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Abstract—The advancement of modern day computing 

has led to an increase of threats and intrusions. As a result, 

advanced security measurements and threat analysis 

models are necessary to detect these threats and identify 

protective measures needed to secure a system. Attack 

graphs and attack trees are the most popular form of 

attack modeling today. While both of these approaches 

represent the possible attack steps followed by an attacker, 

attack trees are architecturally more rigorous than attack 

graphs and provide more insights regarding attack 

scenarios. The goal of this research is to identify the 

possible direction to construct attack trees from attack 

graphs analyzing a large volume of data, alerts or logs 

generated through different intrusion detection systems or 

network configurations. This literature summarizes the 

different approaches through an extensive survey of the 

relevant papers and identifies the current challenges, 

requirements and limitations of an efficient attack 

modeling approach with attack graphs and attack trees. A 

discussion of the current state of the art is presented in the 

later part of the paper, followed by the future direction of 

research. 

 

Index Terms—Attack graph, Attack tree, Intrusion 

detection, Attack modeling, Survey. 
 

I.  INTRODUCTION 

Computer technology has become ubiquitous with the 

increasing trend of computational capability into devices 

used in our everyday life. The dependency of these 

devices on the network services and applications marks 

network security as a demanding research domain. 

Software bugs, security policy errors, or an inefficient 

network configuration can cause security violations any 

time in a system. A person with a malicious intent can 

make attempts to gain unauthorized access using these 

vulnerabilities. These attempts are termed an “attack” in 

computer security, and are defined by IETF as “an 

intentional act by which an entity attempts to evade 

security services and violate the security policy of a 

system” [1]. To guard against attacks, a system must be 

diagnosed and assessed for risks; then, possible 

countermeasures must be suggested. Attack 

representation models (ARMs) are the most effective 

means of analysis in these scenarios. Attack graphs and 

attack trees are the most popular forms of representation 

models. 

A. Attack Representation Model 

Intrusion detection systems, or other security 

components like firewalls, generate security alerts if any 

vulnerable activities are observed by these systems. 

Alerts generated by these sources are isolated.  Efficient 

detection of any attack scenario requires correlating these 

isolated alerts. Attack representation modeling is the 

process of identifying the relations between system alerts 

and developing an attack scenario recognition system. 

The purpose of the attack representation model is to 

determine the path of an attack and generate reports 

accordingly. Cheung et al. identified the necessary steps 

to develop a model which can recognize cyber attack 

scenarios successfully [2]. In Figure 1, these steps are 

sequentially organized to describe the ARM. 

 

 

Fig.1. Attack Representation Model. 

The initial step of representation modeling requires 

identifying the attacks and dividing them into attack 

subgoals until each of the logical attacks are identified by 

the detection system. In the next phase of the modeling, 

these attacks need to be attributed based on the observed 

events, system states and interfaces. In the final stage, the 

relationship among these attacks needs to be developed 

based on the temporal relationship (the sequence of 

identified attacks), attribute-value relationship (attacks 

might be generated from similar sources) and prerequisite 

relationship (one attack triggers another attack) [2]. 

B. Attack Graph 

Attack graphs represent a detailed view of system 
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security by determining if an attacker can reach the final 

goal state(s) by penetrating the security holes of the 

system from an initial state. These graphs are composed 

of nodes and edges where the representation of these 

components changes with the definition of a particular 

attack graph. Typically, nodes in an attack graph 

represent states, and the edges refer to the transition of 

the different states defined through various post- and pre-

conditions. Sheyner et al. proposed an attack graph using 

the similar notion [3]. 

 

 

Fig.2. Example Network. 

1) Definition: An attack graph is a tuple 𝐺 =
{𝑆, 𝜏, 𝑆0, 𝑆𝑆} where 𝜏 ⊆ 𝑆 × 𝑆 refers to the transition 

relation between states and 𝑆, 𝑆0 ⊆ 𝑆 𝑎𝑛𝑑 𝑆𝑆 ⊆ 𝑆 

refer to sets of states, initial states and success states, 

respectively. [3] 

2) Example Scenario: For a better understanding of an 

attack graph model, let’s consider the example 

network shown in Figure 2. HostA and HostB are two 

workstations connected to the Internet through a 

switch. HostB is owned by a malicious user who 

wants to gain access to HostA. Because HostB knows 

the network address of HostA, he can either use the 

remote login feature that is used by trusted users or 

deploy a .rhhost file utilizing an FTP vulnerability. 

In both scenario, the attacker can create a trusted 

relationship with the target machine, and easily 

exploit the buffer overflow to gain root access. In 

this case, the intruder can deploy the required binary 

codes or create the file locally. 

 

 

Fig.3. Attack Graph based on Example Network 

Figure 3 shows a simple attack graph that is generated 

based on the scenario described above. Here S1 denotes 

the initial state and S4 denotes the goal of the attacker, i.e. 

gaining root access to HostA. S2 and S3 are intermediary 

states where the attacker gets remote access to HostA by 

deploying the .rhhost file and performing the remote 

login operation, respectively. Edges in this figure 

describe the transition from one state to the next state 

through actions from the attacker. 

C. Attack Tree 

The concept of an attack tree (threat logic tree) was 

first introduced in the context of information systems by 

Weiss, but was not widely accepted as a part of security 

until it was popularized by Schneier at the end of the 

1990s [4].  Attack trees are a powerful approach of 

modeling the security vulnerabilities of information 

systems. They analyze different security threats, identify 

different paths to achieve the goal, and build a structure 

that describes how a threat helps malicious users reach 

their goal. This structure is organized as a tree, where the 

elementary attacks are placed at the leaf level and the 

primary attack is placed at the root.  

The internal (non-leaf) nodes in the tree represent a 

combined attack of the elementary nodes or non-leaf 

nodes located in the next higher level in the tree. In the 

top-down approach, the internal nodes are actually 

considered as a refinement of the higher-level nodes. This 

refinement can be either conjunctive (aggregation or 

“AND” node) or disjunctive (choice or “OR” node).  In 

conjunctive refinement, all the immediate child nodes 

will need to be in action to achieve the goal. However, in 

disjunctive refinement, any attack will be sufficient to 

fulfill the goal [5]. 

 

1) Definition: An attack tree is a 3 − 𝑡𝑢𝑝𝑙𝑒(𝑁, 𝑛0, →), 

where N refers to a set of nodes, 𝑛0 ∈ 𝑁 refers to the 

root node, and →  is an acyclic relation of type 

→⊆ 𝑁 × 𝑀+(𝑁) where 𝑀+(𝑁) denotes a multi-set 

of set N, such that every node in N can be reachable 

from n0 [5].  

2) Example Scenario: Let’s consider the similar 

scenario depicted in Figure 2 to describe the attack 

tree. In this case, since the goal of the malicious user 

is to gain root access to HostA, this will be the root 

of the attack tree. In order to get root access to HostA, 

the attacker first needs to get remote access to the 

system; therefore, this will be in the next level of the 

attack tree. The final level of the attack tree will 

consist of actions like deploying .rhhost and the 

remote login operation. As either of these actions 

allows a user to get remote access, these two nodes 

form a disjunctive connection with their parent node. 

Figure 4 shows the attack tree created for this 

example.  

 

 

Fig.4. Attack Tree based on Example Network.
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II.  ANALTSIS OF CORE PAPERS 

The primary goal of this research is to identify an 

efficient approach for attack tree construction. The 

process requires correlating the alerts generated by 

various Intrusion Detection Systems (IDS) and network 

configuration, then analyzing and transforming the data 

accordingly. This section contains an analysis of five 

papers related to alert correlation, attack graph generation 

and attack tree reduction. 

A. Statistical Causality Analysis of INFOSEC Alert 

Data [6] 

1) Key Motivation: As the number of intrusion 

detection systems increases, the volume of 

generated alerts becomes too numerous for a system 

administrator to analyze the alerts and respond to 

any true attack in time. Therefore, it is necessary to 

devise an efficient alert correlation technique that 

will reduce the number of alerts by identifying 

similar alert characteristics coming from different 

sources. The correlation system should also be able 

to define the relationship between those alerts and 

detect a new form of attack. Previous alert 

correlation systems depended on prior knowledge 

and consequences of alerts [2, 7, 8], and lacked the 

ability to detect a new attack. In [6], Qin et al. used 

a clustering technique to generate a high-level 

aggregated alert, and causal analysis to discover 

new relationships from the attacks. This approach 

does not depend on the previous knowledge for 

pattern matching and is therefore capable of 

discovering new attacks. 

 

 

Fig.5. Attack Scenario Construction Process. 

2) Core Contribution: As a part of this research, Qin et 

al. used time series and statistical analysis to 

combine the low-level alerts using their attribute 

information, thus ensuring a reduction of the high 

volume of alerts. Clustering was used to change the 

low-level alerts into aggregated alerts. Then, the 

alerts were prioritized depending on the relationship 

to the networks, hosts and goals of the attacks. 

Finally, attack scenarios were constructed based on 

the correlated alerts generated through causality 

analysis. Figure 5 illustrates the attack correlation 

process developed by Qin. 

a) Alert Aggregation and Clustering: The four-step 

attack scenario generation process starts with alert fusion 

and reduction of the large volume of alerts. Based on the 

Intrusion Detection Message Exchange Format (IDMEF) 

standard, each alert is attributed with a timestamp, user 

name, process name, attack class and sensor ID, source 

and destination IP, and port [9]. In the alert aggregation 

step, alerts with overlapping attribute values are first 

combined considering a negligible difference in the 

timestamp field using the multivariate matching 

algorithm. Later, alerts are aggregated based on the 

attribute data and the source of the alerts [7]. 

Aggregated alerts are further grouped using different 

clustering algorithms, such as conceptual clustering, 

based on similar characteristics of the alerts [10]. In this 

case, alerts with the same attributes fall into the same 

cluster. This step reduces the number of redundant alerts. 

Next, hyper-alerts are generated which contain the same 

attributes, but different timestamps. 

b) Alert Prioritization: Alert prioritization is a step of 

assigning each hyper-alert a rank for more analysis and 

correlation. Two attributes are considered in computing 

the alert priority - how pertinent is the alert to the 

configuration of a secure network and host, and the rank 

of severity assessed by the analysts. This approach was 

used by Porras et al. in their mission-impact-based model 

using a correlation engine called M-Correlator [8]. 

 

 

Fig.6. Sample Bayesian Network. 

Priority ranking is assigned to the alerts with a priority 

computation model based on a Bayesian Network. A 

Bayesian network is a directed acyclic graph where nodes 

represent a variable with multiple states, and edges 

represent the dependency between the variables, as 

shown in Figure 6. Each child node has an associated 

Conditional Probability Table (CPT) where entries have 

the following format, shown in Equation 1, illustrated 

based on the child node V1 given in Figure 6. 

 

                        𝐶𝑃𝑇𝑖𝑗 = 𝑃(𝑉1 = 𝑗|𝑅 = 𝑖)                   (1) 

 

In this priority computation model, Bayesian inference 

is used to calculate a belief over a particular state of a 

variable. This computation produces results in the range 

[0,1]. The priority of a hyper-alert is calculated 

comparing the dependencies associated with an attack 

with respect to the configuration of the network. A pre-
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built knowledge base with the entry of hyper-alerts 

associated with host configurations is used for this 

comparison. The comparison process performs another 

set of filtering on the alerts. 

c) Alert Time Series Formulation: In this step, a series 

of equally distant time slots is designed to accommodate 

the already processed hyper-alerts and formulate a hyper-

alert time series variable. If R is considered as a time 

range with equal time intervals T, then the number of 

total time slots is, 𝑆 = 𝑅/𝑇 . For a cluster A with the 

following formation: 

 

𝐴 = {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁}𝑡(𝑚)                 (2) 

 

𝑚 = {0,1,2, … , 𝑘} is the set of alerts that falls in the m
th

 

time slot. 

d) Alert Correlation: In this phase of the alert scenario 

generation step, the Granger Causality Test (GCT) 

algorithm is used for pairwise correlation between alerts 

[11]. If there are two time series variable x and y, then 

GCT can be applied to these two variables to see if x 

contains necessary statistical information about y. 

Variable x is said to be Granger-causes y, if a relationship 

is found between the two. The GCT algorithm is based on 

the following fact: if B occurs as an effect of A, then 

event A should always happen before event B. Therefore, 

A is considered a cause-event and B an effect-event. 

In GCT, the variable b against the effect-event B is 

modeled against the Autoregressive Model (AR model) 

and the Autoregressive Moving Average Model (ARMA 

model). AR model generates the value of variable b based 

on its k previous values; however, ARMA model predicts 

the current value of b based on the past k values of both b 

and a, variables associated with cause-event A. Finally, 

Granger Causality Index (GCI), g, is calculated based on 

the residuals of these two models. 

With GCT, a relationship between a set of hyper-alerts 

is basically determined based on a particular hyper-alert 

A. The GCI value of each pair is then stored and 

compared to generate a list of increasingly ordered values 

with the GCI value. Then, a list of candidate alerts is 

marked as causally related to alert A. 

The correlation step also includes identification and 

elimination of background alerts. The Ljung-Box test is 

used in this method to identify background alerts [12]. 

Background alerts usually contain random attributes that 

help to identify the particular type of alert [13]. 

 

3) Limitation: Qin’s statistical approach of identifying 

correlated alerts can be a vital part of an attack 

graph generation process. It can identify a new form 

of attack without any prior knowledge about the 

nature of the attack. However, this approach lacks 

the ability to generate scenarios without the 

intervention of a system analyst. CPTs in the attack 

prioritization phase are neither adaptive nor updated 

according to the mission goals. Instead, they are 

developed based on prior experience and domain 

knowledge. Qin’s approach also suffers from false 

causality alert scenarios when the volume of 

background alerts is large. Also, the Ljung-Box test 

cannot completely filter the background alerts, and 

advanced knowledge is required to inspect the alert 

candidates produced from GCT. 

B. A Scalable Approach to Attack Graph Generation 

[14] 

1) Key Motivations: Though research on attack graphs 

has been running for decades, most of the works 

suffer from proper scalability and lack of logical 

formulation. Philips et al. developed a state-based 

attack graph representation model in 1998 which 

experienced an exponential problem in analyzing 

attack scenarios. They applied partial-order 

reduction to remove duplicate attack paths, but did 

not indicate any clear performance efficiency [15]. 

The model-checking based approach for attack 

graphs by Sheyner et al. also suffers from this same 

issue [14]. Therefore, Ou et al. proposed a logical 

attack graph. It illustrated the way to produce a 

derivation trace and generate an attack graph using 

the trace in quadratic time. 

 

The customization of input information and the 

resulting graph data structures is another problem with 

most of attack graph tools. These tools require additional 

input in a specialized data format and often produce 

complex, unclear attack graphs. Ou’s proposed logical 

attack graph clearly specifies the configuration 

information of the system and potential privileges of the 

attacker. Finally, Ou’s approach also answers the 

reasoning of attack scenarios rather than simply showing 

the attack steps in an attack graph. 

 

2) Core Contribution: Although it encounters the state 

explosion problem, the logic-based approach 

proposed by Sheynar et al. is superior to the ad-hoc 

attack graphs from two points of view. It is more 

efficient than customized algorithms for a complex 

scenario, and it also enables further analysis of the 

graph data structure. Sheynar's approach built on a 

reasoning system called MulVAL [16]. The 

proposed approach of Ou et al. is designed based on 

the same system [14]. 

 

a) MulVAL (Multihost, multistage Vulnerability 

Analysis): MulVal is a framework for designing the 

interactive relationship between different software 

vulnerabilities with the configuration of a system and 

network. It basically determines the impact of various 

software bugs on a network. This sort of system usually 

demands two features: automatic integration of 

vulnerability specifications generated by the bug-

reporting community, and scalable analysis irrespective 

of the size of the network. MulVAL was designed to 

fulfill both of these features. It consists of a scanner that 

is run asynchronously in each host, and an analyzer 

which runs whenever the scanner captures new 

information. The MulVAL reasoning engine uses XSB to 

analyze interaction rules based on input data. XSB is 
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basically a model that provides proper semantics for logic 

programs [17]. 

 

 

Fig.7. Datalog Interaction Rule. 

b) Interaction Rule: MulVAL uses Datalog facts to 

represent the configuration information. Inputs for 

MulVAL analysis include advisories, system and network 

configuration, information related to user and policy, and 

interaction records. The following is an example scenario 

represented in Datalog. 

The code snippet in Figure 7 represents a rule similar 

to a vulnerable scenario where the attacker wants to 

achieve a higher privilege by remotely exploiting a 

vulnerability of a host. A Program running in the Host 

contains the vulnerability with the privilege User and 

scanning the Port and Protocol. To exploit the service for 

upgrading privilege, the attacker first accesses the 

network and executes a random code as User. The first 

line of the Datalog rule contains the conclusion while the 

rest of the lines are the conditions needed to meet the 

conclusion. Capitalized words represent Datalog 

variables. Predicates are divided into multiple categories: 

primitive predicates refer to configuration information 

recorded by the host and network scanners, and derived 

predicates are generated by successively applying 

interaction rules on the primitive predicates. 

 

 

Fig.8. Logical Attack Graph Generator. 

c) Logical Attack Graph: Ou et al. modified the 

MulVAL reasoning engine to include an additional 

functionality - record the trace of the evaluation 

performed by XSB. These traces, also known as attack 

simulation traces, are passed to the graph builder. Figure 

8 illustrates the steps of a logical attack graph generator. 

The graph builder generates a directed graph with a 

tree-like structure. Two different types of nodes are used 

in the graph to represent the derivation node and fact 

node. Fact nodes also have two different forms: primitive 

and derived fact nodes. Every fact node has a predicate 

applied to its argument, and a derivation node has an 

interaction rule. Edges in the graph represent a 

dependency relationship between nodes. An edge from 

the fact node to a derivation node determines how a fact 

depends on an interaction rule, and an edge from a 

derivation node to the fact node means that the fact has 

satisfied the precondition rule of the derivation node. In 

this graph, the derivation nodes usually form a 

conjunction node that requires multiple facts to satisfy it; 

on the other hand, fact nodes form a disjunction node 

because there might be multiple ways to generate a fact. 

 

 

Fig.9. Attack Simulation Trace. 

d) Interaction Rule to Graph Transformation: The 

graph builder builds a logical attack graph based on the 

attack simulation trace. The MulVAL reasoning engine is 

modified to record this trace by adding an additional 

subgoal as an output of the engine. In this scenario, the 

rule shown in Figure 7 is transformed into the form 

illustrated in Figure 9. The attack graph is computed from 

all the simulation traces that are produced by traversing 

all the possible derivation paths. Simulation traces are 

recorded in the form (TraceStep, Fact, Conjuct). In the 

attack graph, TraceStep forms the derivation node, Fact 

is designated as the parent, and Conjunct becomes the 

child node. The sample attack graph shown in Figure 10 

is derived from Figure 7. 
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Fig.10. Attack Graph. 

3) Limitation: Ou’s proposed model shows a definite 

superiority over the other models in terms of 

efficiency. It can generate an attack graph 

polynomial to the network size. However, to create 

a complete attack graph, attack conditions should be 

expressed in propositional formulas - otherwise, this 

method overlooks that particular attack condition. 

Also, an attack graph generated in this way contains 

loops which restrict it from converting a graph to a 

tree. Ou discussed a possible solution to this 

problem, but how this solution affects the proposed 

algorithm is not properly explained. 

 

 

Fig.11. Proposed Attack Correlation and Graph Generation Approach. 

C. Alert Correlation for Extracting Attack Strategies 

[18] 

1) Key Motivation: Alert correlation is an integral part 

of designing an efficient intrusion detection and 

response system. Identifying the attack strategy and 

analyzing a large volume of alerts generated by the 

Intrusion Detection System (IDS) is the principal 

goal of alert correlation. There are different 

approaches of alert correlation based on feature 

similarity, known scenario, or cause and effect 

relationships. All these approaches lack features to 

identify relationships between alerts: some cannot 

identify causal relationships, some are applicable 

only in familiar situations, and some require 

predefined rules and expected consequences [19, 20, 

21, 22, 23, 24]. Zhu et al. developed a correlation 

method that enables automatic extraction of an 

attack strategy from intrusion alerts without prior 

knowledge of the alerts. They used an Alert 

Correlation Matrix (ACM) to store the strength of 

any pair of alerts. ACM is initialized in the training 

phase, and then used for retrieving strategies. 

2) Core Contribution: Intrusion or anomaly detection 

depends on detailed information of a system, and 

proper understanding about the anomalous behavior 

of the system that occurs due to different attacks. 

Building an exact profile of the general behavior of 

the system meets the first requirement in this case, 

while discovering attack strategy from IDS 

generated alerts fulfill the second criteria. The 

approach Zhu’s proposed method is developed 

based on the concept of a neural network. A 

knowledge base is first built through supervised 

learning and stores required relationship attributes 

between alerts like correlation strength and average 

time difference between two alerts. The correlation 

engine uses Multilayer Perception (MLP) and 

Support Vector Machine (SVM) to assign 

correlation probability to an alert. This correlation 

engine is used to generate hyper-alert graphs and 

attack graphs that represent a real attack scenario. 

Figure 11 depicts the general model of this proposed 

method. 

 

 

Fig.12. Attack correlation matrix. 

a) Alert Correlation Matrix: The Alert Correlation 

Matrix (ACM) is an n x n matrix where each cell contains 

a correlation weight between two alerts from a set of n 

alerts {𝑎1, 𝑎2, … , 𝑎𝑛}. The correlation weight also refers 

to the causal relationship between the alerts. An ACM 

with 3 alerts {𝑎1, 𝑎2, 𝑎3}  looks like the one shown in 

Figure 12. Each correlation is defined by 𝑐(𝑎𝑖 , 𝑎𝑗) which 

refers to a relationship between two alerts ai and aj where 

ai arrives before aj and holds a weight of 𝑊𝐶(𝑎𝑖,𝑎𝑗) 

calculated from N number of occurrences of these two 
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alerts with probability p. This structure and correlation 

weight of ACM also provide some knowledge such as 

correlation strength (Π), temporal and causal relationship. 

The correlation strength ( Π ) helps determine the 

correlation weight by calculating Backward Correlation 

Strength (Π𝑏)  and predicting intrusion. It also helps 

recognize an attack by measuring Forward Correlation 

Strength (Π𝑓).  The temporal relationship refers to the 

sequence of the occurrence of the alert in a cell, while the 

causal relationship reveals the actual relation. ACM gets 

updated through the correlation engine over the time 

when any alert is generated. 

b) Feature Selection: Zhu followed an approach 

proposed by Valdes et al. while selecting features and 

computing probabilities based on these to find the actual 

correlation weight between alerts [7]. The 6 features 

included in the methods are: the similarity between the 

source IP address, target IP address, the similarity in port 

numbers, the similarity between source and target IP 

address of two successive alerts, backward correlation 

strength of two alerts, and frequency of the correlation 

between the alerts. 

c) Alert Correlation: The alert correlation technique in 

Zhu’s method uses both Multilayer Perception (MLP) and 

Support Vector Machine (SVM) to determine the 

relationship between any two alerts and the probability of 

correlation.  MLP uses an error-correction rule, and SVM 

is developed based on the concept of risk minimization 

principle. MLP usually suffers from the over-fitting 

problem while SVM might not produce accurate output 

all the time. Therefore, this approach follows a 

combination of both these methods to determine the 

relationship. 

When the relationship between a set of alerts is defined, 

hyper-alert graphs are generated from the output of the 

correlation. Hyper-alert graphs generated this way help in 

identifying multiple goals of an attacker. \Correlation 

threshold and correlation sensitivity are used to construct 

the graph. The first one determines the probability of the 

relationship between alerts, and the second one 

determines to what extent a new alert can join a hyper-

alert from a set of hyper-alerts. In this correlation method, 

the ACM is continuously updated so that the latest 

correlation strength can be applied to the future 

correlation process. 

d) Attack Graph: Based on the training data and output 

of the correlation algorithm, attack graphs are generated. 

The attack graph eventually helps network administrators 

predict the probable attack while observing the pattern of 

the received alerts. Attack graph generation starts with an 

alert representing a particular attack. This process 

iteratively scans the ACM horizontally to identify the 

alerts likely to appear next considering one alert as a 

reference point and run until no other alert is found in the 

matrix. 

There are considerable differences between the hyper-

alert graph and the attack graph in Zhu’s proposed 

method. Hyper-alerts can be considered as an instance of 

an attack graph. Usually, hyper-alert graphs do not 

contain any cycle, while attack graphs may have a cycle 

if the same hyper-alert appears multiple times. 

 

3) Limitations: Zhu’s method proposed a different 

technique for alert correlation as it introduced 

Support-Vector Machine (SVM) and used a 

combination of both Multilayer Perception (MLP) 

and SVM to determine the relationship between 

alerts. However, like other proposed methods, it has 

also some limitations. As this method follows a 

supervised learning approach, both MLP and SVM 

need manually generated and labeled training. This 

methodology requires additional effort and might 

produce an erroneous result. Also, the attack graph 

contains loops, and no approaches to eliminate the 

loops are discussed. 

 

D. Scalable Attack Representation Model using Logic 

Reduction Techniques [25] 

1) Key Motivations: Attack graphs and Attack trees are 

the most popular attack modeling techniques. Since 

the inception of the concept of presenting attacks 

through graph structure, various models were 

proposed in the form of attack graphs or attack trees. 

These models include automatic construction of 

attack scenarios in both forms, but none of these 

approaches are proved to be efficient [3, 4, 26]. 

Analyzing an attack graph for a seemingly larger 

network suffers from the state-explosion problem 

while an attack tree lacks the feature for covering all 

the attack scenarios [14, 25]. Efforts to generate 

attack graphs and then transform them into a tree 

structure also fails due to lack of scalability as the 

methods generate nodes at an exponential rate. 

Therefore, Hong et al. introduce two logic reduction 

techniques to enable an automatic transformation of 

an attack tree as well as ensure reduction of the size 

of the tree. 

2) Core Contributions: The attack representation 

model goes through four different phases to get a 

complete shape. Its life cycle start with generation 

of the model. It, then, gets a visualized form through 

textual or graphical representation. Next, this 

representation model is analyzed against the 

particular network in which it is designed. Finally, 

the modification phase reconstructs the model based 

on the changes that occurred in the network system. 

The logic reduction techniques Hong proposed are 

devised considering the reconstruction phase of the 

attack tree. The automatic construction approaches 

of the attack trees maintain the integrity of the 

original tree while reducing the size. In the Full Path 

Calculation (FPC) approach, similar nodes are 

configured as a single group. On the other hand, the 

Incremental Path Calculation (IPC) approach 

minimizes repetition of the node through recursive 

expansion of the attack path. The approaches are 

described based on an example scenario shown in 

Figure 2 and used throughout this section. In this 

network, the nodes are labeled alphabetically with 
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the attacker host as A and the target host (remote 

access to host) as E. The intermediary attack steps, 

such as deploy .rhhost file, remote login and exploit 

buffer overflow, are vulnerabilities in different hosts 

labeled as B, C and D. This example attack scenario 

can be expressed as an attack tree with conjunctive 

and disjunctive nodes as illustrated in Figure 13. 

 

 

Fig.13. Full Attack Tree Generated From Example Network. 

a) Full Path Calculation (FPC): Logic reduction using 

full attack path initially requires the full attack tree to be 

represented in a logical expression. The reduction process 

eliminates the attack sequence and groups similar nodes 

together. In this case, an element from the attack tree is 

selected first, then the selected node is factorized from 

the complete logical expression. This process iteratively 

runs by selecting a common element from the rest of the 

nodes of the graph. Paths with similar nodes are 

evaluated as a container of similar information in this 

approach. The logical expression of the full attack path is 

shown in Equation 3 and in reduced form using the FPC 

as shown in Equation 4. 

 

BDE + CDE                              (3) 

 

BDE + CDE = DE(B+C) = E(D(B+C)            (4) 

 

The simplified attack tree considers AND and OR 

nodes with two inputs as illustrated in Figure 14. 

 

 

Fig.14. FPC and IPC Generated Attack Tree. 

b) Incremental Path Calculation (IPC): Full Path 

computation of the complete attack tree suffers from the 

lack of efficiency when all the paths are included in the 

computation. IPC considers reachability information from 

every node, and overcomes the problem of FPC. 

Reachability information against each node is separately 

maintained while calculating the attack path. The IPC 

approach follows this information while evaluating a 

particular node and includes the next attack path. 

Eventually, the process stops when all the possible attack 

paths are included. 

Table 1. Reachability of Nodes 

Nodes A B C D E 

Neighbors B+C D D E - 

 

Now, let's consider the given scenario based on the 

reachability shown in Table 1. The algorithm starts from 

the attacker host A with the target shown in Equation 5 

referenced from the reachability table. 

 

B + C                                     (5) 

 

In the next step, reachability is checked for each of the 

components found in the first iteration and recursively 

moves forward until the target is reached. Steps after the 

initialization are shown in Equations 6 and 7.  

 

B(D) + C(D)                                 (6) 

 

B(D)(E) + C(D)(E)                             (7) 

 

Factorizing the final step ultimately generates the 

similar expression shown in Equation 2 which results in 

the similar tree depicted in Figure 14. In the IPC 

approach, repeated nodes are eliminated to avoid cycles. 

If any node has any ancestor in its reachability list, that 

ancestor is not considered again in a logical expression. 

 

3) Limitations: The evaluation and complexity analysis 

of the logical reduction approaches show the 

efficient utilization of the attack tree after 

transformation, but these approaches have some 

limitations. These proposed algorithms perform well 

in small attack trees; however, with a larger attack 

tree, FPC is affected by the exponential number of 

nodes that it requires to process and IPC suffers 

from inefficient memory allocation. 

 

E. Efficient Attack Graph Analysis through 

Approximate Inference [27] 

1) Key Motivations: Protecting networks through 

effective vulnerability identification and prevention 

is often affected by the lack of expertise, and 

requires interruption to the system. Therefore, 

optimized resources for protection need to be 

determined by risk-driven security measures - which 

demands network risks assessment, critical 
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vulnerability prioritization and finally calculating 

the risk based on the severity and probability of the 

threat. Dependencies between the attacks are mostly 

ignored in these scenarios which eventually affect 

these analyses as well. Munoz-Gonzalez et al. 

provide an elaborate discussion on the Bayesian 

Attack Graph (BAG) which maintains a rigid 

relationship among random variables and enables 

modeling uncertainty about an intruder’s intention 

and capabilities [28]. Variable elimination (VE) and 

Junction Tree (JT) also allow exact inference in 

BAG by computing unconditional probabilities for 

each node; however, exact inference can be only be 

applied to a smaller graph and computation is 

marked as an NP-Hard problem. Approximate 

inference through Loopy Belief Propagation (LBP) 

is introduced by Munoz-Gonzalez et al. to overcome 

the issue with network size. 

2) Core Contributions: Attack graphs are a well-

known approach for analyzing and understanding 

attacks and identifying efficient preventive measures 

by the system administrators [3, 29, 30]. Static and 

dynamic approaches are followed to analyze the 

attack graphs. In the static analysis of an attack 

graph, the possible paths are devised based on 

previous knowledge about network vulnerabilities. 

This knowledge is eventually used in selecting 

appropriate countermeasures. On the other hand, 

dynamic analysis of attack graphs enables capturing 

an attack scenario at any moment of a particular 

attack and determines the possible target or 

upcoming threats. Due to nature of these analyses, 

these are also referred as proactive and reactive 

approaches [27]. Munoz-Gonzalez et al. introduced 

approximate inference through LBP for both static 

and dynamic analysis of BAG. They also proposed 

sequential and parallel implementations of LBP and 

draw a comparison between these two 

implementations. The efficiency of LBP in terms of 

allowing a system administrator to plan protective 

strategies in advance by monitoring estimated 

probability in every iteration was shown. 

 

a) Bayesian Attack Graph: A Bayesian attack graph is 

a model built upon the concept of a Bayesian network. 

The network is basically a directed acyclic graph (DAG) 

that includes nodes that are random variables and edges 

that are dependencies between variables.  Though attack 

graphs often include cycles, Munoz-Gonzalez et al. 

utilize the solution provided by Wang et al. to manage 

cycles in an attack graph to generated a DAG [31]. 

The nodes in a BAG represent security states an 

intruder can achieve. Each node of an attack graph is 

attributed with conditional probability Pr (𝑛𝑖|𝑝𝑖)  which 

refers to the probability of the node ni based on the 

probability of its parent node pi. This computation also 

considers the vulnerability vi used to compromise the 

node and this value is estimated based on the Common 

Vulnerability Scoring System (SSCVSS) [32]. To build 

the conditional probability table, two scenarios are 

considered based on the given estimation of vulnerability. 

In the first scenario, all the conditions need to be satisfied 

to reach a particular node and build an AND conditional 

table for that particular node.  On the other hand, any of 

the conditions will suffice to execute the attack on a node 

and this builds an OR conditional table. 

BAG also allows eliminating cycles in the graph 

through breaking the complete graph into smaller parts 

instantiated with the node that initiates an attack. This 

approach eventually helps in converging the value of the 

nodes and increases the efficiency of LBP estimation. 

b) Risk Assessment: Munoz-Gonzalez’s approach 

contains a combination of static and dynamic risk 

analysis based on the BAG. In both models, the BAG is 

first built based on either the network topology or the 

analysis on alerts. Then, the static analysis approach 

computes the conditional probability tables of the nodes 

based on the CVSS score. LBP is used as an approximate 

inference technique to identify the vulnerable points of 

the network. In the dynamic assessment, the conditional 

probabilities are recomputed based on the detected attack 

in a network at any point of time. In this case, the state of 

the variable of the compromised node is set to 1. This 

updated state of one node eventually affects the posterior 

probabilities of the rest of the nodes. 

c) Inference of Bayesian Attack Graph: Belief 

Propagation(BP) and LBP are approaches to derive 

inference in BAG. BP is a well-suited approach for exact 

inference in tree or poly-tree graphs, while LBP can 

compute approximate inference in graph structures 

containing cycles [33]. Bayesian Network facilitates 

computing the joint probability of a set of random 

variables in the form of product operation of factors of 

the variables or their subset. This decomposition of 

factors introduces factor nodes, and eventually a factor 

graph along with the nodes representing the random 

variables [34]. Unconditional probability of all the nodes 

in a graph is calculated by BP through computing the 

messages passing between factor nodes and variable 

nodes. Dynamic analysis is different in the sense that it 

requires re-computation of the factor of the nodes whose 

value depend on the updated variables. LBP is an 

extension of Belief Propagation. Munoz-Gonzalez 

describes two different types of LBP: Serial Loopy Belief 

Propagation (S-LBP) and Parallel Loopy Belief 

Propagation (P-LBP). In the case of S-LBP, messages are 

computed iteratively for each node until it reaches a 

maximum range of iterations or the value converges. A 

scheduling technique is applied for favorable 

convergence and better efficiency of this approach. P-

LBP allows simultaneous updating of messages for all 

variables and factor nodes based on the value achieved in 

the earlier iterations. 

 

3) Limitations: Munoz-Gonzalez shows an 

experimental result of the efficiency of the proposed 

S-LBP and P-LBP methods in terms of accuracy, 

convergence and execution time. But, LBP cannot 

always guarantee convergence [35]. Also, the 

convergence of LBP does not always ensure 
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correctness of the probability estimations. The 

alternative approaches to ensure convergence are 

found to be inefficient in most of the scenarios [27]. 

 

III.  SYNTHESIS OF CORE PAPERS 

The approach for building an attack graph to attack tree 

conversion technique first requires identifying paths to 

construct the attack graph, then eventually converting the 

attack graph into an attack tree. In a general attack tree 

modeling approach, attack goals are decomposed into 

sub-goals until the sub-goals become atomic attacks [36]. 

Attack trees can also be constructed manually or using 

already developed attack tree designing tools [37, 38, 39, 

40]. Section II highlighted the various models of 

developing an attack graph based on the information 

acquired from different alerts and network configuration 

[6, 14, 18], the process of analyzing the attack path [27] 

and scalable representation of an attack tree [25]. Part of 

the research presented in this paper is to bridge between 

these concepts to develop an automatic attack tree 

generation approach. Therefore, in this section, the 

contribution of these concepts in our research will be 

discussed. 

A. Attack Graph Modeling 

Three of the five selected papers discuss different 

approaches to attack scenario modeling and generating 

attack graphs. These approaches are considered to be the 

initial step to formulate attack trees from general alerts 

and system configuration. In attack graph generation, not 

only does system configuration plays an important role in 

determining the model of an attack, identifying attack 

relevant alerts and correlating those alerts based on their 

attributes is also vital. The proposed methods of Qin et al. 

and Zhu et al. concentrate on determining the relationship 

between alerts through an alert correlation approach. 

However, a model-checking approach is used by Ou et al. 

to develop an attack graph in a scalable manner. 

Both Qin et al. and Zhu et al. developed their model 

based on the dataset of the Grand Challenge Problem 

(GCP) from DARPA. From this large volume dataset, 

they extracted some important attributes which mostly 

described an alert and tried to find the relationship 

between these alerts based on those attribute values. Qin 

et al. defined the relationship between alerts based on the 

similarity of the attribute values, while Zhu et al. selected 

six primary features that, in some cases, considered 

similar values in different attributes (e.g., the similarity of 

the source IP of one alert with the destination IP of 

another alert). Qin et al. thus reduced the number of alerts 

generated by different IDS or firewalls and eventually 

grouped the alerts. This is an essential approach in 

determining the particular set of information that must be 

analyzed from a large volume of data.  Qin et al. then 

allowed system administrator’s input to determine the 

priority of hyper-alerts generated through fusion of alerts. 

The system administrator uses configuration information 

of the host and network to determine the rank of the alerts. 

Prioritized alerts were further arranged based on the 

time sequence and provided as input for the Granger 

Casualty Test (GCT) to determine the ultimate 

relationship [6]. Zhu et al. considered the time series 

based relationship as a temporary measure, and 

determined the causal relation based on forward and 

backward correlation strength. The temporal and causal 

relationship eventually built the cell weights of the Alert 

Correlation Matrix (ACM). Zhu et al. also used 

Multilayer Perception(MLP) and Support Vector 

Machine(SVM) to build the relation between new alerts 

and hyper-alerts and also update the ACM with new 

relationships and correlation weights [18]. Zhu et al. used 

a stronger measure to correlate different alerts and 

generated new attack scenarios by determining the 

relationship with new alerts and existing hyper-alerts 

from the ACM. The alert aggregation approach used by 

Qin et al. can complement Zhu’s method by reducing the 

number of alerts and eventually increasing efficiency. 

Both of these approaches require human intervention 

either for prioritizing alerts or for supervised learning. 

The logic-based approach proposed by Ou et al. is 

mostly dependent on the system configuration, and 

defines the attack path based on the rule determined from 

the configuration [14]. The rule also includes the possible 

vulnerabilities associated with a host and network. These 

features were already provided by MulVAL, but Ou et al. 

added the attack simulation trace to generate the final 

attack graph [14, 16]. Although this approach determined 

the attack path by iteratively looking into a large set of 

rules and associated attack traces, it lacked the feature of 

dynamically analyzing the data generated by various IDS, 

and highly depended on the rules and vulnerabilities set 

by the system administrator. 

B. Attack Graph Analysis 

Attack graph analysis is another important phase of 

constructing the proper model of attacks. It facilitates the 

process of assessing the risk and identifying the actual 

vulnerable point on the attack path both statically or 

dynamically. Researchers have proposed different 

matrices for risk assessment over the years: rate at which 

the asset can be acquired, measure of risk based on the 

weakest path, measurement based on the number of 

attacks, length of the shortest path and standard deviation, 

normalized mean, median and mode of the length of the 

paths [15, 41, 42, 43, 44]. Munoz-Gonzalez et al. 

developed their approach for analyzing an attack tree 

based on Bayesian Attack Graph(BAG) and used the 

Common Vulnerability Scoring System(CVSS) values as 

a standard of measurement [45]. Their approach 

identified an attack path based on the pre-recorded 

information through static analysis and detected possible 

threats through dynamic analysis. The inclusion of Loopy 

Belief Propagation(LBP) to measure approximate 

inference enabled the algorithm to be applicable in a 

larger network. An attack graph analysis designed with 

this approach basically helps in devising a concrete attack 

path by removing the less vulnerable nodes from the 

attack graph, and can help in reducing the false positive 

alerts using both static and dynamic analysis.
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C. Logic Reduction 

Nodes in attack trees are built with various forms of 

boolean algebra where the status of a particular network 

or host plays the role of a boolean variable. These forms 

of boolean logic can often be further reduced to a 

simplified structure for better understanding and faster 

analysis. Hong et al. proposed two logic reduction 

algorithms to simplify the structure of attack trees [25]. 

These approaches can be applied partially or fully in an 

already constructed attack tree and can improve the 

performance of attack tree evaluation. In their first 

algorithm, all vulnerable nodes in an attack path are 

included with groups containing the same nodes to define 

the simpler attack path. In their second approach, 

vulnerable nodes are iteratively included in a path based 

on the reachability of the initial attack node. Although 

both of these approaches suffer from memory and 

performance efficiency while deriving the simplified 

version of attack tree, they showed their superiority by 

constructing less-complex attack trees. 

D. Summary 

Papers for this literature study have been chosen based 

on their relevance in different steps of developing an 

attack tree from an attack graph. The structure of the 

attack tree basically depends on either the configuration 

of the host/network system, or the information and alerts 

produced by the IDS. The initial set of selected papers 

concentrates on the construction of attack graphs based 

on the host or network configuration or generated alert 

data. One paper discussed vulnerability analysis which 

eventually can determine the efficiency of the already 

generated attack graph developed by the first set of 

papers. The last paper in the selected set can be used to 

generate a simpler attack graph from a full attack tree 

through two proposed algorithms. The approaches 

discussed from these papers manage aspects of 

developing an attack tree; yet, these approaches either 

suffer from the lack of efficiency or cannot completely 

satisfies all the required properties and attributes for 

efficient evolution from the raw information or rule to 

build an attack tree. These limitations left opportunities 

for further research to find effective techniques for attack 

tree construction that can reduce false positive alerts, 

manage a large volume of data and larger networks, and 

be applied in real-time intrusion analysis. 

 

IV.  THE CURRENT STATE OF THE ART 

Attack graphs and attack trees are used for attack path 

analysis. Over the years, several attack models have been 

developed based on these two basic ARMs, and different 

matrices have been included for computing the possible 

attack paths from attackers’ and system administrators’ 

perspectives. These models are also used in the cloud 

environment for intrusion detection and attack prediction. 

In this section, recent researches on these areas will be 

highlighted from the context of a variety of applications 

in the various environment. 

A. General Attack Analysis Approaches 

Attack trees and graphs are generally used to create a 

model to analyze attacks that occur in computer networks. 

Attack and Protection trees, Defense Trees and Attack-

Defense trees were a few of the models built upon the 

regular attack tree and used to analyze attacks from both 

an attacker’s and a defender’s point of view [46, 47, 48]. 

Edge et al. built a Protection tree to identify the possible 

protection areas by analyzing the attack tree and 

calculating the impact, probability and cost of the 

attacker’s goal. In this scenario, the Protection tree is 

separate from the Attack tree, but built upon calculated 

data found in the attack tree [46]. Bistarelli et al. 

introduced a Defense tree as an extension of an attack 

tree. It can be used to measure the return of the actions 

for both an attacker and defender [48]. Two indexes, 

Return on Investment (ROI) and Return on Attack (ROA), 

define the success of the defender in terms of applying 

security measures against an attack and success of an 

attacker in terms of successful exploitation of a 

vulnerability, respectively. Kordy et al. have devised their 

model to overcome some limitations of attack trees. First, 

attack trees are not capable of identifying the interaction 

between attacks in a system and defenses implanted 

against the particular attack. Second, attack tree cannot 

properly visualize the evolution of security for a system 

from the action of an attacker and defender. Unlike 

Protection tree, both Defense tree and Attack-Defense 

tree accommodate two types of nodes to refer actions 

regarding attack and defense. These models are also 

capable of analyzing the economic effectiveness of 

actions taken either for an attack or defense. 

Recent research reveals the application of attack trees 

through game-theoretic analysis of attack scenarios. In a 

game-theoretic approach, an attacker’s best option is 

deduced based on multi-object optimization and an 

administrator or defender improves his information by 

keeping track of every action of the attacker [49]. Game 

theory is considered to be an adaptive and faster 

algorithm to learn to determine an attacker's future action 

and behavior. Kordy et al. showed the equivalence of 

both the Attack-Defense tree and binary Zero-Sum 

extensive game in terms of maintaining outcomes and 

structures while converting between these two forms [50]. 

The game theoretic analysis approach involves actions of 

an attacker followed by the actions of a defender in the 

form of an attack graph. It eventually helps in 

determining the preventive measure for each attack. 

Attack tree computation with multiple parameters 

illustrates the complete analysis associated with an 

attacker's action. Initially attack trees were analyzed only 

with cost. Buldas et al. included success probability and 

penalty for both failure and success in their analysis [51]. 

Later, Jurgenson et al. introduced the concept of Gains 

and Expanses calculated from attack cost and 

achievement, and probability and penalties in their 

analysis which successfully helped in analyzing the 

possible attack path with a more realistic approach [52].   

Though attack graphs are an established tool for risk 

analysis and attack prediction – it does not consider the 
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uncertainty of probability while measuring the probability 

of vulnerability exploitation. GhasemiGol et al. has 

recently developed an attack forecasting model using 

intrusion alerts, active responses, and a dependency graph 

considering uncertainty of attack probabilities [53].  Their 

approach includes an uncertainty-aware attack graph as 

the primary component. Uncertainty of the probability of 

attacks defines the probability of vulnerability 

exploitation of this graph - active attacks captured by the 

IDS increases the probability of other attacks in the future 

while responses from the intrusion response components 

against an attack lower the probabilities of the 

corresponding attack. Dependency graphs play a vital 

role in this approach by defining the relationship between 

the services and the processes of the network. 

B. Attack Analysis in Cloud Environment 

ARMs are currently used successfully in constructing 

attack scenarios and determining system configurations in 

the cloud environment as well [54, 55, 56, 57, 58]. 

Nagaraju et al. have used attack graphs in the cloud 

environment to ensure clarity in configuration and 

validation of cloud components, especially during multi-

factor authentication [54]. They have assessed the 

efficiency of multi-factor authentication by creating 

configuration graphs with access points dedicated for 

authentication which later constructs an attack graph 

associated with other components of the system. These 

graphs help system administrators identify the vulnerable 

points in a cloud architecture. Network Intrusion 

detection and Countermeasures Election (NICE) is an 

intrusion detection system developed based on the 

concept of an attack graph [56]. In a cloud environment, 

each server is monitored through NICE-A, an intrusion 

detection component of NICE, and can be moved to the 

inspection stage based on the vulnerability points 

assessed by NICE.  

Ficco et al. introduced Attack Evaluation Tree (AET) 

as an event correlation process to detect intrusions in the 

cloud environment. Cloud monitoring systems, such as 

mOSAIC monitoring cloudlets, cloud agency, and IDS 

systems in other layers, collect information from different 

layers and pass the information to a Security Engine (SE). 

This SE adopts a Bayesian network based correlation 

technique to identify a causal relationship between the 

generated events. A predefined set of rules are defined by 

the system administrator which are carried out by the SE 

to detect anomalous activities of the cloud environment 

[55]. 

Wang et al. proposed a modified Attack-Defense Tree 

(ADT) to solve the threat risk analysis (TRA) problem in 

cloud environment [59].  Existing approaches of threat 

risk analysis with attack trees take reflective thinking of 

the attacker and defender into account, which is not 

always guaranteed. The proposed approach of Wang et al. 

is built upon the interactive-oriented TRA scheme and 

ADT which ensure proper response to the perceived and 

actual intrusions in cloud services considering the 

thinking of the attacker and defender. 

Alhebaishi et al. present another threat modeling 

technique using attack graph and attack trees [60].  They 

constructed two cloud infrastructures using the concept 

and services provided by Cisco, VMWare and OpenStack, 

and built the threat models to understand, evaluate and 

improve security attributes in a cloud environment. Their 

proposed approach shows that attack trees can be used at 

a higher abstraction level to design the attack path while 

an attack graph can accommodate specific vulnerabilities. 

This approach also facilitates the quantification process 

using security matrices based on these attack 

representation models. 

 

V.  FUTURE DIRECTION 

The primary goal of our research is to develop an 

advanced technique to generate attack trees. Application 

of previous attack representation models demonstrates 

that an advanced and automatic generation approach of 

these models will make the attack analysis more dynamic 

in a different environment. A strong background of 

mathematical analysis and application of various 

analytical approaches to attack trees make it a strong 

candidate to continue further research. In this section, we 

will explore the opportunities of research related to these 

attack representation models as a part of our future 

direction. 

A. Attack Graph to Attack Tree Conversion 

An attack tree is effective for both qualitative and 

quantitative analysis as a detailed analysis can be possible 

through feature extraction of attacks, and mathematical 

analysis is convenient by assigning a cost and probability 

for each action of an attack node. Attack trees, thus, 

increase the possibility of identifying certain attacks or 

facilitating computation of the cheapest preventative cost 

of a possible attack [61]. However, the success of an 

attack tree mostly depends on its completeness and its 

formation. Completeness refers to the fact that an attack 

tree contains all the possible atomic attacks at the node 

level and maintains the proper sequence and path. Proper 

formation ensures correct placement of an attack in the 

attack tree with detailed information. However, 

generating an attack tree that maintains both features is a 

challenge.  

Research around the attack tree generation process has 

been running for years, but they are suffering from lack 

of scalability, lack of completeness and generated models 

are mostly limited to a specific attack scenario [62, 63, 

64]. A solution of an attack graph to attack tree 

generation is proposed through min-cut computation, 

which is an NP-Complete problem [65, 66]. Attack graph 

generation techniques discussed in this literature either 

take IDS generated alerts or system configurations for 

analysis and generate the graph. Some of these 

approaches are not capable of correlating new alerts with 

older alerts, while others cannot identify new attacks as 

they do not perform dynamic alert analysis or lack 

completeness. 

Considering all these facts and findings, we have 

planned to find a unified solution to map all sorts of 
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attacks in a general attack graph and transform graphs 

into trees ensuring scalability and performance in the 

transformation approach. We will incorporate existing 

approaches to attack graph construction from alerts and 

system configurations. We will also analyze the areas 

required to fill up the gap to unify the graphs generated 

through two different approaches: the alert correlation 

based approach and the model checking based approach. 

None of the papers discussed in this literature proposed 

any efficient technique to convert attack graphs to attack 

trees. BAG based analysis, described in Section II, 

contains a discussion on the elimination of cycles from a 

graph which can help in finding a probable tree structure; 

however, this will need further research to build a 

computationally sound attack tree model. 

B. Attack Analysis in Cloud Environment 

Cloud computing is a convenient model for on-demand 

access to shared computational architecture which 

requires minimal effort for resource management and can 

be provisioned rapidly. Cloud computing has been 

developing for a decade with numerous opportunities and 

challenges. Trustworthiness is one of the principal 

concerns associated with the cloud environment. To 

subside the vulnerabilities associated with a cloud 

environment, it is necessary to employ better anomaly 

and misuse detection systems. The effect of flooding 

attacks, insider attacks, and attacks on virtual machines 

can be eliminated through faster analysis alerts from 

Intrusion Detection Systems (IDS) [67]. IDS in cloud can 

be categorized into four primary categories: Distributed 

IDS, Network-based IDS, Host-based IDS and 

Hypervisor-based IDS. There are two problems 

associated with the large volume of data or alerts 

generated by these IDS - 1. Correlating the large volume 

of alerts generated by different IDS and generated from 

different layers of cloud architecture, and 2. Handling 

large volumes of false positive or false negative alert data 

[68]. Recent research shows that ARMs can be applied in 

a cloud environment [55, 56]. As a part of our future 

research, we also plan to extend the attack tree generation 

approach developed for the smaller network to larger 

cloud architecture. We will explore how data generated 

from different layers and IDS can be grouped and 

correlated to generate attack graphs, and whether the 

general approach for attack graph to attack tree 

conversion can be applied in a cloud scenario as well. 

C. Real-time Attack Analysis 

Real-time attack or misuse analysis has been a part of 

active research for a long time [69, 70, 71]. The purpose 

of this research is to identify efficient techniques to detect 

anomalies in a system through active monitoring of the 

traffic and alerts generated by IDS and assessing and 

predicting the possible risk of the system nearly real-time. 

These sorts of prediction or detection systems allow 

system administrators to take a preventive measure from 

inside or outside attacks. Though different models have 

been discussed to demonstrate their success in real-time 

intrusion detection, ARMs have never been applied in 

this scenario. Quantitative and qualitative analysis of 

attack trees have the potential to develop a model based 

on real-time anomaly analysis. We are including this 

option as a part of our future research goal to explore how 

attack tree modeling brings advancement in this area. 

 

VI.  CONCLUSION 

Throughout this literature study, different attack 

representation models have been discussed along with 

their opportunities and techniques to develop them from 

raw alerts and network or host configurations. Alert 

analysis methodologies and attack tree transformation 

techniques as steps of an attack graph to attack tree 

conversion process have also been discussed. Recent 

research conducted around these models have been 

explored, and based on all the theories and facts, a list of 

new prospective research dimensions has been introduced. 

From our analysis, we have found that attack trees are 

more a computationally efficient model for attack 

analysis; therefore, in our future exploration, we will 

prioritize the use of attack trees from a different direction. 

We strongly believe that an advanced attack tree 

construction approach makes attack analysis more 

convenient in various environments and eventually makes 

real-time intrusion detection more efficient. 
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