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Abstract—Elliptic curves are some specific type of 

curves known as hyper elliptic curves. Compared to the 

integer factorization problem(IFP) based systems, using 

elliptic curve based cryptography will significantly 

decrease key size of the encryption. Therefore, 

application of this type of cryptography in systems that 

need high security and smaller key size has found great 

attention. Hyperelliptic curves help to make key length 

shorter. Many investigations are done with regard to 

improving computations, hardware and software 

implementation of these curves, their security and 

resistance against attacks. This paper studies and analyzes 

researches done about security and efficiency of 

hyperelliptic curves. 

 

Index Terms—Cryptography, Hyperelliptic curves, 

Discrete logarithm problem, Pairing, Scalar 

multiplication. 

 

I.  INTRODUCTION 

Hyper elliptic curves are being used in many important 

research fields like pseudo random numbers generators 

[21], coding theory [4, 10, 20], number theory algorithms 

[1, 18, 19] and cryptography [22, 23, 24, 25, 26] . 

In 1989, Koblitz suggested using hyper elliptic curves 

instead of elliptic curves in order to design cryptography 

systems based on discrete logarithm problem (DLP). 

Hyperelliptic curves are expanded forms of elliptic curves. 

In other words, an elliptic curve is a hyperelliptic curve of 

genus 1. Having a short key size is the main advantage of 

hyper elliptic curves. It means that a hyper elliptic curve 

needs a smaller finite field to reach some level of security 

compared with an elliptic curve. 

 Further, group order of a hyperelliptic curve of genus 

g on a finite field with q element(s) is gq . So, in order to 

make a group of the order 1602  by using an elliptic curve, 

one needs a finite field with 1602  elements. Whereas to 

make the same group using hyperelliptic curves of genus 

2, only one finite field with 802 elements will be needed. 

Likewise, for hyper elliptic curves of genus 3 and 4 a 

finite field with respectively 532 and 512 elements will be 

required [25]. 

 Of course, regarding researches done on hyper elliptic 

curves of genus 4, 5, 6, … these curves have a lower 

security level [14]. Contrary to elliptic curves which do 

not allow using index calculus algorithm for solving 

discrete logarithm problem, on hyperelliptic curves this 

attack is possible; which is considered a major 

shortcoming for them. Regarding the complexity of 

computations on hyperelliptic curves, it is very important 

to find appropriate hyperelliptic curves and improving 

their computations in order to make cryptography 

systems based on these curves applicable. Today, 

hyperelliptic curves of genus 2 and 3 can be efficiently 

obtained so that the resulted group will have an almost 

prime order. 

Table 1. List of Abbreviations. 

Wireless Sensor Networks WSN 

Elliptic Curve Cryptography ECC 

Hyperelliptic Curve Cryptography HECC 

Genus of hyperelliptic curve g 

considered the nth expansion of 

qF  
nq

F  

Jacobin of a hyperelliptic curve C 

defined on nq
F .  nq

J F  

Multiplicative group of *
nq

F  *
nq

F  

Multiplication/Inverse 
M

I

 
 
 

 

Pairing function T  

 

II.  MATHEMATICAL PRELIMINARIES 

Some mathematical preliminaries are explicated below. 

 

Definition 1: Suppose K  is a closure of the field K. A 

hyper elliptic curve of genus  1g g  on K is 

       2: , 1 .C y h x y f x K x y   So that,    h x K x  is a 

polynomial of the maximum degree g, and    f x K x  

is a singular polynomial of degree 2 1g  , and this 

equation and its partial differential equations that 

are  2y h x   and    h x y f x    don’t have a 

common solution on K . We call  ,x y K K   a 

singular point on curve C if it is answer to the three above 

equations at the same time. 

Definition 2: Suppose L is an expanded field of the K 

field. The set ( )C L  includes all L-rational points on C. It 

is consisted of points  ,P u v L L   so that they hold 

true in relation (1) with a point in infinity that is shown 
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by . The set  C K  is briefly called C. 

Example 3: A genus 2-hyperelliptic curve and 

 h x   on real numbers’ field is introduced. 

 

    

2 5 3: 5 4

1 1 2 2 .

C y x x x

x x x x x

  

    
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Fig.1. Hyperelliptic curve C on R 

Definition 4: Suppose  ,P x y is a finite point on 

curve C. The opposite point of P is   ,P x y h x    

so that P  is on C. Also, the opposite point of  is 

considered      . If a finite field P holds true 

in P P , it is called a special point. 

Example 5: Suppose curve 
2 5 4 2: 5 6 3C y xy x x x x      is defined on finite 

field
7Z . Thus,   5 4 22, 5 6 3g f x x x x x       

and  h x x . It is obvious that C does not have a 

singular point, So, C is a hyper elliptic curve: 

                7 1,1 1,5 2,2 2,3 5,3 5,6 6,4 .C ،،،،،،، Z

Point (6 و(4  is a special point.  

Here is a method of computing number of group 

members resulted from a hyperelliptic curve. Consider J 

the Jacobin of a hyperelliptic curve C defined on 
qF . 

Also, 
nq

F  is considered the n
th

 expansion of 
qF  and nN  

is order of the abelian group (  nq
J F ). 

Result 6: Suppose C is a hyper elliptic curve of genus g 

defined on nq
F  and  nn q

N J F . Then this relation 

n

2

2g 2gn

2
nq 1 N q 1

   
      

  
holds and thus ng

nN q . 

 

III.  ATTACKS 

There are some attacks aimed at hyperelliptic curves. 

10 years after Koblitz introduced hyperelliptic curves to 

cryptography (Diffie-Hellman key exchange) the best 

attacks of discrete logarithm problem for these curves 

were square root algorithms. Square roots algorithms are 

public key algorithms used for solving discrete logarithm 

problem in every group including shank’s baby- step 

giant- step, Pollard and Pohlig-Hellman algorithms. 

Running time for the first and the second algorithms is 

radical of the group size and running time for the third 

algorithm is square root of the largest prime factor of the 

group order. Because in cryptography applications the 

group’s order is prime or almost prime, so, all these 

algorithms have square root time. The first index calculus 

algorithm to solve discrete logarithm problem on the 

Jacobin of a hyperelliptic curve was introduced in [2]. 

Also, the guidance account attack offered in [14] was the 

first instance of a public attack to the discrete logarithm 

problem defined on the Jacobin of low-genus 

hyperelliptic curves which had a shorter running time 

than the group order’s square root. These definitions and 

theorems are needed. 

Definition 7: Suppose 
1D and 

2D  are two elements of 

qJ  So that
2 1 D D . The discrete logarithm problem 

on the Jacobin of a hyperelliptic curve for the pair 

 1 2,D D  is computing the smallest number N  so 

that 
2 1D D  . 

Theorem 8: Take C as a hyper elliptic curve of genus g 

on the finite field
qF . If   

1
ln 2 1


 q g


 then 2.181c  

exists so that the discrete logarithm problem in  C qJ F , 

in the time duration 2 1

1
,

2


 
 
 

gq
L c  is computable [2]. 

Theorem 9: Take C as a hyperelliptic curve of genus g, 

defined on the finite field 
qF . If !q g  then the discrete 

logarithm problem in  C qJ F  in the time duration 

 3 2O g q   is computable [14]. 

Of course, many improvements of the index calculus 

algorithm on hyper elliptic curves have been offered 

some of them have results as follows.  

Take size of factor base as
   / 12  


g g

BP O g q


and 

C as a hyperelliptic curve of genus g on the finite field 

qF . If !q g  then the discrete logarithm problem in 

 C qJ F  in the time duration 

2
2

5 1
 


 
 
 
 

gO g q


 is solvable. 

Now, if the factor base size is 
1 1

/
2 25

    
      

    
 
 
 
 

g g

O g q


 then 

this time is 
4

2
5 2 1

 


 
 
 
 

gO g q


[33]. If
   1 /2  


g g

BP O g q


 

then this time is 
2

2
5

  
 
 
 

gO g q
 [16]. 

Theorem 10: For 
 


g

t
Ln q

 discrete logarithm 

problem in  C qJ F , there is a hyper elliptic curve of 

genus g on 
qF  with maximum complexity of 

1 1

2 21 1 1
, 2 1

2 2 2

  
               
  

gq
L

t t

[11, 12]. 
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As mentioned before, there is an index calculus attack 

with complexity 

2
2

5
  

 
 
 

gO g q


and for g=3, 4 security 

level decreases.  

For a genus 4-hyperelliptic curve defined on 
2F , the 

discrete logarithm problem in  C qJ F  with the 

complexity   
3

0.375
2
 

  
 

C qO J F O q


 will be solved. 

So, the discrete logarithm problem of this case is weaker 

than the one generally mentioned. For g=3, this 

complexity is   
4

0.44
3
 

  
 

C qO J F O q


.  

It shows that almost all genus 3-hyper elliptic curves 

are weaker than the elliptic curves. Therefore, it is 

possible to say that for hyper elliptic curves of genus 

4g  index calculus attack can be done. 

 As a result, they are not appropriate to be used in 

public key cryptography. In case of using them, the group 

size must be well increased. Also, among hyper elliptic 

curves of other genus i.e. 1,2,3g   , for g=3, the group 

size must be selected in a way to prevent index calculus 

attacks offered in [33].  

One other current attack for hyperelliptic curves is the 

descent Weil attack. This attack happens either if there is 

a composite finite field i.e. 
mp

F so that, m is composite, or 

if m is a prime number that for a small number t holds 

true in  2 1 modt m . Therefore, m must not be 

Mersen’s or Fermat’s prim number.  

However, in such a case, using GHS algorithms and 

their improvements [15], the discrete logarithm problem 

can be solved. So, to prevent this attack, the curve must 

either be defined on a prime finite field 
pF or a finite 

field 
mp

F  in which m is a prime number and order of 

number 2 in the multiplication group of p mode is a large 

number i.e. in relation 2 1 modt p , t is a large number.  

Table 2. Comparing of Key Size in HECC[33] 

Security 

level 
Elliptic Curve Genus 2 Curve Genus 3 Curve 

256 94 47 32 

512 128 64 43 

1024 174 87 58 

2048 234 117 78 

4096 313 157 105 

8192 417 209 139 

16384 554 277 185 

 

IV.  COMPARING HECC AND ECC 

The followings are some conclusions regarding the 

comparison between HECC and ECC: 

 

 ECC with projective coordinates is almost always the 

most efficient system. 

 Scalar multiplication of HECC with g=3 and h(x)=1 

is always faster than that of HECC with g=2. 

 Scalar multiplication of HECC with g=3 is most often 

faster than ECC with affine coordinates. 

 With an identical security level, software 

implementations of HECC with g=2 and g=3 ECC 

are equally efficient whereas hardware 

implementations of HECC with g=2 and g=3 are 

more efficient than that of ECC.  

 Scalar multiplication of HECC with g=2 and g=3 and 

ECC with affine coordinates are equal if 

M

I

 
 
 

(Multiplication/Inverse) is small. In case this 

relation is big, then HECC with g=2 and g=3 is more 

efficient than ECC with affine coordinates. 

 If the relation M

I

 
 
 

is small, HECC of genus g=2 is 

quite efficient and if 
M

I

 
 
 

 is big, HECC of genus 

g=3 is more efficient. 
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Fig.2. Comparing Scalar Multiplications on Pentium 4 @ 1.8GHZ for 
1632  Security Level [34] 
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Fig.3. Comparing Scalar Multiplications on Pentium 4 @ 1.8GHZ for 
1802  Security Level [34] 
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Fig.4. Comparing Scalar Multiplications on ARM 7 TDMI @ 80MHZ 

for 
1632  Security Level [34] 
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Fig.5. Comparing Scalar Multiplications on ARM 7 TDMI @ 80MHZ 

for 
1802  Security Level [34] 

As it is clear, in hardware implementation for a 

security level of
1602 , the genus 2-hyperelliptic curves are 

more efficient than hyper elliptic curves of genus 3; 

whereas with a security level of 
1802  it is the other way 

round [35].  

Before this, it was generally agreed that because 

computations of genus 4-hyperelliptic curves were much 

more costly than hyper elliptic curves of smaller genus, 

hyper elliptic curves were not appropriate for application. 

While new findings show that for applications with lower 

security levels, genus 4-hyperelliptic curves are faster 

than genus 2-hyperelliptic curves. Moreover, it not only 

is as efficient as hyperelliptic curves of g=3 but also, can 

replace elliptic curves. In addition, in hardware 

implementation of applications with a lower security 

level like in groups with order 
1282 , computations of 

hyper elliptic curves of genus g=4 are almost 1.46 times 

faster than that of hyperelliptic curves of g=2. It also uses 

the same efficiency as hyperelliptic curves of g=3. It is 

also noteworthy that compared with hyper elliptic curves 

of g=2, 3, hyperelliptic curves of g=4 are more 

appropriate to be implemented in embedded 

microprocessors than general processors. To gain a 

security level of
1282 , a hyper elliptic curve of g=4 can be 

defined on the finite field 322
F . Thus implementing these 

curves on 32-bit processors will be really efficient. It will 

be more efficient than hyperelliptic curves of g=2 and 

almost equally efficient as hyperelliptic curves of g=3. 

Usually, when using cheap embedded processors, a lower 

security level will be needed. In practice, a group of the 

order 1282  will suffice. This security level is almost 

higher than that of RSA-512 [28-32]. 

 

V.  PAIRINGS ON HYPER ELLIPTIC CURVES 

Take C as a hyperelliptic curve of genus g defined on 

qF so that    gcd , 1, qr g r J F . Also, take r as a 

prime number. The embedding degree  qJ F  related to r 

is the least integer number k so that  1kr q  . In other 

words, *
kq

F includes the group  
r  (the unit's r

 th
 roots). 

Some of pairing based protocol are in [5-10]. Another 

important parameter in pairing functions is called  -

value which is 
log

log

g q

r
  . This parameter is almost 

equal to the bit length of  qJ F to the bit length of a 

subgroup of the order r. A Jacobin with a number of 

prime members has the least amount of  -value  1  . 

Hyperelliptic curves whose Jacobins have a small 

embedding degree and a subgroup with big prime order 

are appropriate to be used in paring functions. They are 

called pairing friendly [3, 13]. In practical application 

values of 1602 , 60r k   are needed. Also, as 

mentioned earlier, the best attack at the discrete logarithm 

problem is the  -Pollard algorithm which is implemented 

in a parallel way. Running time of this algorithm is 

 O r with r as the value of the biggest prime 

subgroup  qJ F . For hyper curves of genus g=3, 4 there 

can be index calculus attacks with these respective 

complexities:  

 

   
3 44
8 93

3

2 ,q qO q O J F O q O J F

 


     
                 

 


 
 

To compare with the paralleled  -Pollard algorithm 

which depends on the subgroup of the order r, it can be 

said if 
9

8
  of g=3 and also 

4

3
  of g=4, then the index 

calculus attack reaches the upper boundary of the  -

Pollard attack. However, the best algorithm to solve the 

discrete logarithm problem for hyper curves of genus g=2, 

3, 4 have exponential running time. On the other hand, 

the best algorithm to compute the discrete logarithm in a 

finite field is the index calculus attack which has the sub-

exponential running time related to the field’s size. 
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Therefore, in order to reach an equal security level in 

both groups (multiplication group resulted from a finite 

field and Jacobin group resulted from a hyper curve) the 

value of kq must be definitely larger than r. 

Table 3. Embedding Degree for Genus 2-Hyper Curves with an Equal Security Level [28]. 

Security level (bit) Size of subgroup Size of field expansion Embedding degree (k) 

 
(r) ( )kq  1   2   3   4   6   8   

80 160 1024 6g 3g 2g 1.5g g 0.8g 

112 224 2048 10g 5g 3.3g 2.5g 1.6g 1.3g 
128 256 3072 12g 6g 4g 3g 2g 1.5g 

192 384 7680 20g 10g 6.6g 5g 3.3g 2.5g 
256 512 15360 30g 15g 10g 7.5g 5g 3.8g 

 

The table above shows examples of subgroup value, 

expanded field value, and the embedding degree size for 

an equal security level which are all held in 

relation
/gr q  . Subgroups of the prime order and 

expanded fields (with large discriminates) follow the 

NIST standard. The above table is based on g=2. For g=2, 

3, 4, these procedures must be followed: 

If the Jacobin order is almost prime  1  , then it is 

just required to arrange parameters in a way so that they 

can resist the index calculus attack. For g=3, the second 

column of the above table should be multiplied with 

9

8
and the fourth column at

8

9
. For g=4, the second and 

the fourth columns should be multiplied respectively at 

4

3
 and 

3

4
. Embedding degree for super singular hyper 

curves of genus g=2 holds true in relation 12k  . For 

general hyper elliptic curves of genus g=2 in specific 

cases, it also holds true in relation 12k  . The quickest 

implementation of pairing functions has been offered for 

the pairing 
T which uses a super singular genus 2-hyper 

elliptic curve defined on a finite field with the 

discriminate 2. Embedding degree of this case is 12 .The 

results reached at by [28] exhibit that: 

 

 Implementation of a pairing called h on genus 2-

hyper curves has a similar function as implementation 

of the Tate pairing.  

 The 
T  pairing’s implementation on genus 2-hyper 

elliptic curves is much more efficient compared with 

that of h pairing. 

 Implementation of the pairing 
T on genus 2-hyper 

curves is more efficient than implementation of the 

pairing 
T on super singular hyperelliptic curves 

defined on 
2mF . 

 Computing the pairing function on genus 3-hyper 

curves is very inefficient than that of genus 2-hyper 

curves.  

 Implementation time of a pairing function on genus 2-

hyper curves defined on 
pF is almost two times longer 

than implementation time of a pairing on hyper 

elliptic curves defined on 
pF . To decrease this time 

distance, it is essential to use super singular genus 2-

hyperelliptic curves. 

 

VI.  CONCLUSION 

The current paper introduced hyper elliptic curves. It 

also offered comparisons between different types of these 

curves regarding their security and efficiency. Therefore, 

it can briefly be concluded that index calculus attack is 

possible for hyperelliptic curves of 5g   .So, they are 

not appropriate to be used in public key cryptography. In 

applications with no need of a high security level like 

WSN with low-cost embedded processors that use 

cryptography algorithms with smaller key size, hyper 

elliptic curves of genus 2,3,4g   can be applied.  
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