
I. J. Computer Network and Information Security, 2017, 11, 1-16
Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2017.11.01

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

An Evolutionary Approach of Attack Graph to

Attack Tree Conversion

Md. Shariful Haque
Department of Computer Science, University of Alabama, Tuscaloosa, AL 35478, USA

E-mail: mshaque@crimson.ua.edu

Travis Atkison
Department of Computer Science, University of Alabama, Tuscaloosa, AL 35478, USA

E-mail: atkison@cs.ua.edu

Received: 04 July 2017; Accepted: 07 September 2017; Published: 08 November 2017

Abstract—The advancement of modern day computing

has led to an increase of threats and intrusions. As a result,

advanced security measurements and threat analysis

models are necessary to detect these threats and identify

protective measures needed to secure a system. Attack

graphs and attack trees are the most popular form of

attack modeling today. While both of these approaches

represent the possible attack steps followed by an attacker,

attack trees are architecturally more rigorous than attack

graphs and provide more insights regarding attack

scenarios. The goal of this research is to identify the

possible direction to construct attack trees from attack

graphs analyzing a large volume of data, alerts or logs

generated through different intrusion detection systems or

network configurations. This literature summarizes the

different approaches through an extensive survey of the

relevant papers and identifies the current challenges,

requirements and limitations of an efficient attack

modeling approach with attack graphs and attack trees. A

discussion of the current state of the art is presented in the

later part of the paper, followed by the future direction of

research.

Index Terms—Attack graph, Attack tree, Intrusion

detection, Attack modeling, Survey.

I. INTRODUCTION

Computer technology has become ubiquitous with the

increasing trend of computational capability into devices

used in our everyday life. The dependency of these

devices on the network services and applications marks

network security as a demanding research domain.

Software bugs, security policy errors, or an inefficient

network configuration can cause security violations any

time in a system. A person with a malicious intent can

make attempts to gain unauthorized access using these

vulnerabilities. These attempts are termed an “attack” in

computer security, and are defined by IETF as “an

intentional act by which an entity attempts to evade

security services and violate the security policy of a

system” [1]. To guard against attacks, a system must be

diagnosed and assessed for risks; then, possible

countermeasures must be suggested. Attack

representation models (ARMs) are the most effective

means of analysis in these scenarios. Attack graphs and

attack trees are the most popular forms of representation

models.

A. Attack Representation Model

Intrusion detection systems, or other security

components like firewalls, generate security alerts if any

vulnerable activities are observed by these systems.

Alerts generated by these sources are isolated. Efficient

detection of any attack scenario requires correlating these

isolated alerts. Attack representation modeling is the

process of identifying the relations between system alerts

and developing an attack scenario recognition system.

The purpose of the attack representation model is to

determine the path of an attack and generate reports

accordingly. Cheung et al. identified the necessary steps

to develop a model which can recognize cyber attack

scenarios successfully [2]. In Figure 1, these steps are

sequentially organized to describe the ARM.

Fig.1. Attack Representation Model.

The initial step of representation modeling requires

identifying the attacks and dividing them into attack

subgoals until each of the logical attacks are identified by

the detection system. In the next phase of the modeling,

these attacks need to be attributed based on the observed

events, system states and interfaces. In the final stage, the

relationship among these attacks needs to be developed

based on the temporal relationship (the sequence of

identified attacks), attribute-value relationship (attacks

might be generated from similar sources) and prerequisite

relationship (one attack triggers another attack) [2].

B. Attack Graph

Attack graphs represent a detailed view of system

2 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

security by determining if an attacker can reach the final

goal state(s) by penetrating the security holes of the

system from an initial state. These graphs are composed

of nodes and edges where the representation of these

components changes with the definition of a particular

attack graph. Typically, nodes in an attack graph

represent states, and the edges refer to the transition of

the different states defined through various post- and pre-

conditions. Sheyner et al. proposed an attack graph using

the similar notion [3].

Fig.2. Example Network.

1) Definition: An attack graph is a tuple 𝐺 =
{𝑆, 𝜏, 𝑆0, 𝑆𝑆} where 𝜏 ⊆ 𝑆 × 𝑆 refers to the transition

relation between states and 𝑆, 𝑆0 ⊆ 𝑆 𝑎𝑛𝑑 𝑆𝑆 ⊆ 𝑆

refer to sets of states, initial states and success states,

respectively. [3]

2) Example Scenario: For a better understanding of an

attack graph model, let’s consider the example

network shown in Figure 2. HostA and HostB are two

workstations connected to the Internet through a

switch. HostB is owned by a malicious user who

wants to gain access to HostA. Because HostB knows

the network address of HostA, he can either use the

remote login feature that is used by trusted users or

deploy a .rhhost file utilizing an FTP vulnerability.

In both scenario, the attacker can create a trusted

relationship with the target machine, and easily

exploit the buffer overflow to gain root access. In

this case, the intruder can deploy the required binary

codes or create the file locally.

Fig.3. Attack Graph based on Example Network

Figure 3 shows a simple attack graph that is generated

based on the scenario described above. Here S1 denotes

the initial state and S4 denotes the goal of the attacker, i.e.

gaining root access to HostA. S2 and S3 are intermediary

states where the attacker gets remote access to HostA by

deploying the .rhhost file and performing the remote

login operation, respectively. Edges in this figure

describe the transition from one state to the next state

through actions from the attacker.

C. Attack Tree

The concept of an attack tree (threat logic tree) was

first introduced in the context of information systems by

Weiss, but was not widely accepted as a part of security

until it was popularized by Schneier at the end of the

1990s [4]. Attack trees are a powerful approach of

modeling the security vulnerabilities of information

systems. They analyze different security threats, identify

different paths to achieve the goal, and build a structure

that describes how a threat helps malicious users reach

their goal. This structure is organized as a tree, where the

elementary attacks are placed at the leaf level and the

primary attack is placed at the root.

The internal (non-leaf) nodes in the tree represent a

combined attack of the elementary nodes or non-leaf

nodes located in the next higher level in the tree. In the

top-down approach, the internal nodes are actually

considered as a refinement of the higher-level nodes. This

refinement can be either conjunctive (aggregation or

“AND” node) or disjunctive (choice or “OR” node). In

conjunctive refinement, all the immediate child nodes

will need to be in action to achieve the goal. However, in

disjunctive refinement, any attack will be sufficient to

fulfill the goal [5].

1) Definition: An attack tree is a 3 − 𝑡𝑢𝑝𝑙𝑒(𝑁, 𝑛0, →),

where N refers to a set of nodes, 𝑛0 ∈ 𝑁 refers to the

root node, and → is an acyclic relation of type

→⊆ 𝑁 × 𝑀+(𝑁) where 𝑀+(𝑁) denotes a multi-set

of set N, such that every node in N can be reachable

from n0 [5].

2) Example Scenario: Let’s consider the similar

scenario depicted in Figure 2 to describe the attack

tree. In this case, since the goal of the malicious user

is to gain root access to HostA, this will be the root

of the attack tree. In order to get root access to HostA,

the attacker first needs to get remote access to the

system; therefore, this will be in the next level of the

attack tree. The final level of the attack tree will

consist of actions like deploying .rhhost and the

remote login operation. As either of these actions

allows a user to get remote access, these two nodes

form a disjunctive connection with their parent node.

Figure 4 shows the attack tree created for this

example.

Fig.4. Attack Tree based on Example Network.

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 3

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

II. ANALTSIS OF CORE PAPERS

The primary goal of this research is to identify an

efficient approach for attack tree construction. The

process requires correlating the alerts generated by

various Intrusion Detection Systems (IDS) and network

configuration, then analyzing and transforming the data

accordingly. This section contains an analysis of five

papers related to alert correlation, attack graph generation

and attack tree reduction.

A. Statistical Causality Analysis of INFOSEC Alert

Data [6]

1) Key Motivation: As the number of intrusion

detection systems increases, the volume of

generated alerts becomes too numerous for a system

administrator to analyze the alerts and respond to

any true attack in time. Therefore, it is necessary to

devise an efficient alert correlation technique that

will reduce the number of alerts by identifying

similar alert characteristics coming from different

sources. The correlation system should also be able

to define the relationship between those alerts and

detect a new form of attack. Previous alert

correlation systems depended on prior knowledge

and consequences of alerts [2, 7, 8], and lacked the

ability to detect a new attack. In [6], Qin et al. used

a clustering technique to generate a high-level

aggregated alert, and causal analysis to discover

new relationships from the attacks. This approach

does not depend on the previous knowledge for

pattern matching and is therefore capable of

discovering new attacks.

Fig.5. Attack Scenario Construction Process.

2) Core Contribution: As a part of this research, Qin et

al. used time series and statistical analysis to

combine the low-level alerts using their attribute

information, thus ensuring a reduction of the high

volume of alerts. Clustering was used to change the

low-level alerts into aggregated alerts. Then, the

alerts were prioritized depending on the relationship

to the networks, hosts and goals of the attacks.

Finally, attack scenarios were constructed based on

the correlated alerts generated through causality

analysis. Figure 5 illustrates the attack correlation

process developed by Qin.

a) Alert Aggregation and Clustering: The four-step

attack scenario generation process starts with alert fusion

and reduction of the large volume of alerts. Based on the

Intrusion Detection Message Exchange Format (IDMEF)

standard, each alert is attributed with a timestamp, user

name, process name, attack class and sensor ID, source

and destination IP, and port [9]. In the alert aggregation

step, alerts with overlapping attribute values are first

combined considering a negligible difference in the

timestamp field using the multivariate matching

algorithm. Later, alerts are aggregated based on the

attribute data and the source of the alerts [7].

Aggregated alerts are further grouped using different

clustering algorithms, such as conceptual clustering,

based on similar characteristics of the alerts [10]. In this

case, alerts with the same attributes fall into the same

cluster. This step reduces the number of redundant alerts.

Next, hyper-alerts are generated which contain the same

attributes, but different timestamps.

b) Alert Prioritization: Alert prioritization is a step of

assigning each hyper-alert a rank for more analysis and

correlation. Two attributes are considered in computing

the alert priority - how pertinent is the alert to the

configuration of a secure network and host, and the rank

of severity assessed by the analysts. This approach was

used by Porras et al. in their mission-impact-based model

using a correlation engine called M-Correlator [8].

Fig.6. Sample Bayesian Network.

Priority ranking is assigned to the alerts with a priority

computation model based on a Bayesian Network. A

Bayesian network is a directed acyclic graph where nodes

represent a variable with multiple states, and edges

represent the dependency between the variables, as

shown in Figure 6. Each child node has an associated

Conditional Probability Table (CPT) where entries have

the following format, shown in Equation 1, illustrated

based on the child node V1 given in Figure 6.

 𝐶𝑃𝑇𝑖𝑗 = 𝑃(𝑉1 = 𝑗|𝑅 = 𝑖) (1)

In this priority computation model, Bayesian inference

is used to calculate a belief over a particular state of a

variable. This computation produces results in the range

[0,1]. The priority of a hyper-alert is calculated

comparing the dependencies associated with an attack

with respect to the configuration of the network. A pre-

4 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

built knowledge base with the entry of hyper-alerts

associated with host configurations is used for this

comparison. The comparison process performs another

set of filtering on the alerts.

c) Alert Time Series Formulation: In this step, a series

of equally distant time slots is designed to accommodate

the already processed hyper-alerts and formulate a hyper-

alert time series variable. If R is considered as a time

range with equal time intervals T, then the number of

total time slots is, 𝑆 = 𝑅/𝑇 . For a cluster A with the

following formation:

𝐴 = {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁}𝑡(𝑚) (2)

𝑚 = {0,1,2, … , 𝑘} is the set of alerts that falls in the m
th

time slot.

d) Alert Correlation: In this phase of the alert scenario

generation step, the Granger Causality Test (GCT)

algorithm is used for pairwise correlation between alerts

[11]. If there are two time series variable x and y, then

GCT can be applied to these two variables to see if x

contains necessary statistical information about y.

Variable x is said to be Granger-causes y, if a relationship

is found between the two. The GCT algorithm is based on

the following fact: if B occurs as an effect of A, then

event A should always happen before event B. Therefore,

A is considered a cause-event and B an effect-event.

In GCT, the variable b against the effect-event B is

modeled against the Autoregressive Model (AR model)

and the Autoregressive Moving Average Model (ARMA

model). AR model generates the value of variable b based

on its k previous values; however, ARMA model predicts

the current value of b based on the past k values of both b

and a, variables associated with cause-event A. Finally,

Granger Causality Index (GCI), g, is calculated based on

the residuals of these two models.

With GCT, a relationship between a set of hyper-alerts

is basically determined based on a particular hyper-alert

A. The GCI value of each pair is then stored and

compared to generate a list of increasingly ordered values

with the GCI value. Then, a list of candidate alerts is

marked as causally related to alert A.

The correlation step also includes identification and

elimination of background alerts. The Ljung-Box test is

used in this method to identify background alerts [12].

Background alerts usually contain random attributes that

help to identify the particular type of alert [13].

3) Limitation: Qin’s statistical approach of identifying

correlated alerts can be a vital part of an attack

graph generation process. It can identify a new form

of attack without any prior knowledge about the

nature of the attack. However, this approach lacks

the ability to generate scenarios without the

intervention of a system analyst. CPTs in the attack

prioritization phase are neither adaptive nor updated

according to the mission goals. Instead, they are

developed based on prior experience and domain

knowledge. Qin’s approach also suffers from false

causality alert scenarios when the volume of

background alerts is large. Also, the Ljung-Box test

cannot completely filter the background alerts, and

advanced knowledge is required to inspect the alert

candidates produced from GCT.

B. A Scalable Approach to Attack Graph Generation

[14]

1) Key Motivations: Though research on attack graphs

has been running for decades, most of the works

suffer from proper scalability and lack of logical

formulation. Philips et al. developed a state-based

attack graph representation model in 1998 which

experienced an exponential problem in analyzing

attack scenarios. They applied partial-order

reduction to remove duplicate attack paths, but did

not indicate any clear performance efficiency [15].

The model-checking based approach for attack

graphs by Sheyner et al. also suffers from this same

issue [14]. Therefore, Ou et al. proposed a logical

attack graph. It illustrated the way to produce a

derivation trace and generate an attack graph using

the trace in quadratic time.

The customization of input information and the

resulting graph data structures is another problem with

most of attack graph tools. These tools require additional

input in a specialized data format and often produce

complex, unclear attack graphs. Ou’s proposed logical

attack graph clearly specifies the configuration

information of the system and potential privileges of the

attacker. Finally, Ou’s approach also answers the

reasoning of attack scenarios rather than simply showing

the attack steps in an attack graph.

2) Core Contribution: Although it encounters the state

explosion problem, the logic-based approach

proposed by Sheynar et al. is superior to the ad-hoc

attack graphs from two points of view. It is more

efficient than customized algorithms for a complex

scenario, and it also enables further analysis of the

graph data structure. Sheynar's approach built on a

reasoning system called MulVAL [16]. The

proposed approach of Ou et al. is designed based on

the same system [14].

a) MulVAL (Multihost, multistage Vulnerability

Analysis): MulVal is a framework for designing the

interactive relationship between different software

vulnerabilities with the configuration of a system and

network. It basically determines the impact of various

software bugs on a network. This sort of system usually

demands two features: automatic integration of

vulnerability specifications generated by the bug-

reporting community, and scalable analysis irrespective

of the size of the network. MulVAL was designed to

fulfill both of these features. It consists of a scanner that

is run asynchronously in each host, and an analyzer

which runs whenever the scanner captures new

information. The MulVAL reasoning engine uses XSB to

analyze interaction rules based on input data. XSB is

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 5

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

basically a model that provides proper semantics for logic

programs [17].

Fig.7. Datalog Interaction Rule.

b) Interaction Rule: MulVAL uses Datalog facts to

represent the configuration information. Inputs for

MulVAL analysis include advisories, system and network

configuration, information related to user and policy, and

interaction records. The following is an example scenario

represented in Datalog.

The code snippet in Figure 7 represents a rule similar

to a vulnerable scenario where the attacker wants to

achieve a higher privilege by remotely exploiting a

vulnerability of a host. A Program running in the Host

contains the vulnerability with the privilege User and

scanning the Port and Protocol. To exploit the service for

upgrading privilege, the attacker first accesses the

network and executes a random code as User. The first

line of the Datalog rule contains the conclusion while the

rest of the lines are the conditions needed to meet the

conclusion. Capitalized words represent Datalog

variables. Predicates are divided into multiple categories:

primitive predicates refer to configuration information

recorded by the host and network scanners, and derived

predicates are generated by successively applying

interaction rules on the primitive predicates.

Fig.8. Logical Attack Graph Generator.

c) Logical Attack Graph: Ou et al. modified the

MulVAL reasoning engine to include an additional

functionality - record the trace of the evaluation

performed by XSB. These traces, also known as attack

simulation traces, are passed to the graph builder. Figure

8 illustrates the steps of a logical attack graph generator.

The graph builder generates a directed graph with a

tree-like structure. Two different types of nodes are used

in the graph to represent the derivation node and fact

node. Fact nodes also have two different forms: primitive

and derived fact nodes. Every fact node has a predicate

applied to its argument, and a derivation node has an

interaction rule. Edges in the graph represent a

dependency relationship between nodes. An edge from

the fact node to a derivation node determines how a fact

depends on an interaction rule, and an edge from a

derivation node to the fact node means that the fact has

satisfied the precondition rule of the derivation node. In

this graph, the derivation nodes usually form a

conjunction node that requires multiple facts to satisfy it;

on the other hand, fact nodes form a disjunction node

because there might be multiple ways to generate a fact.

Fig.9. Attack Simulation Trace.

d) Interaction Rule to Graph Transformation: The

graph builder builds a logical attack graph based on the

attack simulation trace. The MulVAL reasoning engine is

modified to record this trace by adding an additional

subgoal as an output of the engine. In this scenario, the

rule shown in Figure 7 is transformed into the form

illustrated in Figure 9. The attack graph is computed from

all the simulation traces that are produced by traversing

all the possible derivation paths. Simulation traces are

recorded in the form (TraceStep, Fact, Conjuct). In the

attack graph, TraceStep forms the derivation node, Fact

is designated as the parent, and Conjunct becomes the

child node. The sample attack graph shown in Figure 10

is derived from Figure 7.

6 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

Fig.10. Attack Graph.

3) Limitation: Ou’s proposed model shows a definite

superiority over the other models in terms of

efficiency. It can generate an attack graph

polynomial to the network size. However, to create

a complete attack graph, attack conditions should be

expressed in propositional formulas - otherwise, this

method overlooks that particular attack condition.

Also, an attack graph generated in this way contains

loops which restrict it from converting a graph to a

tree. Ou discussed a possible solution to this

problem, but how this solution affects the proposed

algorithm is not properly explained.

Fig.11. Proposed Attack Correlation and Graph Generation Approach.

C. Alert Correlation for Extracting Attack Strategies

[18]

1) Key Motivation: Alert correlation is an integral part

of designing an efficient intrusion detection and

response system. Identifying the attack strategy and

analyzing a large volume of alerts generated by the

Intrusion Detection System (IDS) is the principal

goal of alert correlation. There are different

approaches of alert correlation based on feature

similarity, known scenario, or cause and effect

relationships. All these approaches lack features to

identify relationships between alerts: some cannot

identify causal relationships, some are applicable

only in familiar situations, and some require

predefined rules and expected consequences [19, 20,

21, 22, 23, 24]. Zhu et al. developed a correlation

method that enables automatic extraction of an

attack strategy from intrusion alerts without prior

knowledge of the alerts. They used an Alert

Correlation Matrix (ACM) to store the strength of

any pair of alerts. ACM is initialized in the training

phase, and then used for retrieving strategies.

2) Core Contribution: Intrusion or anomaly detection

depends on detailed information of a system, and

proper understanding about the anomalous behavior

of the system that occurs due to different attacks.

Building an exact profile of the general behavior of

the system meets the first requirement in this case,

while discovering attack strategy from IDS

generated alerts fulfill the second criteria. The

approach Zhu’s proposed method is developed

based on the concept of a neural network. A

knowledge base is first built through supervised

learning and stores required relationship attributes

between alerts like correlation strength and average

time difference between two alerts. The correlation

engine uses Multilayer Perception (MLP) and

Support Vector Machine (SVM) to assign

correlation probability to an alert. This correlation

engine is used to generate hyper-alert graphs and

attack graphs that represent a real attack scenario.

Figure 11 depicts the general model of this proposed

method.

Fig.12. Attack correlation matrix.

a) Alert Correlation Matrix: The Alert Correlation

Matrix (ACM) is an n x n matrix where each cell contains

a correlation weight between two alerts from a set of n

alerts {𝑎1, 𝑎2, … , 𝑎𝑛}. The correlation weight also refers

to the causal relationship between the alerts. An ACM

with 3 alerts {𝑎1, 𝑎2, 𝑎3} looks like the one shown in

Figure 12. Each correlation is defined by 𝑐(𝑎𝑖 , 𝑎𝑗) which

refers to a relationship between two alerts ai and aj where

ai arrives before aj and holds a weight of 𝑊𝐶(𝑎𝑖,𝑎𝑗)

calculated from N number of occurrences of these two

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 7

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

alerts with probability p. This structure and correlation

weight of ACM also provide some knowledge such as

correlation strength (Π), temporal and causal relationship.

The correlation strength (Π) helps determine the

correlation weight by calculating Backward Correlation

Strength (Π𝑏) and predicting intrusion. It also helps

recognize an attack by measuring Forward Correlation

Strength (Π𝑓). The temporal relationship refers to the

sequence of the occurrence of the alert in a cell, while the

causal relationship reveals the actual relation. ACM gets

updated through the correlation engine over the time

when any alert is generated.

b) Feature Selection: Zhu followed an approach

proposed by Valdes et al. while selecting features and

computing probabilities based on these to find the actual

correlation weight between alerts [7]. The 6 features

included in the methods are: the similarity between the

source IP address, target IP address, the similarity in port

numbers, the similarity between source and target IP

address of two successive alerts, backward correlation

strength of two alerts, and frequency of the correlation

between the alerts.

c) Alert Correlation: The alert correlation technique in

Zhu’s method uses both Multilayer Perception (MLP) and

Support Vector Machine (SVM) to determine the

relationship between any two alerts and the probability of

correlation. MLP uses an error-correction rule, and SVM

is developed based on the concept of risk minimization

principle. MLP usually suffers from the over-fitting

problem while SVM might not produce accurate output

all the time. Therefore, this approach follows a

combination of both these methods to determine the

relationship.

When the relationship between a set of alerts is defined,

hyper-alert graphs are generated from the output of the

correlation. Hyper-alert graphs generated this way help in

identifying multiple goals of an attacker. \Correlation

threshold and correlation sensitivity are used to construct

the graph. The first one determines the probability of the

relationship between alerts, and the second one

determines to what extent a new alert can join a hyper-

alert from a set of hyper-alerts. In this correlation method,

the ACM is continuously updated so that the latest

correlation strength can be applied to the future

correlation process.

d) Attack Graph: Based on the training data and output

of the correlation algorithm, attack graphs are generated.

The attack graph eventually helps network administrators

predict the probable attack while observing the pattern of

the received alerts. Attack graph generation starts with an

alert representing a particular attack. This process

iteratively scans the ACM horizontally to identify the

alerts likely to appear next considering one alert as a

reference point and run until no other alert is found in the

matrix.

There are considerable differences between the hyper-

alert graph and the attack graph in Zhu’s proposed

method. Hyper-alerts can be considered as an instance of

an attack graph. Usually, hyper-alert graphs do not

contain any cycle, while attack graphs may have a cycle

if the same hyper-alert appears multiple times.

3) Limitations: Zhu’s method proposed a different

technique for alert correlation as it introduced

Support-Vector Machine (SVM) and used a

combination of both Multilayer Perception (MLP)

and SVM to determine the relationship between

alerts. However, like other proposed methods, it has

also some limitations. As this method follows a

supervised learning approach, both MLP and SVM

need manually generated and labeled training. This

methodology requires additional effort and might

produce an erroneous result. Also, the attack graph

contains loops, and no approaches to eliminate the

loops are discussed.

D. Scalable Attack Representation Model using Logic

Reduction Techniques [25]

1) Key Motivations: Attack graphs and Attack trees are

the most popular attack modeling techniques. Since

the inception of the concept of presenting attacks

through graph structure, various models were

proposed in the form of attack graphs or attack trees.

These models include automatic construction of

attack scenarios in both forms, but none of these

approaches are proved to be efficient [3, 4, 26].

Analyzing an attack graph for a seemingly larger

network suffers from the state-explosion problem

while an attack tree lacks the feature for covering all

the attack scenarios [14, 25]. Efforts to generate

attack graphs and then transform them into a tree

structure also fails due to lack of scalability as the

methods generate nodes at an exponential rate.

Therefore, Hong et al. introduce two logic reduction

techniques to enable an automatic transformation of

an attack tree as well as ensure reduction of the size

of the tree.

2) Core Contributions: The attack representation

model goes through four different phases to get a

complete shape. Its life cycle start with generation

of the model. It, then, gets a visualized form through

textual or graphical representation. Next, this

representation model is analyzed against the

particular network in which it is designed. Finally,

the modification phase reconstructs the model based

on the changes that occurred in the network system.

The logic reduction techniques Hong proposed are

devised considering the reconstruction phase of the

attack tree. The automatic construction approaches

of the attack trees maintain the integrity of the

original tree while reducing the size. In the Full Path

Calculation (FPC) approach, similar nodes are

configured as a single group. On the other hand, the

Incremental Path Calculation (IPC) approach

minimizes repetition of the node through recursive

expansion of the attack path. The approaches are

described based on an example scenario shown in

Figure 2 and used throughout this section. In this

network, the nodes are labeled alphabetically with

8 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

the attacker host as A and the target host (remote

access to host) as E. The intermediary attack steps,

such as deploy .rhhost file, remote login and exploit

buffer overflow, are vulnerabilities in different hosts

labeled as B, C and D. This example attack scenario

can be expressed as an attack tree with conjunctive

and disjunctive nodes as illustrated in Figure 13.

Fig.13. Full Attack Tree Generated From Example Network.

a) Full Path Calculation (FPC): Logic reduction using

full attack path initially requires the full attack tree to be

represented in a logical expression. The reduction process

eliminates the attack sequence and groups similar nodes

together. In this case, an element from the attack tree is

selected first, then the selected node is factorized from

the complete logical expression. This process iteratively

runs by selecting a common element from the rest of the

nodes of the graph. Paths with similar nodes are

evaluated as a container of similar information in this

approach. The logical expression of the full attack path is

shown in Equation 3 and in reduced form using the FPC

as shown in Equation 4.

BDE + CDE (3)

BDE + CDE = DE(B+C) = E(D(B+C) (4)

The simplified attack tree considers AND and OR

nodes with two inputs as illustrated in Figure 14.

Fig.14. FPC and IPC Generated Attack Tree.

b) Incremental Path Calculation (IPC): Full Path

computation of the complete attack tree suffers from the

lack of efficiency when all the paths are included in the

computation. IPC considers reachability information from

every node, and overcomes the problem of FPC.

Reachability information against each node is separately

maintained while calculating the attack path. The IPC

approach follows this information while evaluating a

particular node and includes the next attack path.

Eventually, the process stops when all the possible attack

paths are included.

Table 1. Reachability of Nodes

Nodes A B C D E

Neighbors B+C D D E -

Now, let's consider the given scenario based on the

reachability shown in Table 1. The algorithm starts from

the attacker host A with the target shown in Equation 5

referenced from the reachability table.

B + C (5)

In the next step, reachability is checked for each of the

components found in the first iteration and recursively

moves forward until the target is reached. Steps after the

initialization are shown in Equations 6 and 7.

B(D) + C(D) (6)

B(D)(E) + C(D)(E) (7)

Factorizing the final step ultimately generates the

similar expression shown in Equation 2 which results in

the similar tree depicted in Figure 14. In the IPC

approach, repeated nodes are eliminated to avoid cycles.

If any node has any ancestor in its reachability list, that

ancestor is not considered again in a logical expression.

3) Limitations: The evaluation and complexity analysis

of the logical reduction approaches show the

efficient utilization of the attack tree after

transformation, but these approaches have some

limitations. These proposed algorithms perform well

in small attack trees; however, with a larger attack

tree, FPC is affected by the exponential number of

nodes that it requires to process and IPC suffers

from inefficient memory allocation.

E. Efficient Attack Graph Analysis through

Approximate Inference [27]

1) Key Motivations: Protecting networks through

effective vulnerability identification and prevention

is often affected by the lack of expertise, and

requires interruption to the system. Therefore,

optimized resources for protection need to be

determined by risk-driven security measures - which

demands network risks assessment, critical

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 9

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

vulnerability prioritization and finally calculating

the risk based on the severity and probability of the

threat. Dependencies between the attacks are mostly

ignored in these scenarios which eventually affect

these analyses as well. Munoz-Gonzalez et al.

provide an elaborate discussion on the Bayesian

Attack Graph (BAG) which maintains a rigid

relationship among random variables and enables

modeling uncertainty about an intruder’s intention

and capabilities [28]. Variable elimination (VE) and

Junction Tree (JT) also allow exact inference in

BAG by computing unconditional probabilities for

each node; however, exact inference can be only be

applied to a smaller graph and computation is

marked as an NP-Hard problem. Approximate

inference through Loopy Belief Propagation (LBP)

is introduced by Munoz-Gonzalez et al. to overcome

the issue with network size.

2) Core Contributions: Attack graphs are a well-

known approach for analyzing and understanding

attacks and identifying efficient preventive measures

by the system administrators [3, 29, 30]. Static and

dynamic approaches are followed to analyze the

attack graphs. In the static analysis of an attack

graph, the possible paths are devised based on

previous knowledge about network vulnerabilities.

This knowledge is eventually used in selecting

appropriate countermeasures. On the other hand,

dynamic analysis of attack graphs enables capturing

an attack scenario at any moment of a particular

attack and determines the possible target or

upcoming threats. Due to nature of these analyses,

these are also referred as proactive and reactive

approaches [27]. Munoz-Gonzalez et al. introduced

approximate inference through LBP for both static

and dynamic analysis of BAG. They also proposed

sequential and parallel implementations of LBP and

draw a comparison between these two

implementations. The efficiency of LBP in terms of

allowing a system administrator to plan protective

strategies in advance by monitoring estimated

probability in every iteration was shown.

a) Bayesian Attack Graph: A Bayesian attack graph is

a model built upon the concept of a Bayesian network.

The network is basically a directed acyclic graph (DAG)

that includes nodes that are random variables and edges

that are dependencies between variables. Though attack

graphs often include cycles, Munoz-Gonzalez et al.

utilize the solution provided by Wang et al. to manage

cycles in an attack graph to generated a DAG [31].

The nodes in a BAG represent security states an

intruder can achieve. Each node of an attack graph is

attributed with conditional probability Pr (𝑛𝑖|𝑝𝑖) which

refers to the probability of the node ni based on the

probability of its parent node pi. This computation also

considers the vulnerability vi used to compromise the

node and this value is estimated based on the Common

Vulnerability Scoring System (SSCVSS) [32]. To build

the conditional probability table, two scenarios are

considered based on the given estimation of vulnerability.

In the first scenario, all the conditions need to be satisfied

to reach a particular node and build an AND conditional

table for that particular node. On the other hand, any of

the conditions will suffice to execute the attack on a node

and this builds an OR conditional table.

BAG also allows eliminating cycles in the graph

through breaking the complete graph into smaller parts

instantiated with the node that initiates an attack. This

approach eventually helps in converging the value of the

nodes and increases the efficiency of LBP estimation.

b) Risk Assessment: Munoz-Gonzalez’s approach

contains a combination of static and dynamic risk

analysis based on the BAG. In both models, the BAG is

first built based on either the network topology or the

analysis on alerts. Then, the static analysis approach

computes the conditional probability tables of the nodes

based on the CVSS score. LBP is used as an approximate

inference technique to identify the vulnerable points of

the network. In the dynamic assessment, the conditional

probabilities are recomputed based on the detected attack

in a network at any point of time. In this case, the state of

the variable of the compromised node is set to 1. This

updated state of one node eventually affects the posterior

probabilities of the rest of the nodes.

c) Inference of Bayesian Attack Graph: Belief

Propagation(BP) and LBP are approaches to derive

inference in BAG. BP is a well-suited approach for exact

inference in tree or poly-tree graphs, while LBP can

compute approximate inference in graph structures

containing cycles [33]. Bayesian Network facilitates

computing the joint probability of a set of random

variables in the form of product operation of factors of

the variables or their subset. This decomposition of

factors introduces factor nodes, and eventually a factor

graph along with the nodes representing the random

variables [34]. Unconditional probability of all the nodes

in a graph is calculated by BP through computing the

messages passing between factor nodes and variable

nodes. Dynamic analysis is different in the sense that it

requires re-computation of the factor of the nodes whose

value depend on the updated variables. LBP is an

extension of Belief Propagation. Munoz-Gonzalez

describes two different types of LBP: Serial Loopy Belief

Propagation (S-LBP) and Parallel Loopy Belief

Propagation (P-LBP). In the case of S-LBP, messages are

computed iteratively for each node until it reaches a

maximum range of iterations or the value converges. A

scheduling technique is applied for favorable

convergence and better efficiency of this approach. P-

LBP allows simultaneous updating of messages for all

variables and factor nodes based on the value achieved in

the earlier iterations.

3) Limitations: Munoz-Gonzalez shows an

experimental result of the efficiency of the proposed

S-LBP and P-LBP methods in terms of accuracy,

convergence and execution time. But, LBP cannot

always guarantee convergence [35]. Also, the

convergence of LBP does not always ensure

10 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

correctness of the probability estimations. The

alternative approaches to ensure convergence are

found to be inefficient in most of the scenarios [27].

III. SYNTHESIS OF CORE PAPERS

The approach for building an attack graph to attack tree

conversion technique first requires identifying paths to

construct the attack graph, then eventually converting the

attack graph into an attack tree. In a general attack tree

modeling approach, attack goals are decomposed into

sub-goals until the sub-goals become atomic attacks [36].

Attack trees can also be constructed manually or using

already developed attack tree designing tools [37, 38, 39,

40]. Section II highlighted the various models of

developing an attack graph based on the information

acquired from different alerts and network configuration

[6, 14, 18], the process of analyzing the attack path [27]

and scalable representation of an attack tree [25]. Part of

the research presented in this paper is to bridge between

these concepts to develop an automatic attack tree

generation approach. Therefore, in this section, the

contribution of these concepts in our research will be

discussed.

A. Attack Graph Modeling

Three of the five selected papers discuss different

approaches to attack scenario modeling and generating

attack graphs. These approaches are considered to be the

initial step to formulate attack trees from general alerts

and system configuration. In attack graph generation, not

only does system configuration plays an important role in

determining the model of an attack, identifying attack

relevant alerts and correlating those alerts based on their

attributes is also vital. The proposed methods of Qin et al.

and Zhu et al. concentrate on determining the relationship

between alerts through an alert correlation approach.

However, a model-checking approach is used by Ou et al.

to develop an attack graph in a scalable manner.

Both Qin et al. and Zhu et al. developed their model

based on the dataset of the Grand Challenge Problem

(GCP) from DARPA. From this large volume dataset,

they extracted some important attributes which mostly

described an alert and tried to find the relationship

between these alerts based on those attribute values. Qin

et al. defined the relationship between alerts based on the

similarity of the attribute values, while Zhu et al. selected

six primary features that, in some cases, considered

similar values in different attributes (e.g., the similarity of

the source IP of one alert with the destination IP of

another alert). Qin et al. thus reduced the number of alerts

generated by different IDS or firewalls and eventually

grouped the alerts. This is an essential approach in

determining the particular set of information that must be

analyzed from a large volume of data. Qin et al. then

allowed system administrator’s input to determine the

priority of hyper-alerts generated through fusion of alerts.

The system administrator uses configuration information

of the host and network to determine the rank of the alerts.

Prioritized alerts were further arranged based on the

time sequence and provided as input for the Granger

Casualty Test (GCT) to determine the ultimate

relationship [6]. Zhu et al. considered the time series

based relationship as a temporary measure, and

determined the causal relation based on forward and

backward correlation strength. The temporal and causal

relationship eventually built the cell weights of the Alert

Correlation Matrix (ACM). Zhu et al. also used

Multilayer Perception(MLP) and Support Vector

Machine(SVM) to build the relation between new alerts

and hyper-alerts and also update the ACM with new

relationships and correlation weights [18]. Zhu et al. used

a stronger measure to correlate different alerts and

generated new attack scenarios by determining the

relationship with new alerts and existing hyper-alerts

from the ACM. The alert aggregation approach used by

Qin et al. can complement Zhu’s method by reducing the

number of alerts and eventually increasing efficiency.

Both of these approaches require human intervention

either for prioritizing alerts or for supervised learning.

The logic-based approach proposed by Ou et al. is

mostly dependent on the system configuration, and

defines the attack path based on the rule determined from

the configuration [14]. The rule also includes the possible

vulnerabilities associated with a host and network. These

features were already provided by MulVAL, but Ou et al.

added the attack simulation trace to generate the final

attack graph [14, 16]. Although this approach determined

the attack path by iteratively looking into a large set of

rules and associated attack traces, it lacked the feature of

dynamically analyzing the data generated by various IDS,

and highly depended on the rules and vulnerabilities set

by the system administrator.

B. Attack Graph Analysis

Attack graph analysis is another important phase of

constructing the proper model of attacks. It facilitates the

process of assessing the risk and identifying the actual

vulnerable point on the attack path both statically or

dynamically. Researchers have proposed different

matrices for risk assessment over the years: rate at which

the asset can be acquired, measure of risk based on the

weakest path, measurement based on the number of

attacks, length of the shortest path and standard deviation,

normalized mean, median and mode of the length of the

paths [15, 41, 42, 43, 44]. Munoz-Gonzalez et al.

developed their approach for analyzing an attack tree

based on Bayesian Attack Graph(BAG) and used the

Common Vulnerability Scoring System(CVSS) values as

a standard of measurement [45]. Their approach

identified an attack path based on the pre-recorded

information through static analysis and detected possible

threats through dynamic analysis. The inclusion of Loopy

Belief Propagation(LBP) to measure approximate

inference enabled the algorithm to be applicable in a

larger network. An attack graph analysis designed with

this approach basically helps in devising a concrete attack

path by removing the less vulnerable nodes from the

attack graph, and can help in reducing the false positive

alerts using both static and dynamic analysis.

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 11

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

C. Logic Reduction

Nodes in attack trees are built with various forms of

boolean algebra where the status of a particular network

or host plays the role of a boolean variable. These forms

of boolean logic can often be further reduced to a

simplified structure for better understanding and faster

analysis. Hong et al. proposed two logic reduction

algorithms to simplify the structure of attack trees [25].

These approaches can be applied partially or fully in an

already constructed attack tree and can improve the

performance of attack tree evaluation. In their first

algorithm, all vulnerable nodes in an attack path are

included with groups containing the same nodes to define

the simpler attack path. In their second approach,

vulnerable nodes are iteratively included in a path based

on the reachability of the initial attack node. Although

both of these approaches suffer from memory and

performance efficiency while deriving the simplified

version of attack tree, they showed their superiority by

constructing less-complex attack trees.

D. Summary

Papers for this literature study have been chosen based

on their relevance in different steps of developing an

attack tree from an attack graph. The structure of the

attack tree basically depends on either the configuration

of the host/network system, or the information and alerts

produced by the IDS. The initial set of selected papers

concentrates on the construction of attack graphs based

on the host or network configuration or generated alert

data. One paper discussed vulnerability analysis which

eventually can determine the efficiency of the already

generated attack graph developed by the first set of

papers. The last paper in the selected set can be used to

generate a simpler attack graph from a full attack tree

through two proposed algorithms. The approaches

discussed from these papers manage aspects of

developing an attack tree; yet, these approaches either

suffer from the lack of efficiency or cannot completely

satisfies all the required properties and attributes for

efficient evolution from the raw information or rule to

build an attack tree. These limitations left opportunities

for further research to find effective techniques for attack

tree construction that can reduce false positive alerts,

manage a large volume of data and larger networks, and

be applied in real-time intrusion analysis.

IV. THE CURRENT STATE OF THE ART

Attack graphs and attack trees are used for attack path

analysis. Over the years, several attack models have been

developed based on these two basic ARMs, and different

matrices have been included for computing the possible

attack paths from attackers’ and system administrators’

perspectives. These models are also used in the cloud

environment for intrusion detection and attack prediction.

In this section, recent researches on these areas will be

highlighted from the context of a variety of applications

in the various environment.

A. General Attack Analysis Approaches

Attack trees and graphs are generally used to create a

model to analyze attacks that occur in computer networks.

Attack and Protection trees, Defense Trees and Attack-

Defense trees were a few of the models built upon the

regular attack tree and used to analyze attacks from both

an attacker’s and a defender’s point of view [46, 47, 48].

Edge et al. built a Protection tree to identify the possible

protection areas by analyzing the attack tree and

calculating the impact, probability and cost of the

attacker’s goal. In this scenario, the Protection tree is

separate from the Attack tree, but built upon calculated

data found in the attack tree [46]. Bistarelli et al.

introduced a Defense tree as an extension of an attack

tree. It can be used to measure the return of the actions

for both an attacker and defender [48]. Two indexes,

Return on Investment (ROI) and Return on Attack (ROA),

define the success of the defender in terms of applying

security measures against an attack and success of an

attacker in terms of successful exploitation of a

vulnerability, respectively. Kordy et al. have devised their

model to overcome some limitations of attack trees. First,

attack trees are not capable of identifying the interaction

between attacks in a system and defenses implanted

against the particular attack. Second, attack tree cannot

properly visualize the evolution of security for a system

from the action of an attacker and defender. Unlike

Protection tree, both Defense tree and Attack-Defense

tree accommodate two types of nodes to refer actions

regarding attack and defense. These models are also

capable of analyzing the economic effectiveness of

actions taken either for an attack or defense.

Recent research reveals the application of attack trees

through game-theoretic analysis of attack scenarios. In a

game-theoretic approach, an attacker’s best option is

deduced based on multi-object optimization and an

administrator or defender improves his information by

keeping track of every action of the attacker [49]. Game

theory is considered to be an adaptive and faster

algorithm to learn to determine an attacker's future action

and behavior. Kordy et al. showed the equivalence of

both the Attack-Defense tree and binary Zero-Sum

extensive game in terms of maintaining outcomes and

structures while converting between these two forms [50].

The game theoretic analysis approach involves actions of

an attacker followed by the actions of a defender in the

form of an attack graph. It eventually helps in

determining the preventive measure for each attack.

Attack tree computation with multiple parameters

illustrates the complete analysis associated with an

attacker's action. Initially attack trees were analyzed only

with cost. Buldas et al. included success probability and

penalty for both failure and success in their analysis [51].

Later, Jurgenson et al. introduced the concept of Gains

and Expanses calculated from attack cost and

achievement, and probability and penalties in their

analysis which successfully helped in analyzing the

possible attack path with a more realistic approach [52].

Though attack graphs are an established tool for risk

analysis and attack prediction – it does not consider the

12 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

uncertainty of probability while measuring the probability

of vulnerability exploitation. GhasemiGol et al. has

recently developed an attack forecasting model using

intrusion alerts, active responses, and a dependency graph

considering uncertainty of attack probabilities [53]. Their

approach includes an uncertainty-aware attack graph as

the primary component. Uncertainty of the probability of

attacks defines the probability of vulnerability

exploitation of this graph - active attacks captured by the

IDS increases the probability of other attacks in the future

while responses from the intrusion response components

against an attack lower the probabilities of the

corresponding attack. Dependency graphs play a vital

role in this approach by defining the relationship between

the services and the processes of the network.

B. Attack Analysis in Cloud Environment

ARMs are currently used successfully in constructing

attack scenarios and determining system configurations in

the cloud environment as well [54, 55, 56, 57, 58].

Nagaraju et al. have used attack graphs in the cloud

environment to ensure clarity in configuration and

validation of cloud components, especially during multi-

factor authentication [54]. They have assessed the

efficiency of multi-factor authentication by creating

configuration graphs with access points dedicated for

authentication which later constructs an attack graph

associated with other components of the system. These

graphs help system administrators identify the vulnerable

points in a cloud architecture. Network Intrusion

detection and Countermeasures Election (NICE) is an

intrusion detection system developed based on the

concept of an attack graph [56]. In a cloud environment,

each server is monitored through NICE-A, an intrusion

detection component of NICE, and can be moved to the

inspection stage based on the vulnerability points

assessed by NICE.

Ficco et al. introduced Attack Evaluation Tree (AET)

as an event correlation process to detect intrusions in the

cloud environment. Cloud monitoring systems, such as

mOSAIC monitoring cloudlets, cloud agency, and IDS

systems in other layers, collect information from different

layers and pass the information to a Security Engine (SE).

This SE adopts a Bayesian network based correlation

technique to identify a causal relationship between the

generated events. A predefined set of rules are defined by

the system administrator which are carried out by the SE

to detect anomalous activities of the cloud environment

[55].

Wang et al. proposed a modified Attack-Defense Tree

(ADT) to solve the threat risk analysis (TRA) problem in

cloud environment [59]. Existing approaches of threat

risk analysis with attack trees take reflective thinking of

the attacker and defender into account, which is not

always guaranteed. The proposed approach of Wang et al.

is built upon the interactive-oriented TRA scheme and

ADT which ensure proper response to the perceived and

actual intrusions in cloud services considering the

thinking of the attacker and defender.

Alhebaishi et al. present another threat modeling

technique using attack graph and attack trees [60]. They

constructed two cloud infrastructures using the concept

and services provided by Cisco, VMWare and OpenStack,

and built the threat models to understand, evaluate and

improve security attributes in a cloud environment. Their

proposed approach shows that attack trees can be used at

a higher abstraction level to design the attack path while

an attack graph can accommodate specific vulnerabilities.

This approach also facilitates the quantification process

using security matrices based on these attack

representation models.

V. FUTURE DIRECTION

The primary goal of our research is to develop an

advanced technique to generate attack trees. Application

of previous attack representation models demonstrates

that an advanced and automatic generation approach of

these models will make the attack analysis more dynamic

in a different environment. A strong background of

mathematical analysis and application of various

analytical approaches to attack trees make it a strong

candidate to continue further research. In this section, we

will explore the opportunities of research related to these

attack representation models as a part of our future

direction.

A. Attack Graph to Attack Tree Conversion

An attack tree is effective for both qualitative and

quantitative analysis as a detailed analysis can be possible

through feature extraction of attacks, and mathematical

analysis is convenient by assigning a cost and probability

for each action of an attack node. Attack trees, thus,

increase the possibility of identifying certain attacks or

facilitating computation of the cheapest preventative cost

of a possible attack [61]. However, the success of an

attack tree mostly depends on its completeness and its

formation. Completeness refers to the fact that an attack

tree contains all the possible atomic attacks at the node

level and maintains the proper sequence and path. Proper

formation ensures correct placement of an attack in the

attack tree with detailed information. However,

generating an attack tree that maintains both features is a

challenge.

Research around the attack tree generation process has

been running for years, but they are suffering from lack

of scalability, lack of completeness and generated models

are mostly limited to a specific attack scenario [62, 63,

64]. A solution of an attack graph to attack tree

generation is proposed through min-cut computation,

which is an NP-Complete problem [65, 66]. Attack graph

generation techniques discussed in this literature either

take IDS generated alerts or system configurations for

analysis and generate the graph. Some of these

approaches are not capable of correlating new alerts with

older alerts, while others cannot identify new attacks as

they do not perform dynamic alert analysis or lack

completeness.

Considering all these facts and findings, we have

planned to find a unified solution to map all sorts of

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 13

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

attacks in a general attack graph and transform graphs

into trees ensuring scalability and performance in the

transformation approach. We will incorporate existing

approaches to attack graph construction from alerts and

system configurations. We will also analyze the areas

required to fill up the gap to unify the graphs generated

through two different approaches: the alert correlation

based approach and the model checking based approach.

None of the papers discussed in this literature proposed

any efficient technique to convert attack graphs to attack

trees. BAG based analysis, described in Section II,

contains a discussion on the elimination of cycles from a

graph which can help in finding a probable tree structure;

however, this will need further research to build a

computationally sound attack tree model.

B. Attack Analysis in Cloud Environment

Cloud computing is a convenient model for on-demand

access to shared computational architecture which

requires minimal effort for resource management and can

be provisioned rapidly. Cloud computing has been

developing for a decade with numerous opportunities and

challenges. Trustworthiness is one of the principal

concerns associated with the cloud environment. To

subside the vulnerabilities associated with a cloud

environment, it is necessary to employ better anomaly

and misuse detection systems. The effect of flooding

attacks, insider attacks, and attacks on virtual machines

can be eliminated through faster analysis alerts from

Intrusion Detection Systems (IDS) [67]. IDS in cloud can

be categorized into four primary categories: Distributed

IDS, Network-based IDS, Host-based IDS and

Hypervisor-based IDS. There are two problems

associated with the large volume of data or alerts

generated by these IDS - 1. Correlating the large volume

of alerts generated by different IDS and generated from

different layers of cloud architecture, and 2. Handling

large volumes of false positive or false negative alert data

[68]. Recent research shows that ARMs can be applied in

a cloud environment [55, 56]. As a part of our future

research, we also plan to extend the attack tree generation

approach developed for the smaller network to larger

cloud architecture. We will explore how data generated

from different layers and IDS can be grouped and

correlated to generate attack graphs, and whether the

general approach for attack graph to attack tree

conversion can be applied in a cloud scenario as well.

C. Real-time Attack Analysis

Real-time attack or misuse analysis has been a part of

active research for a long time [69, 70, 71]. The purpose

of this research is to identify efficient techniques to detect

anomalies in a system through active monitoring of the

traffic and alerts generated by IDS and assessing and

predicting the possible risk of the system nearly real-time.

These sorts of prediction or detection systems allow

system administrators to take a preventive measure from

inside or outside attacks. Though different models have

been discussed to demonstrate their success in real-time

intrusion detection, ARMs have never been applied in

this scenario. Quantitative and qualitative analysis of

attack trees have the potential to develop a model based

on real-time anomaly analysis. We are including this

option as a part of our future research goal to explore how

attack tree modeling brings advancement in this area.

VI. CONCLUSION

Throughout this literature study, different attack

representation models have been discussed along with

their opportunities and techniques to develop them from

raw alerts and network or host configurations. Alert

analysis methodologies and attack tree transformation

techniques as steps of an attack graph to attack tree

conversion process have also been discussed. Recent

research conducted around these models have been

explored, and based on all the theories and facts, a list of

new prospective research dimensions has been introduced.

From our analysis, we have found that attack trees are

more a computationally efficient model for attack

analysis; therefore, in our future exploration, we will

prioritize the use of attack trees from a different direction.

We strongly believe that an advanced attack tree

construction approach makes attack analysis more

convenient in various environments and eventually makes

real-time intrusion detection more efficient.

REFERENCES

[1] R. W. Shirey, “Internet security glossary, version 2,” 2007.

[2] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling

multistep cyber attacks for scenario recognition,” in

DARPA information survivability conference and

exposition, 2003. Proceedings, vol. 1. IEEE, 2003, pp.

284–292.

[3] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.

Wing, “Automated generation and analysis of attack

graphs,” in Security and privacy, 2002. Proceedings. 2002

IEEE Symposium on. IEEE, 2002, pp. 273–284.

[4] B. Schneier, “Attack trees,” Dr. Dobbs journal, vol. 24,

no. 12, pp. 21–29, 1999.

[5] S. Mauw and M. Oostdijk, “Foundations of attack trees,”

in International Conference on Information Security and

Cryptology. Springer, 2005, pp. 186–198.

[6] X. Qin and W. Lee, “Statistical causality analysis of

infosec alert data,” in International Workshop on Recent

Advances in Intrusion Detection. Springer, 2003, pp. 73–

93.

[7] A. Valdes and K. Skinner, “Probabilistic alert correlation,”

in International Workshop on Recent Advances in

Intrusion Detection. Springer, 2001, pp. 54–68.

[8] P. A. Porras, M. W. Fong, and A. Valdes, “A mission-

impact-based approach to infosec alarm correlation,” in

International Workshop on Recent Advances in Intrusion

Detection. Springer, 2002, pp. 95–114.

[9] I. D. W. Group et al., “Intrusion detection message

exchange format data model and extensible markup

language (xml) document type definition,” Internet-Draft,

pp. 21–26, 2003.

[10] K. Julisch and M. Dacier, “Mining intrusion detection

alarms for actionable knowledge,” in Proceedings of the

eighth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2002, pp.

366–375.

14 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

[11] C. Granger, “Investigating causal relations by

econometric,” Rational Expectations and Econometric

Practice, vol. 1, p. 371, 1981.

[12] G. M. Ljung and G. E. Box, “On a measure of lack of fit

in time series models,” Biometrika, vol. 65, no. 2, pp.

297–303, 1978.

[13] A. J. Hayer, Probability and Statistics for Engineers and

Scientists. Duxbury Press, 2002.

[14] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable

approach to attack graph generation,” in Proceedings of

the 13th ACM conference on Computer and

communications security. ACM, 2006, pp. 336–345.

[15] C. Phillips and L. P. Swiler, “A graph-based system for

network vulnerability analysis,” in Proceedings of the

1998 workshop on New security paradigms. ACM, 1998,

pp. 71–79.

[16] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A

logic-based network security analyzer.” in USENIX

security, 2005.

[17] P. Rao, K. Sagonas, T. Swift, D. S. Warren, and J. Freire,

“Xsb: A system for efficiently computing well-founded

semantics,” in International Conference on Logic

Programming and Non-monotonic Reasoning. Springer,

1997, pp. 430–440.

[18] B. Zhu and A. A. Ghorbani, “Alert correlation for

extracting attack strategies,” IJ Network Security, vol. 3,

no. 3, pp. 244–258, 2006.

[19] F. Cuppens and A. Miege, “Alert correlation in a

cooperative intrusion detection framework,” in Security

and privacy, 2002. proceedings. 2002 ieee symposium on.

IEEE, 2002, pp. 202– 215.

[20] F. Cuppens and R. Ortalo, “Lambda: A language to model

a database for detection of attacks,” in International

Workshop on Recent Advances in Intrusion Detection.

Springer, 2000, pp. 197–216.

[21] O. Dain and R. K. Cunningham, “Fusing a heterogeneous

alert stream into scenarios,” in Proceedings of the 2001

ACM workshop on Data Mining for Security Applications,

vol. 13. Citeseer, 2001.

[22] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “Statl: An

attack language for state-based intrusion detection,”

Journal of computer security, vol. 10, no. 1, 2, pp. 71–103,

2002.

[23] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack

scenarios through correlation of intrusion alerts,” in

Proceedings of the 9th ACM conference on Computer and

communications security. ACM, 2002, pp. 245–254.

[24] S. J. Templeton and K. Levitt, “A requires/provides model

for computer attacks,” in Proceedings of the 2000

workshop on New security paradigms. ACM, 2001, pp.

31–38.

[25] J. B. Hong, D. S. Kim, and T. Takaoka, “Scalable attack

representation model using logic reduction techniques,” in

2013 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications.

IEEE, 2013, pp. 404–411.

[26] B. Schneier, Secrets and lies: digital security in a

networked world. John Wiley & Sons, 2011.

[27] L. Munoz-Gonzalez, D. Sgandurra, M. Barrere, and E. C.

Lupu, “Exact inference techniques for the analysis of

bayesian attack graphs,” arXiv preprint arXiv:

1510.02427, 2015.

[28] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security

risk management using bayesian attack graphs,” IEEE

Transactions on Dependable and Secure Computing, vol.

9, no. 1, pp. 61–74, 2012.

[29] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and

cost- effective network hardening using attack graphs,” in

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN 2012). IEEE, 2012, pp. 1–12.

[30] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S.

Boyer, “Modeling modern network attacks and

countermeasures using attack graphs,” in Computer

Security Applications Conference, 2009. ACSAC’09.

Annual. IEEE, 2009, pp. 117–126.

[31] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia,

“An attack graph-based probabilistic security metric,” in

IFIP Annual Conference on Data and Applications

Security and Privacy. Springer, 2008, pp. 283–296.

[32] Forum of Incident Response and Security Teams,

“Common vulnerability scoring system, v3 development

update,” https://www.first.org/cvss, [Accessed: 12-21-

2016].

[33] J. Pearl, “Reverend bayes on inference engines: A

distributed hierarchical approach,” in AAAI, 1982, pp.

133–136.

[34] C. M. Bishop, Pattern Recognition and Machine Learning

(Information Science and Statistics). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2006.

[35] Y. Weiss, “Correctness of local probability propagation in

graphical models with loops,” Neural computation, vol.

12, no. 1, pp. 1–41, 2000.

[36] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling

using attack trees,” Journal of Computing Sciences in

Colleges, vol. 23, no. 4, pp. 124–131, 2008.

[37] K. S. Edge, “A framework for analyzing and mitigating

the vulnerabilities of complex systems via attack and

protection trees,” DTIC Document, Tech. Rep., 2007.

[38] K. Edge, R. Raines, M. Grimaila, R. Baldwin, R.

Bennington, and C. Reuter, “The use of attack and

protection trees to analyze security for an online banking

system,” in System Sciences, 2007. HICSS 2007. 40th

Annual Hawaii International Conference on. IEEE, 2007,

p. 144b.

[39] I. Inc, “Attacktree+,” https://www.isograph.com/software/

attacktree/, [Accessed: 12-31-2016].

[40] A. T. Ltd., “Securitree,” http://www.amenaza.com/,

[Accessed: 12-31-2016].

[41] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K.

Kratkiewicz, M. Artz, and R. Cunningham, “Validating

and restoring defense in depth using attack graphs,” in

MILCOM 2006-2006 IEEE Military Communications

conference. IEEE, 2006, pp. 1–10.

[42] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A

weakest- adversary security metric for network

configuration security analysis,” in Proceedings of the 2nd

ACM workshop on Quality of protection. ACM, 2006, pp.

31–38.

[43] N. Idika and B. Bhargava, “Extending attack graph-based

security metrics and aggregating their application,” IEEE

Trans- actions on dependable and secure computing, vol.

9, no. 1, pp. 75–85, 2012.

[44] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting

with quantitative evaluation tools for monitoring

operational security,” IEEE Transactions on Software

Engineering, vol. 25, no. 5, pp. 633–650, 1999.

[45] L. Munoz-Gonzalez, D. Sgandurra, A. Paudice, and E. C.

Lupu, “Efficient attack graph analysis through

approximate inference,” arXiv preprint arXiv: 1606.07025,

2016.

[46] K. S. Edge, G. C. Dalton, R. A. Raines, and R. F. Mills,

“Using attack and protection trees to analyze threats and

defenses to homeland security,” in MILCOM 2006-2006

 An Evolutionary Approach of Attack Graph to Attack Tree Conversion 15

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

IEEE Military Communications conference. IEEE, 2006,

pp. 1–7.

[47] B. Kordy, S. Mauw, S. Radomirovic ́, and P. Schweitzer,

“Foundations of attack–defense trees,” in International

Workshop on Formal Aspects in Security and Trust.

Springer, 2010, pp. 80–95.

[48] S. Bistarelli, F. Fioravanti, and P. Peretti, “Defense trees

for economic evaluation of security investments,” in First

International Conference on Availability, Reliability and

Security (ARES’06). IEEE, 2006, pp. 8–pp.

[49] Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri,

“Game theory based network security,” Journal of

Information Security, vol. 1, no. 1, p. 41, 2010.

[50] B. Kordy, S. Mauw, M. Melissen, and P. Schweitzer,

“Attack–defense trees and two-player binary zero-sum

extensive form games are equivalent,” in International

Conference on Decision and Game Theory for Security.

Springer, 2010, pp. 245–256.

[51] A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J.

Willemson, “Rational choice of security measures via

multi-parameter attack trees,” in International Workshop

on Critical Information Infrastructures Security. Springer,

2006, pp. 235–248.

[52] A. Jurgenson and J. Willemson, “Computing exact

outcomes of multi-parameter attack trees,” in OTM

Confederated International Conferences” On the Move to

Meaningful Internet Systems”. Springer, 2008, pp. 1036–

1051.

[53] M. GhasemiGol, A. Ghaemi-Bafghi, and H. Takabi, “A

comprehensive approach for network attack forecasting,”

Computers and Security, vol. 58, pp. 83-105, 2016.

[54] S. Nagaraju and L. Parthiban, “Analyzing configurations

of authentication access points in cloud using attack

graph,” in 2015 IEEE International Conference on

Computer Graphics, Vision and Information Security

(CGVIS). IEEE, 2015, pp. 72–76.

[55] M. Ficco, L. Tasquier, and R. Aversa, “Intrusion detection

in cloud computing,” in P2P, Parallel, Grid, Cloud and

Internet Computing (3PGCIC), 2013 Eighth International

Conference on. IEEE, 2013, pp. 276–283.

[56] C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang,

“Nice: Network intrusion detection and countermeasure

selection in virtual network systems,” IEEE transactions

on dependable and secure computing, vol. 10, no. 4, pp.

198–211, 2013.

[57] Z. Hu, S. Gnatyuk, O. Koval, V. Gnatyuk, and S.

Bondarovets, “Anomaly Detection System in Secure

Cloud Computing Environment,” International Journal of

Computer Network and Information Security, vol. 9, no. 4,

pp 10-21, 2017.

[58] S. Hashemi and P. Hesarlo, “Security, privacy and trust

challenges in cloud computing and solutions,”

International Journal of Computer Network and

Information Security, vol. 6, no. 8, pp 34-40, 2014.

[59] P. Wang, W. Lin, P. Kuo, H. Lin, and T. Wang, “Threat

risk analysis for cloud security based on Attack-Defense

Trees,” in 2012 8th International Conference on

Computing Technology and Information Management

(ICCM), IEEE, 2012, pp. 106-111.

[60] N. Alhebaishi, L. Wang, S. Jajodia, and A. Singhal,

“Threat Modeling for Cloud Data Center Infrastructures,”

in International Symposium on Foundations and Practice

of Security, Springer, 2016, pp. 302-319.

[61] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer,

“Attack–defense trees,” Journal of Logic and

Computation, p. 29, 2012.

[62] R. Vigo, F. Nielson, and H. R. Nielson, “Automated

generation of attack trees,” in 2014 IEEE 27th Computer

Security Foundations Symposium. IEEE, 2014, pp. 337–

350.

[63] M. G. Ivanova, C. W. Probst, R. R. Hansen, and F.

Kammuller, “Attack tree generation by policy

invalidation,” in IFIP International Conference on

Information Security Theory and Practice. Springer, 2015,

pp. 249–259.

[64] S. Pinchinat, M. Acher, and D. Vojtisek, “Towards

synthesis of attack trees for supporting computer-aided

risk analysis,” in International Conference on Software

Engineering and Formal Methods. Springer, 2014, pp.

363–375.

[65] J. Dawkins and J. Hale, “A systematic approach to multi-

stage network attack analysis,” in Information Assurance

Workshop, 2004. Proceedings. Second IEEE International.

IEEE, 2004, pp. 48–56.

[66] M. Bruglieri, F. Maffioli, and M. Ehrgott, “Cardinality

con- strained minimum cut problems: complexity and

algorithms,” Discrete Applied Mathematics, vol. 137, no.

3, pp. 311–341, 2004.

[67] S. Roschke, F. Cheng, and C. Meinel, “Intrusion detection

in the cloud,” in Dependable, Autonomic and Secure

Computing, 2009. DASC’09. Eighth IEEE International

Conference on. IEEE, 2009, pp. 729–734.

[68] D. Yu and D. Frincke, “A novel framework for alert

correlation and understanding,” in International

Conference on Applied Cryptography and Network

Security. Springer, 2004, pp. 452–466.

[69] T. F. Lunt et al., “Real-time intrusion detection,”

COMPCOM Spring, vol. 89, pp. 348–353, 1989.

[70] K. Haslum, M. E. Moe, and S. J. Knapskog, “Real-time

intrusion prevention and security analysis of networks

using hmms,” in 2008 33rd IEEE Conference on Local

Computer Networks (LCN). IEEE, 2008, pp. 927–934.

[71] A. K. Ghosh, C. Michael, and M. Schatz, “A real-time

intrusion detection system based on learning program

behavior,” in International Workshop on Recent Advances

in Intrusion Detection. Springer, 2000, pp. 93–109.

Authors’ Profiles

Md Shariful Haque received his B.Sc. in

Computer Science and Engineering

Department in 2008 from University of

Dhaka, Bangladesh. He is now a Ph.D.

student in the department of Computer

Science in the University of Alabama and

working as a part of Digital Forensic and

Control System Security Lab. His research

interests lie in the areas of cloud security and privacy.

Dr. Travis Atkison received a B.S. in

Electrical Engineering and a B.S. in

Computer Science in 1995 from the

University of Alabama, a M.S. degree in

Computer Science in 1997 from University

of Alabama, and a Ph.D. in Computer

Science in 2009 from Mississippi State

University. He, currently, is an Assistant

Professor of Computer Science and the Director of the Digital

Forensics and Control System Security Lab (DCSL) at the

University of Alabama. His major research avenues include

16 An Evolutionary Approach of Attack Graph to Attack Tree Conversion

Copyright © 2017 MECS I.J. Computer Network and Information Security, 2017, 11, 1-16

transportation infrastructure security, control systems security, malicious application detection, and digital forensics.

How to cite this paper: Md. Shariful Haque, Travis Atkison,"An Evolutionary Approach of Attack Graph to Attack

Tree Conversion", International Journal of Computer Network and Information Security(IJCNIS), Vol.9, No.11, pp.1-

16, 2017.DOI: 10.5815/ijcnis.2017.11.01

