

 

Fig.1. Class Distribution for the NSL-KDD Intrusion Dataset 

It is easy to observe from Figure 1 that our NSL-KDD 

dataset suffers from severe imbalance. The R2L and U2R 

classes are under-represented, while Normal, DoS and 

Probe classes represent the majority of the instances. 

Unbalanced or skewed datasets is one of the major 

problems that face many researchers when using learning 

curves to predict the minor classes. In terms of detection 

accuracy, the detection rate for the minor classes is very 

poor or sometimes none [11]. 

This problem is very obvious when plotting the 

learning curve, where the accuracies for the minor class 

are very low or even zero at some given sample sizes. 

The training points are found to be very scattered, thereby 

making the fitting process hard or sometimes not possible. 

 

V.  PERFORMANCE OF NAÏVE BAYES CLASSIFIERS 

In this section we describe the performance of Naïve 

Bayes classifiers with respect to individual classes in the 

NSL-KDD dataset. More precisely we describe for each 

class C in our dataset the accuracy of the classifier to 

correctly classify a record that belongs to the class C. Of 

course this accuracy depends on the size of training 

sample, i.e. the number of training examples, and also the 

popularity of the questioned class in these examples. We 

use the F-measure (described in Section III-B) to measure 

the accuracy of the classifier relative to every class. 

To investigate the impact of the sample size on the 

performance of the classifier with respect to each class, 

we vary the sample size ε from 1% to 50% of the total 

dataset size and for every value of ε we perform the 

following procedure. 

 

1) For i = 1,2,…, 10 do steps 2 to 4. 

2) Draw a random sample Si of size ε records from 

the dataset. 

3) Train a Naive Bayes classifier Bi on Si. 

4) Using the remaining records in the dataset for 

testing, evaluate the accuracy of Bi with respect to 

each class. 

5) For each class C evaluate the average accuracy of 

the 10 classifiers B1,…,B10 with respect to the 

class C and plot this average accuracy against the 

sample size ε. 

 

The above experiment yields five plots where each one 

corresponds to one class C and describes the relation 

between the training sample size and the average 

accuracy (measured by the f-measure) of correctly 

detecting records of C. Figure 2 displays these plots 

together with an additional plot which displays the 

weighted average accuracy for all the classes. This 

procedure is implemented using the JAVA language 

along with WEKA library [37] as a data mining tool. 

It is important to observe from Figure 2 that the 

classification performance for minority classes, i.e. R2L 

and U2R is very poor compared to other classes. This is 

because the minority class is relatively unlikely to appear 

in the training sample and therefore the classifier is 

unable to learn well to detect such a class. Note also that 

for all classes the small training samples exhibit bad and 

unstable performance due to the lack of enough examples 

that allow the classifier to detect the classes reliably. 

 

VI.  CONSTRUCTING THE LEARNING CURVE 

In the previous section, we described our experiments 

to evaluate the classifier performance given random 

training samples of variable sizes. In the following we 

aim to find an approximate relation between the training 

sample size and the classifier performance. More 

precisely we use curve fitting techniques to construct the 

learning curve of the classifiers, which establishes the 

required relation. 
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For the fitting process, we used two versions for the 

power law model. The first model is the two-parameter 

power law described in (5) while the second one is the 

shifted power law having 3 parameters. These two 

models are summarized in Table 1. 

 

Table 1. Power-law Regression Models 

Model Name Formula 

Power Law a xα 

Shifted Power Law a (x − b)α 

 

 

 

 

Fig.2. Performance of Naive-Bayes Classifier for Individual NSL-KDD Classes 

Based on the performance data that we demonstrated in 

Figure 2 we construct the learning curve for every class 

using the two non-linear regression models in Table 1. 

More precisely, we fitted 50% of the full-length dataset 

with respect to every class in our intrusion dataset. Figure 

3 demonstrates the results of the curve fitting applied to 

every class in the dataset.  

A first observation from Figure 3 is that the learning 

curve varies from one class to another. More precisely, 

the naïve Bayes classifier that learns from a given 

training sample has variant accuracies to recognize 

various classes. For example, using 10% of the dataset for 

training the classifier, it can recognize the Normal class 

with accuracy 0.962, while it recognizes the less common 

R2L class only with accuracy 0.5. Of course these 

variations are due to the different proportions of these 

classes in the training set. Majority classes, e.g. Normal 

and DoS, are learnt at a higher rate compared to minority 

classes, e.g. R2L and U2R. However, all curves share a 

monotonicity property that the accuracy improves when 

larger training samples are used.  

 



6 Estimating the Sample Size for Training Intrusion Detection Systems  

Copyright © 2017 MECS                                                I.J. Computer Network and Information Security, 2017, 12, 1-10 

 

 

 

Fig.3. Learning Curves for the Classes of the NSL-KDD Dataset 

It can be also seen from Figure 3 that the growth of the 

learning curve (with the training sample size) varies from 

one class to another. In particular, the accuracy for the 

classes Normal grows from 0.962 at sample size 10% to 

0.966 at 50%, i.e. gaining only improvement of 0.004. 

However the accuracy for the minority class R2L grows 

from 0.5 at sample size 10% to 0.65 at 50%, i.e. gaining a 

larger improvement of 0.15. This is again due to the 

majority of the Normal class compared to R2L. In fact 

10% of the training set is sufficient for the classifier to 

learn the majority class well such that more introduced 

examples do not much improve such learning. This 

situation is clearly different for the minority class R2L, 

where enlarging the training sample significantly 

improves the learning quality.  

When the target class is a rare or minor, the task of 

obtaining a good accuracy estimate needs an excessive 

sample sizes. This is clear in the U2R class, where the 

number of records is very low in the given training 

samples. This causes the points of the data points to be 

very scattered (as seen in Figure 2), and therefore 

significantly lower the quality of the learning curve. In 

order to tackle the problem of the low detection rates for 

both R2L and U2R classes, we applied both sampling 

methods (Over-sampling and Under-sampling). However, 

results showed no improvement in the detection accuracy 

for both those classes. 

Researchers in [38] showed that the problem of 

detecting U2R and R2L cannot be simply solved by re-

sampling techniques since the problem is not directly 
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related to the class imbalance. The unsatisfactory 

detection results were explained using a matrix plot, 

shown in Figure 4, which showed a clear overlap between 

these two attack classes. As a consequence of this 

overlapping, the decision boundaries of these two rare 

classes could not be generalized clearly by the learning 

algorithm. This shows that sometimes it is not worth the 

effort to collect more samples for a given class. 

 

 

Fig.4. Class overlap problem for U2R and R2L [38] 

Finally we remark that the weighted average learning 

curve is clearly impacted by the major classes and masks 

the poor quality of the classifier with respect to minority 

classes. This proves the importance for studying the 

learning curve for individual classes, instead of studying 

only the average learning curve. 

 

VII.  FITTING PERFORMANCE (GOODNESS OF FIT) 

In the following we compare between the goodness of 

the two non-linear regression models listed in Table 1. In 

this comparison we use the following two measures. 

 

 Residuals Standard Error (RSE) [39]: This error 

is evaluated as 

 

DF

SSE
RSE  ,                               (7) 

 

where SSE is the Sum of Squared Errors given by (6) 

and DF is the degree of freedom, defined as the 

number of dimensions in which a random vector 

might vary [40]. For nonlinear regression models, 

DF can be defined as a measure of optimism of the 

residual sum of squares (RSS) [41]. It is calculated 

as the number of data points minus the number of 

parameters for our model [34]. 

 R-squared [42]: It is a statistical measure known 

also as the coefficient of determination. Similar to 

SSE and RSE, it measures how close the data is to 

the fitting regression curve. Precisely, it is defined 

as 

 

SST

SSE
R 12 ,                           (8) 

 

where SSE is the Sum of Squared Errors (6) and 

SST is the Total Sum of Squares which is the sum 

of squared deviations of the data measures yi from 

their mean ȳ, i.e. 

 

 
i

i yySST 2)( .                       (9) 

 

Note that R2 quantifies the goodness of fitting the data 

relative to SST which quantifies the variability of the data 

itself from its mean. Note also that in contrast to RSE, the 

value of R2 increases when the regression is improved. 

For the sake of comparison between the qualities of the 

two regression models in Table 1, we evaluated the RSE 

and R2 for all learning curves that we constructed in 

Section VI for individual classes in the intrusion dataset. 

The resulting values are shown in Tables 2 and 3. 

It is clear from these tables that the shifted (3-

parameters) power law outperforms the simple power law 

model in terms of both RSE and R-squared. This is 

explained by the fact that the shifted power-law has more 

parameters than the power-law making the former more 

flexible and hence yielding a curve that is closer to our 

data points. We remark that in the case of the U2R class 

the regression based on the shifted power law failed to 

converge due to the very low number of records of this 

class in all training samples, making the estimation of the 

three parameters of the model unstable. 

 

VIII.  PREDECTION PERFORMANCE 

The technique of predicting the performance of a 

model at data beyond the available observations is known 

as extrapolation. Applying this technique to our problem 

allows us to use the learning curve that is constructed on 

a range of training sample sizes to predict the quality of 

the classifier when trained on larger samples. This curve 

can be also used to estimate the appropriate size of the 

training sample in order to reach some desired criteria, 

e.g. obtaining a certain accuracy of detecting a given 

attack class, or reaching a minimum value for the overall 

accuracy. 

Table 2. The Fitting Performance of Power-Law Models in Terms of RSE 

 Residual Standard Error 

Normal                      DoS                     Probe                    R2L                   U2R             Weighted 

                                                                                                                                                 Average 

Power Law 0.001053 0.001349 0.00320 0.03561 0.0163 0.0007 

Shifted 

Power Law 
0.000941 0.000787 0.00299 0.01581 ---- 0.0007 
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Table 3. The Fitting Performance of Power-Law Models In Terms of R2 

 

R2 

Normal    DoS      Probe     R2L       U2R         Weighted 

                                                                           Average 

Power 

Law 
0.82 0.94 0.97 0.79 0.67 0.98 

Shifted 

Power 

Law 

0.86 0.98 0.98 0.95 ---- 0.98 

 

It should be noted that the fitting performance for a 

model might be deceptive. In other words a model might 

exhibit a high fitting performance but however a very 

poor predictive performance. This is known as the 

problem of ‘overfitting’. More precisely the model is said 

to be ‘overfitting’ when it significantly fits the training 

data but yields weak estimates when it is tested on new 

observations [4].  

In order to evaluate the prediction performance of a 

fitting model, we use subsets of only a small portion, e.g. 

10% of the dataset to construct a learning curve, based on 

the given model, and then examine the ability of the 

resulting curve to extrapolate larger samples, i.e. its 

ability to fit the actual accuracy of the classifier when it is 

trained on larger samples. More precisely we measure the 

absolute difference between the predicted accuracy at a 

large sample size using the curve and the real accuracy 

obtained by training the classifier on a sample of the 

same large size. The average difference (considering all 

large sample sizes) is called the prediction error for the 

model. The model that yields the less prediction error is 

the better. 

In our experiments we restricted the construction of the 

learning curves to variant small portions of the dataset, 

specifically 10%, 20%, 50%, and in each case we 

evaluated the prediction error of the model for every class 

in the dataset using the aforementioned procedure. Table 

4 demonstrates the results of this evaluation for the 

power-law model. We also applied the same evaluation 

method to the more flexible shifted power-law model for 

which the prediction errors are demonstrated in Table 5. 

Table 4. The Prediction Errors of the Power-law Model 

 

Power Law 

Normal       DoS          Probe        R2L        U2R      Weighted 

                                                                                   Average 

10% 0.007 0.005 0.004 1.44 0.28 0.0006 

20% 0.003 0.0006 0.003 0.19 0.06 0.0005 

50% 0.001 0.0008 0.003 0.05 0.03 0.0005 

Table 5. The Prediction Error of Shifted Power-law Model 

 

Shifted Power Law 

Normal     DoS     Probe     R2L      U2R        Weighted 

                                                                         Average 

10% 0.001 0.004 0.019 --- 0.03 0.0017 

20% 0.008 0.001 0.005 --- 0.03 0.0009 

50% 0.003 0.001 0.005 --- 0.01 0.0005 

 

It can be seen from the above tables that the prediction 

power is generally improved as more samples are used 

for the fitting process. For instance the prediction error of 

the power-law with respect to the Normal class is 0.007 

when only 10% of the dataset is used for constructing the 

learning curve, and this error drops to 0.001 when 50% of 

the dataset is used for that construction.  

It is also important to observe that the power law 

model tends to outperform the shifted power law in terms 

of the prediction error. This is clear in the majority 

classes Normal, DoS, and Probe. However this 

observation does not hold for minority class U2R due to 

the instability of their learning. 

 

IX.  CONCLUSIONS 

In this paper, we investigated the relation between the 

size of training set and the performance of an intrusion 

detection system working on NSL-KDD dataset. Our 

basic tool for this purpose is non-linear regression models. 

A model should be good in predicting performance as 

well as fitting performance. We compared two power law 

models and tested their fitting performance as well as 

their predicting performance. The curve fitting procedure 

was evaluated on each class in our intrusion dataset. It 

was shown that the number of instances for a given class 

greatly affects the fitting process. As expected, due to its 

flexibility, the three parameters shifted power law yields 

a better fit than its power law counterpart. However, it 

failed to fit the U2R class due to the very small number 

of records in this class.  

We also investigated using the learning curve to 

predict the classifier performance when it is trained on 

large samples. For this purpose, we used only a small 

training portion of the dataset to construct a part-length 

learning curve by applying curve fitting using one of the 

two power-law models. The part-length curve is then 

extrapolated to a full-length curve and compared to real 

performance data at larger samples. This experiment was 

performed for random data portions of sizes 10%, 20%, 

50% of the original dataset, and using the two power-law 

models. In every case, the average prediction error is 

evaluated for each class by averaging the absolute 

differences between the predicted accuracies on one hand, 

and the observed accuracy when the classifier is really 

trained on the large sizes on the other hand. These 

experiments were conducted using JAVA language along 

with the WEKA machine learning tool. We find that the 

prediction power generally increases as more samples are 

used for the fitting process. Our experiments reveal also 

that the power law model with fewer parameters 

outperforms the shifted power law in terms of predicting 

the classifier performance at larger sample sizes. 

Our future work includes considering other fitting 

models and more intrusion datasets. Also, we plan to 

study more classifiers other than the probabilistic Naive 

Bayes. 
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