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Abstract—In 1990, Guillou and Quisquater published an 

article where they described a new digital signature 

system. Their technique was based on the RSA algorithm. 

In this paper, we present several modified Guillou-

Quisquater digital signature protocols. We discuss their 

security and complexity. These schemes can be seen as 

alternative signature methods if existing systems are 

completely broken. 

 

Index Terms—Public key cryptography, RSA, Guillou-

Quisquater signature scheme. 
 

I.  INTRODUCTION 

Since its invention, the public key cryptography[3, 9, 8] 

offers many possibilities to share information in a safe 

way. As one of the most used subjects in this field, we 

have digital signature protocols. To sign a contract, Alice 

begins by publishing her public key in a secure server 

distribution. If she decides to sign a document, she must 

use her private key. Generally she has to solve a hard 

mathematical equation. The verifier Bob checks if the 

answer given by Alice is valid. Since only Alice knows 

the private key, it is impossible for anybody to imitate her 

signature. 

The principle of the most known signatures schemes, 

relies on developing the solutions of hard problems, like 

discrete logarithm, factoring and computing square root 

modulo a large composite number [9, 5, 11, 10, 8, 7, 4, 2]. 

These algorithms are claimed to be secure by their 

authors. But it, perhaps one day they will be broken. 

Hence, the need of designing new alternatives.  

In 1990, Guillou and Quisquater published a paper [5] 

where they exposed a remarkable digital signature system. 

Their technique was based on the RSA algorithm.  

In this work, we present several new types of Guillou-

Quisquater signature scheme. We also analyze their 

security and complexity. 

The paper is organized as follows: In section 2 we 

recall the basic Guillou-Quisquater signature scheme and 

review the main known attacks. Then we present new 

variants in section 3. Section 4 is devoted to a summary 

table and we conclude in section 5. 

In the sequel, we will respect Guillou-Quisquater paper 

notations [5]. N , Z  are respectively the sets of integers 

and non-negative integers. For every positive integer n , 

we denote by ZZ n/  the finite ring of modular integers 

and by *)/( ZZ n  the multiplicative group of its invertible 

elements. Let a , b , c  be three integers. The great 

common divisor of a  and b  is denoted by ),( bagcd . 

We write )( cmodba   if c  divides the 

difference ba  , and cba mod=  if a  is the 

remainder in the division of b  by c . The bit-length of 

an integer n  is the number of bits in its binary 

representation. ba ||  is the concatenation of a  and b . 

We start by describing the classical Guillou-Quisquater 

signature method. 

 

II.  GUILLOU-QUISQUATER SIGNATURE SCHEME 

In this section we review Guillou-Quisquater signature 

system[5]. We also discuss the most known attacks. 

The protocol needs three steps: generating parameters, 

signing message and verifying signature. 

2.1.  Guillou-Quisquater algorithm 

Let h  be a secure public hash function like SHA1 [6, 

chap.9] or [12, chap.5]. 

 

1. To generate the keys: 

 

- Alice chooses randomly two large primes P  and 

Q , then she calculates PQn = . 

- She takes an integer 0 < < ( )v n , where ( )n  is 

the phi-Euler function. 

- She selects randomly an identification variable B  

and computes:  

 

= modvJ B n
                             (1)

 

 

We consider then that ),,( Jvn  and B  are 

respectively Alice public and private key. 

 

2. Assume that Alice wants to sign the message 

<M n . She must solve the following modular 

equation:  

 
( || ) ( )v h M Tt TJ mod n

                 (2) 
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where Tt,  are the unknown variables. 

To solve equation (2), Alice fixes arbitrary T  to be 
vrT =  mod  n , where r  is chosen randomly in 

2,3,..., 2n . Then she finds: 

 
( || ) ( )h M Tt rB mod n

                   (3)
 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (3). Note that 

there are many couples ),( Tt  solutions of relation (2). 

Bob can verify the signature by checking if equation (2) 

is valid for the variables t  and T  furnished by Alice. 

2.2.  Example 

Let ( ,,, Jvn )=( 00903524 , 53765 , 63139018 ) and 

5841782=B  be respectively Alice public and private 

key. Suppose that she wants to sign the message 

M =865704. To simplify, we assume that the hash 

function )(xh  is the sum of the digits of the integer x  

modulo 100. Alice chooses randomly 48379=r . She 

starts by computing 3231944=mod= nrT v
. Then 

56=4323)(865704419=)||( hTMh . Hence  

 

9788941=)()||( nmodrBt TMh  

 

To validate the signature, we check that 

 

0662602=mod=mod )||( nTJnt TMhv  

 

Now, we discuss the most known attacks. 
 

2.3.  Main attacks 

In this subsection we present situations where the 

dishonest Oscar is able to forge Alice signature. 

Attack 1: The first attack is indicated in the "handbook 

of applied cryptography" [6, chap.11]. In Guillou-

Quisquater system, the integer v  must be sufficiently 

large. This choice excludes the possibility of forging 

Alice signature. We briefly describe this attack. 

Oscar chooses a message M . He computes 

)||(= TMhl  where  

 

( )sT J mod n                     (4)
 

 

for many values of s , until obtaining 

)( vmodsl  . This is possible because parameter 

v  is supposed to be not too large. He next determines the 

integer x , such that  
 

=s xv l
                             (5)

 

 

and then calculates 

= modxt J n

                               (6)
 

 

To sign the document M , Oscar must solve the 

following congruence with the unknowns t  and T : 

 

. ( )v lt T J mod n
                         (7)

 

 

He uses (4), (5) and (6) to prove (7) as follows:  

 

)( nmodtJJTJ vlsl    

 

So in this case, Oscar has forged Alice signature. 

Hence the need of using a large value of the integer v . 

We move to the second known attack. 

Attack 2: Let ),,( Jvn  be Alice public key. If Oscar 

obtains the signatures of two messages 1M  and 2M  he 

can write the following operations: 

 













)(

)(

)
2

||
2

(

22

)
1

||
1

(

11

nmodJTt

nmodJTt

TMhv

TMhv

 

 

so 

 
( || ) ( || )

1 1 2 2
1 2 1 2( ) ( )

h M T h M Tvt t TT J mod n


           (8)
 

 

If Oscar finds an interesting message M  where:  

 

)||()||(=)||( 221121 TMhTMhTTMh   

 

congruence (8) becomes: 

 

)()(
)

21
||(

2121 nmodJTTtt
TTMhv   

 

As Oscar knows 1t , 1T , 2t  and 2T , he proves illegally 

that Alice has signed the document M . 

Now, we propose new variants of Guillou-Quisquater 

signature. 

 

III.  OUR VARIANTS OF GUILLOU-QUISQUATER 

SIGNATURE SCHEME 

In this section we describe seven new variants of 

Guillou-Quisquater signature scheme. They are based on 

multiple hard problems. 

The following parameters will be used throughout of 

this section: 

 

 h  is a secure public hash function like SHA1 [6, 

chap.9] or [12, chap.5];  

 P  and Q  are large primes choosen randomly by 
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Alice, and PQn = .  

 v  is an integer )(<<0 nv  , where )(n  is the 

phi-Euler function. Integers v  and )(n  are co-

prime. 

 As in [1], let expT , multT  and hT  be respectively the 

time to perform a modular exponentiation, a modular 

multiplication and hash function computation of a 

message M. We suppose that we the equivalence 

= 240exp multT T . 

 

3.1.  First Variant 

3.1.1.  The Protocol 

1. Alice start by choosing randomly an identification 

message B  and computes:  

 

nBJ v mod=  

 

We consider then that ),,( Jvn  and B  are 

respectively Alice public and private key. 

 

2. Assume that Alice likes to sign the message 

<M n . She must solve the following modular 

equation:  

 
( || ) ( )v h M Tt T J mod n

               (9)
 

 

where Tt,  are unknown variables. 

To solve equation (9), Alice fixes arbitrary T  to be 
vrT =  mod  n , where r  is chosen randomly in 

2,3,..., 2n . Then she finds: 

 
( || ) ( )h M Tt r B mod n

               (10)
 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (10). Note 

that there are many couples ),( Tt  solutions of the 

relation (9). 

 

3. Bob can verify the signature by checking if equation 

(9) is valid for the variables t  and T  furnished by 

Alice. 

 

Now, we study the security of this method. 

 

3.1.2.  Security analysis 

Assume that Oscar is Alice’s opponent. 

 

Attack 1: Knowing Alice public keys, Oscar tries to 

find the secret key B . He is confronted to a hard 

modular equation based on the discrete logarithm 

problem. 

Attack 2: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary one unknown variable 

and tries to find the second parameter. 

 

(1) Suppose that he fixes T , and likes to solve the 

modular congruence (9). But here, he will face a 

modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes t  and wants to solve equation 

(9). But here also we have a weird equation and 

today there is no way to find its solution. 

 

Attack 3: Even if Bob gets the solutions t  and T , he 

is not able to find Alice secret key, because he must solve 

the equation (10) with two unknowns parameters B  and 

r . 

Attack 4: This variant is resistant to the first attack 

mentioned in subsection 2.2 . Even with a small value of 

the exponent v  Bob is not able to forge Alice signature. 

In fact, we use (4), (5) and (6), and we have:  

 

)(1 nmodtJJJJT vslsll  

 
 

3.1.3. Complexity of the algorithm 

From subsection 3.1.1 , we see that the signer Alice 

needs to perform three modular exponentiations, one 

modular multiplication and one hash function 

computation. The global required time is: 

 

hmulthmultexps TTTTTT  721=3=  

 

The verifier Bob needs to perform two modular 

exponentiations, one modular multiplication and one hash 

function computation. The global required time is:  

 

hmulthmultexpv TTTTTT  481=2=  

 

For all the following Guillou-Quisquater variants, the 

complexity is summarized in a table in section 4 . 

Now, we move to our second variant. 

3.2.  Second Variant 

3.2.1.  The Protocol 

1. Alice starts by choosing randomly an identification 

message B  and computes:  

 

nBJ v mod=  

 

We consider then that ),,( Jvn  and B  are 

respectively Alice public and private key. 

 

2. Assume that Alice wants to sign the message 

<M n . She must solve the following modular 

equation:
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22 ( || ) ( )v h M Tt T J mod n
           (11)

 

 

where Tt,  are unknown variables. 

To solve equation (11), Alice fixes arbitrary T  to be 
vrT =  mod  n , where r  is chosen randomly. Then 

she finds:  

 
22 ( || ) ( )h M Tt r B mod n

              (12)
 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (12). 

 

3. Bob can verify the signature by checking if equation 

(11) is valid for the variables t  and T  furnished by 

Alice. 

 

3.2.2.  Security analysis 

This variant can be seen as more secured that the 

original Guillou-Quisquater signature. Indeed, solving 

(11)  implies breaking congruence (2) . 

 

Attack 1: Even if Bob gets the solutions t  and T  he 

is not able to find Alice secret key, because he must solve 

the equation (12) with two unknowns B  and r . 

Attack 2: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary one unknown variable 

and tries to find the second parameter. 

 

(1) Suppose that he fixes T , and likes to solve the 

modular congruence (11). But here, he will face a 

modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes t  and wants to solve equation 

(11). But here we have a weird equation and today 

there is no way to find its solution. 

 

Attack 3: The first attack mentioned in subsection 2.2  

is valid for this variant, if we take )(/2 nmodJT s . 

In this case Bob can forge Alice signature. So we must 

choose a large value for the exponent v . 

 

Now, we move to the third variant. 

 

3.3.  Third Variant 

3.3.1.  The Protocol 

1. Alice start by choosing randomly an identification 

message B  and computes:  

 

nBJ v mod=  

 

We consider then that ),,( Jvn  and B  are 

respectively Alice public and private key. 

 

2. Assume that Alice wants to sign the message 

<M n . She must solve the following modular 

equation:  

 
22 ( || ) ( )v h M Tt T J mod n

               (13)
 

 

where Tt,  are unknown variables. 

To solve equation (13), Alice fixes arbitrary T  to be 
vrT =  mod  n , where r  is chosen randomly. Then 

she finds:  

 
22 ( || ) ( )h M Tt r B mod n

                  (14)
 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (14). 

 

3. Bob can verify the signature by checking if equation 

(13) is valid for the variables t  and T  furnished by 

Alice. 

 

3.3.2. Security analysis 

Attack 1: Even if Bob gets the solutions t  and T  he 

is not able to find Alice secret key, because he must solve 

the equation (14) with two unknown parameters B  and 

r . 

Attack 2: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary one unknown variable 

and tries to find the second parameter. 

 

(1) Suppose that he fixes T , and likes to solve the 

modular congruence (13). But here, he will face a 

modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes t  and wants to solve equation 

(13). But here we have a weird equation and today 

there is no way to find its solution. 

 

Attack 3: This variant is resistant to the first attack 

mentioned in subsection 2.2 . Even with a small value of 

the exponent v  Bob is not able to forge Alice signature. 

In fact, we use (4), (5) and (6), and we have:  

 

2 2 ( )l sl vT J J J t mod n   

 

Now, we move to the fourth variant. 

 

3.4.  Fourth Variant (Rabin scheme) 

3.4.1.  The Protocol 

1. Alice start by choosing randomly an identification 

message B  and computes: 
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nBJ mod= 2
 

 

We consider then that ),( Jn  and B  are respectively 

Alice public and private key. 

 

2. Assume that Alice wants to sign the message 

nM < . She must solve the following modular 

equation:  

 
2 ( || ) ( )h M Tt TJ mod n

              (15)
 

 

where Tt,  are unknown variables. 

To solve equation (15), Alice fixes arbitrary T  to be 
2= rT  mod  n , where r  is chosen randomly in 

2,3,..., 2n . Then she finds:  

 
( || ) ( )h M Tt rB mod n

                 (16)
 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (16). 

 

3. Bob can verify the signature by checking if equation 

(15) is valid for the variables t  and T  furnished by 

Alice. 

 

3.4.2.  Security analysis 

Attack 1: Knowing Alice public keys, Oscar tries to 

find the secret key B . He is confronted to a hard 

problem: computing the square root modulo a large 

number n . It is proved that it is hard as factoring the 

number n . 

Attack 2: Even if Bob gets the solutions t  and T  he 

is not able to find Alice secret key, because he must solve 

the equation (16) with two unknowns B  and r . 

Attack 3: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary one unknown variable 

and tries to find the second parameter. 

 

(1) Suppose that he fixes T , and likes to solve the 

modular congruence (15). But here, he will face a 

square root modulo a large number. We don’t know 

a method for solving that kind of problems. 

(2) Suppose that he fixes t  and wants to solve equation 

(15). But here we have a weird equation and today 

there is no way to find its solution. 

 

Now, we move to the fifth variant. 

 

3.5.  Fifth Variant (Rabin scheme) 

3.5.1.  The Protocol 

1. Alice start by choosing randomly an identification 

message B  and computes: 

 

nBJ mod= 2
 

 

We consider then that ),,( Jvn  and B  are 

respectively Alice public and private key. 

 

2. Assume that Alice wants to sign the message 

<M n . She must solve the following modular 

equation: 

 
2 ( || ) ( )h M Tt T J mod n

                (17)
 

 

where Tt,  are unknown variables. 

To solve equation (17), Alice fixes arbitrary T  to be 
2= rT  mod  n , where r  is chosen randomly in 

2,3,..., 2n . Then she finds:  

 

( || ) ( )h M Tt r B mod n
                  (18)

 

 

As Alice knows the secret key B , she computes the 

second unknown variable t  by congruence (18). Note 

that there are many couples ),( Tt  solutions of the 

relation (17). 

 

3. Bob can verify the signature by checking if equation 

(17) is valid for the variables t  and T  furnished by 

Alice. 

 

3.5.2.  Security analysis 

Attack 1: Knowing Alice public keys, Oscar tries to 

find the secret key B . He is confronted to a hard 

problem: computing the square root modulo a large 

number n . It is proved that it is hard as factoring the 

number n . 

Attack 2: Even if Bob gets the solutions t  and T  he 

is not able to find Alice secret key, because he must solve 

the equation (18) with two unknowns B  and r . 

Attack 3: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary one unknown variable 

and tries to find the second parameter. 

 

(1) Suppose that he fixes T , and likes to solve the 

modular congruence (17). But here, he will face a 

modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes t  and wants to solve equation 

(17). But here we have a weird equation and today 

there is no way to find its solution. 

 

Now, we move to the sixth variant. 
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3.6.  Sixth Variant 

3.6.1.  The Protocol 

1. Alice start by choosing randomly two identification 

messages 
1B  and 

2B , then computes:  

 









nBJ

nBJ

v

v

mod=

mod=

22

11

 

 

We consider then that ),,,( 21 JJvn  is Alice public 

key, and ( 1B , 1B ) her private one. 

 

2. If Alice wants to sign the contract <M n . She 

must solve the following modular equation: 

 
( || ) ( || )

1 2 ( )v h M t h M TZ tTJ J mod n
        (19)

 

 

where Tt,  and Z  are the unknown variables. 

To solve equation (19), Alice fixes arbitrary T  to be 
vrt 1=  mod  n  and t  to be 

vrT 2=  mod  n , where 

1r  and 2r  are chosen randomly in 2,3,..., 2n . Then 

she finds: 

 
( || ) ( || )

1 2 1 2 ( )h M t h M TZ rr B B mod n
          (20)

 

 

As Alice detains the secret key ( 1B , 2B ), she can find 

the third unknown variable Z  by congruence (20). 

 

3. Bob checks if the signature ( , ,T t Z ) is valid for the 

relation (19). 

 

This system has the advantage that Oscar must solve 

two hard problems instead of one. 

 

3.6.2.  Security analysis 

Attack 1: Knowing Alice public keys, Oscar tries to 

find Alice secret keys 1B  and 2B . He is confronted to 

two hard modular equations instead of one in Guillou-

Quisquater scheme. 

Attack 2: Even if Bob gets the solutions t , T  and Z  

he is not able to find Alice secret key, because he must 

solve the equation (20) with four unknowns 1B , 2B , 1r  

and 2r . 

Attack 3: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary two unknown variables 

and tries to find the third parameter. 

 

(1) Suppose that he fixes T  and t , and likes to solve 

the modular congruence (19). But here, he will face 

a modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes ( ,T Z ) or ( ,t Z ), and wants 

to solve equation (19). But here, we have a weird 

equation and today there is no way to find its 

solution. 

 

Attack 4: The first attack mentioned in subsection 2.2  

is valid for this variant, if we take )||(=1 TMhl  and 

)||(=2 tMhl , where )(1
1 nmodJT

s
  and 

)(2
2 nmodJt

s
  for many values of 1s  and 2s , until 

obtaining )(11 vmodsl   and )(22 vmodsl  . In this 

case Bob can forge Alice signature. So we must choose a 

large value for the integer v . 

 

Now, we move to the seventh variant. 

 

3.7.  Seventh Variant 

3.7.1.  The Protocol 

1. Alice start by choosing randomly two identifications 

messages 
1B  and 

2B , then computes: 

 









nBJ

nBJ

v

v

mod=

mod=

22

11

 

 

We consider then that ),,,( 21 JJvn  is Alice public 

key, and ( 1B , 1B ) her private one. 

 

2. If Alice wants to sign the contract <M n . She 

must solve the following modular equation: 

 
( || ) ( || )

1 2 ( )v h M t h M TZ t T J J mod n
     (21)

 

 

where Tt,  and Z  are the unknown variables. 

To solve equation (21), Alice fixes arbitrary t  to be 
vrt 1=  mod  n  and T  to be 

vrT 2=  mod  n , where 

1r  and 2r  are chosen randomly in 2,3,..., 2n . Then she 

finds: 

 
( || ) ( || )

1 2 1 2( )h M T h M tZ r r B B mod n
         (22)

 

 

As Alice detains the secret key ( 1B , 2B ), she can find 

the third unknown variable Z  by congruence (22). 

 

3. Bob checks if the signature ( , ,T t Z ) is valid for the 
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relation (21). 

 

This system has the advantage that Oscar must solve 

two hard problems instead of one. 

 

3.7.2.  Security analysis 

Attack 1: Knowing Alice public keys, Oscar tries to 

find Alice secret keys 
1B  and 2B . He is confronted to 

two hard modular equations instead of one in Guillou-

Quisquater scheme. 

Attack 2: Even if Bob gets the solutions t , T  and Z  

he is not able to find Alice secret key, because he must 

solve the equation (22) with four unknowns 1B , 2B , 1r  

and 2r . 

Attack 3: Oscar wants to imitate Alice signature for a 

contract M . He fixes arbitrary two unknown variables 

and tries to find the third parameter. 

 

(1) Suppose that he fixes T  and t , and likes to solve 

the modular congruence (21). But here, he will face 

a modular polynomial equation. We don’t know a 

method for solving that kind of problems. 

(2) Suppose that he fixes ( ,T Z ) or ( ,t Z ), and wants 

to solve equation (21). But here, we have a weird 

equation and today there is no way to find its 

solution. 

 

IV.  CONCLUSION 

In this work, we presented seven protocols that can be 

useful if the old signature systems are completely broken. 

These variants are all derived from Guillou-Quisquater 

signature scheme. We analyzed the time complexity in 

signing and verifying algorithm. Also most possible 

attacks have been discussed. 
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