
I. J. Computer Network and Information Security, 2016, 8, 11-19
Published Online August 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.08.02

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

A Specialized Lightweight Metamorphic Function

for KASUMI Metamorphic Cipher and Its FPGA

Implementation

Rabie A. Mahmoud
Arab Academy for Science, Technology & Maritime Transport (AASTMT), Latakia Branch, Syria.

E-mail: rabiemah@yahoo.com

A. Baith Mohamed
Arab Academy of Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt.

E-mail: baithmm@hotmail.com

Abstract—To enhance the performance of the KASUMI

Metamorphic Cipher, we apply a lightweight

Metamorphic Structure. The proposed structure uses four

lightweight bit-balanced operations in the function

Meta-FO of the KASUMI Metamorphic Cipher. These

operations are: XOR, INV, XNOR, and NOP for bitwise

XOR, invert, XNOR, and no operation respectively

building blocks of the Specialized Crypto Logic Unit

(SCLU). In this work, we present a lightweight KASUMI

Specialized-Metamorphic Cipher. In addition, we provide

a Field Programmable Gate Array (FPGA)

implementation of the proposed algorithm modification.

Index Terms—KASUMI, Metamorphic, Lightweight,

Cipher, FPGA.

I. INTRODUCTION

The KASUMI Metamorphic Cipher [1] is a modified

Feistel block cipher from KASUMI cipher [2], [3], [4], [5]

which is a 64-bit block cipher using a 128-bit key with

eight rounds and nonlinear S-boxes where KASUMI

cipher forms the heart of the confidentiality and integrity

algorithms of signalling and user data security within the

Global Systems for Mobile Communications (GSM),

General Packet Radio Service (GPRS), Enhanced Data

Rates for GSM Evolution (EDGE), and the Third

Generation Mobile System (3GPP) specifications for the

Universal Mobile Telecommunications System (UMTS)

networks. In this work, we present the KASUMI

Specialized-Metamorphic Cipher to encrypt a 64-bit

plaintexts using a 128-bit key. It is a lightweight

metamorphic cipher that combines the specialized crypto

logic unit with the function FO of KASUMI Cipher to

encrypt 64-bit plaintext packets using 128-bit key. The

Specialized Crypto Logic Unit (SCLU) is a special form of

the Generalized Crypto Logic Unit (GCLU) [6] and

Crypto Logic Unit (CLU) of the Stone Metamorphic

Cipher [7], [8], [9] which are used in many famous ciphers

to increase the cipher’s entropy and improve its security

such as the Metamorphic Twofish Cipher [10], the

Metamorphic MARS Cipher [11], and the

Metamorphic-Key-Hopping GOST Cipher [12]. This

SCLU is built using four lightweight low-level

bit-balanced operations: XORing a key bit with a plaintext

bit (XOR), inverting a plaintext bit (INV), XNORing a key

bit with a plaintext bit (XNOR), and producing a plaintext

bit without any change (NOP). In the following few

sections, we provide the structure of the KASUMI

Specialized-Metamorphic Cipher by describing the SCLU

and the enhanced function Specialized-Meta-FO.

Subsequently, we discuss the results of the FPGA

implementation of the KASUMI

Specialized-Metamorphic Cipher including comparisons

among modified KASUMI ciphers, a summary and our

conclusions.

Fig.1. The structure of the KASUMI Specialized-Metamorphic Cipher

II. THE KASUMI SPECIALIZED-METAMORPHIC

STRUCTURE

The KASUMI Specialized-Metamorphic cipher is a

lightweight form of KASUMI Metamorphic cipher, which

is a Feistel Cipher with eight rounds encrypting 64-bit

plaintext packets using 128-bit key, by replacing the

crypto logic unit in the function Meta-FO with specialized

12 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

crypto logic unit converting the function Meta-FO into a

Specialized-Meta-FO. Figure 1 shows the block diagram

of the proposed KASUMI Specialized-Metamorphic

Cipher.

A. The Specialized Crypto Logic Unit (SCLU)

The Specialized Crypto Logic Unit (SCLU) is a round

key-dependent special function modified from key-driven

Stone Metamorphic cipher and Generalized Crypto Logic

Unit (GCLU) by selecting the four most lightweight

operations from the GCLU operations. The four

lightweight low-level bit-balanced operations are:

 (XOR) by XORing a key bit with a plaintext bit,

 (INV) by inverting a plaintext bit,

 (XNOR) by XNORing a key bit with a plaintext bit,

 (NOP) by producing the plaintext without any

change.

Figure 2 shows the specialized crypto logic unit SCLU

and Table 1 demonstrates each one of SCLU operations.

Fig.2. The specialized Crypto Logic Unit (SCLC)

Table 1. SCLU Operations

Mnemonic Operation Select Operation code

XOR Ci = Ki Pi “00”

INV Ci = (Pi) “01”

XNOR Ci = Ki Pi “10”

NOP Ci = Pi “11”

This SCLU is used as the encryptor and the decryptor

where by changing the output cipher bit to become an

input plain text bit, the new output will be the same as the

old plain text bit. Appendix A shows the truth table of

SCLU. Likewise, the operation selection bits (S1 S0) can

be chosen from any two sub-key bits where the operation

selection bits in the KASUMI Specialized-Metamorphic

cipher are chosen from the KOi,j round keys. Figure 3

shows the location of operation selection bits.

Fig.3. The Proposed Key Format Where The Location Of The Operation
Selection Bits Is Shown

B. The Function Specialized-Meta-FO

The input to the function Specialized-Meta-FO

comprises

 32-bit data input I,

 48-bit subkey KOi,

 48-bit subkey KIi.

The 32-bit data input is split into two halves, L0 and R0

where

I = L0 || R0.

The 48-bit subkeys are subdivided into three 16-bit

subkeys where

KOi = KOi,1 || KOi,2 || KOi,3 and KIi = KIi,1 || KIi,2 || KIi,3,

and so for each integer j with 1 ≤j ≤3 chose from KOi,j

2-bit operation_selection_bits (OSB).

We define

If operation_selection_bits = “00” then

Rj = FI(Lj-1 KOi,j, KIi,j) Rj-1

Lj = Rj-1

If operation_selection_bits = “01” then

Rj = FI(Lj-1, KIi,j) Rj-1

Lj = Rj-1

If operation_selection_bits = “10” then

Rj = FI(Lj-1 KOi,j, KIi,j) Rj-1

Lj = Rj-1

If operation_selection_bits = “11” then

Rj = FI(Lj-1 , KIi,j) Rj-1

Lj = Rj-1

Finally, we return the 32-bit value (L3 || R3).

III. THE FPGA IMPLEMENTATION

The KASUMI Specialized-Metamorphic Cipher

FPGA-based implementation is applied to encrypt 64-bit

plaintext packet using 128-bit user key producing 64-bit

ciphertext packet at each cycle. We have implemented the

cipher applying the VHDL hardware description language

2008 version [13], [14], [15] and utilizing Altera design

environment Quartus II 15.0 (64-bit) Web Edition [16]

with ModelSim Altera Starter Edition 10.3d [17]. The

FPGA design was implemented using

EP4CGX50DF27C6, Cyclone IV GX family device. The

schematic diagram of proposed cipher with the

implementation results is shown in Figure 4. RTL screen

of the FPGA implementation is shown in Figure 5. Figure

 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation 13

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

6 shows the Technology Map Viewer for part of the

hardware implementation of the cipher. Figure 7

demonstrates the floor plan for proposed modified cipher

and Figure 8 displays the simulation showing the input,

key, and the output cipher text bits. Appendix B displays

the analysis and synthesis summary and timing analyzer of

KASUMI Specialized-Metamorphic cipher. Major

synthesis and timing differences among KASUMI, the

KASUMI Metamorphic, the KASUMI

Generalized-Metamorphic, and the KASUMI

Specialized-Metamorphic ciphers in the balanced

optimization technique are shown in Appendix C.

Appendix D demonstrates the design and sample VHDL

code of the function Specialized-Meta-FO.

Fig.4. Compiler Tool Screen Showing Correct Implementation and
Schematic Diagram of KASUMI Specialized-Metamorphic Cipher

Fig.5. RTL Screen of KASUMI Specialized-Metamorphic Cipher

Fig.6. Technology Map Viewer for Part of one Round of KASUMI
Specialized-Metamorphic cipher

Fig.7. Floor-plan of Chip of KASUMI Specialized-Metamorphic Cipher

Fig. 8. ModelSim Simulator Screen Showing the Input, Key, and Output
of KASUMI Specialized-Metamorphic Cipher

IV. SUMMARY AND CONCLUSIONS

We have proposed a lightweight modified cipher that is

based on the KASUMI Metamorphic cipher. The modified

cipher is called the KASUMI Specialized-Metamorphic

cipher. A specialized crypto logic unit that utilizing the

bit-balanced operations XOR, INV, XNOR, and NOP is

merged in each round of the function Meta-FO of

KASUMI Metamorphic cipher converting it into

lightweight function Specialized-Meta-FO. In addition,

we have presented a proof-of-concept FPGA hardware

implementation of the proposed cipher. Various FPGA

optimization techniques namely Balanced, High

Performance Effort, Aggressive Performance, High Power

Effort, Aggressive Power, and Aggressive Area

optimization techniques were compared for proposed

ciphers. Moreover, resources and timing delays

comparisons between the KASUMI, the KASUMI

Metamorphic, the KASUMI Generalized-Metamorphic,

and the KASUMI Specialized-Metamorphic were shown.

Certainly, KASUMI Specialized-Metamorphic cipher

increased security with less consuming resources than

KASUMI cipher itself.

14 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

APPENDIX A THE TRUTH TABLE OF THE SCLU

Pi Ki S1 S0 Operation Ci

0 0 0 0 XOR 0

0 0 0 1 INV 1

0 0 1 0 XNOR 1

0 0 1 1 NOP 0

0 1 0 0 XOR 1

0 1 0 1 INV 1

0 1 1 0 XNOR 0

0 1 1 1 NOP 0

1 0 0 0 XOR 1

1 0 0 1 INV 0

1 0 1 0 XNOR 0

1 0 1 1 NOP 1

1 1 0 0 XOR 0

1 1 0 1 INV 0

1 1 1 0 XNOR 1

1 1 1 1 NOP 1

V. APPENDIX B THE FITTER AND TIMING REPORT DETAILS

OF IMPLEMENTING KASUMI SPECIALIZED-METAMORPHIC

CIPHER

FPGA synthesis of KASUMI Specialized-Metamorphic

cipher is implemented with no time restrictions in

Balanced, High Performance Effort, Aggressive

Performance, High Power Effort, Aggressive Power, and

Aggressive Area optimization techniques determining the

usage number of logic elements, connections, and time

delays. Table B1 shows the number of usage logic

elements and their interconnections among optimization

techniques of implementing KASUMI

Specialized-Metamorphic cipher and Table B2 shows the

timing delays among optimization techniques related with

Slow 1200mV 85°C Timing Model, Slow 1200mV 0°C

Timing Model, and Fast 1200mV 0°C Timing Model.

Figures B.1 and B.2 show a comparison chart of timing

delays for KASUMI Specialized-Metamorphic cipher in

Balanced optimization technique implementation.

Analysis & Synthesis and Fitter Summary

• Family: Cyclone IV GX

• Device: EP4CGX50DF27C6

• Nominal Core Voltage: 1.20 V

• Minimum Core Junction Temperature: 0 °C

• Maximum Core Junction Temperature: 85 °C.

• Optimization Technique: Balanced

• Total logic elements: 5,521 out of 49,888 (11%)

-- Combinational with no register: 5,521

-- Register only: 0

-- Combinational with a register: 0

Logic element usage by number of LUT inputs

-- 4 input functions: 4,230

-- 3 input functions: 690

-- <=2 input functions: 601

-- Register only: 0

Logic elements by mode

-- Normal mode: 5,521

-- Arithmetic mode: 0

• Total LABs: 400 out of 3,118 (13 %)

• I/O pins: 256 out of 343 (75 %)

-- Clock pins: 2 out of 10 (20 %)

-- Dedicated input: 0 out of 25 (0 %)

• Total block memory bits: 0 out of 2,562,048 (0 %)

• Embedded Multiplier 9-bit elements: 0 out of 280 (0 %)

• Maximum fan-out: 34

• Highest non-global fan-out: 34

• Total fan-out: 20,517

• Average fan-out: 3.40

• Average interconnect usage (total/H/V): 4.0% / 3.6% /

4.5%

• Peak interconnect usage (total/H/V): 27.7% / 24.7% /

32.0%

• Block interconnects: 7,387 out of 232,464 (3 %)

• C16 interconnects: 670 out of 6,642 (10 %)

• C4 interconnects: 4,410 out of 136,080 (3 %)

• Direct links: 906 out of 232,464 (< 1 %)

• GXB block output buffers: 0 out of 2,640 (0 %)

• Global clocks: 0 out of 30 (0 %)

• Interquad Reference Clock Outputs: 0 out of 2 (0 %)

• Interquad TXRX Clocks: 0 out of 16 (0 %)

• Interquad TXRX PCSRX outputs: 0 out of 8 (0 %)

• Interquad TXRX PCSTX outputs: 0 out of 8 (0 %)

• Local interconnects: 3,254 out of 73,920 (4 %)

• R24 interconnects: 580 out of 6,930 (8 %)

• R4 interconnects: 4,515 out of 190,740 (2 %)

TimeQuest Timing Analyzer Summary

 Slow 1200mV 85°C Model

- Longest propagation delay RR which is measured

from rising edge to rising edge was 143.172 ns from input

port “K[114]” to output port “Output[47]”. Also, longest

delay RF which is measured from rising edge to falling

edge was 143.277 ns, longest delay FR which is measured

from falling edge to rising edge was 143.701 ns, and

longest delay FF which is measured from falling edge to

falling edge was 143.806 ns.

- Longest minimum propagation delay was from input

port “INPUT[13]” to output port “Output[27]” where RR

was 25.782 ns, RF was 25.609 ns, FR was 26.290 ns, and

FF was 26.117 ns.

 Slow 1200mV 0°C Model

- Longest propagation delay was from input port

“K[114]” to output port “Output[47]” where RR was

129.061 ns, RF was 129.044 ns, FR was 129.381 ns, and

FF was 129.364 ns.

- Longest minimum propagation delay was from input

port “INPUT[13]” to output port “Output[27]” where RR

was 23.243 ns, RF was 23.219 ns, FR was 23.596 ns, and

FF was 23.572 ns.

 Fast 1200mV 0°C Model

 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation 15

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

- Longest propagation delay was from input port

“K[114]” to output port “Output[47]” where RR was

83.980 ns, RF was 84.262 ns, FR was 84.751 ns, and FF

was 85.033 ns.

- Longest minimum propagation delay was from input

port “INPUT[13]” to output port “Output[27]” where RR

was 14.732 ns, RF was 14.398 ns, FR was 15.395 ns, and

FF was 15.061 ns.

Table B1. A resource and Routing Usage Comparison Among Optimization Technique Implementations of KASUMI Specialized-Metamorphic Cipher

 Balanced
High Performance

Effort

Aggressive

Performance

High

Power Effort

Aggressive

Power

Aggressive

Area

Total LEs 5521 5521 5525 5521 5521 5521

Functions

4 input 4230 4230 4222 4230 4230 4230

3 input 690 690 695 690 690 690

<=2 input 601 601 608 601 601 601

Fan-Out

Total 20517 20517 20514 20517 50517 20517

Max 34 34 34 34 34 34

Average 3.40 3.40 3.39 3.40 3.40 3.40

Interconnects

Block 7387 7306 7239 7362 7209 7387

C16 670 628 653 656 588 670

C4 4410 3216 3210 3343 3356 4410

Local 3254 3196 3201 3204 3242 3254

R24 580 529 567 543 439 580

R4 4515 3060 3080 3366 3517 4515

Direct Links 906 1488 1459 1406 1105 906

Table B2. A Timing Delays Comparison Among Optimization Technique Implementations of KASUMI Specialized-Metamorphic Cipher

 Balanced
High Performance

Effort

Aggressive

Performance

High

Power Effort

Aggressive

Power

Aggressive

Area

Slow

1200m

V 85°C
Model

Longest

RR 143.172 131.178 128.260 134.018 134.307 143.172

RF 143.277 131.050 128.186 133.957 134.273 143.277

FR 143.701 131.857 128.899 134.515 134.861 143.701

FF 143.806 131.729 128.825 134.454 134.827 143.806

Longest

Min

RR 25.782 23.112 23.607 23.474 23.728 25.782

RF 25.609 22.946 23.701 23.489 23.649 25.609

FR 26.290 23.554 24.096 23.937 24.254 26.290

FF 26.117 23.388 24.190 23.952 24.175 26.117

Slow
1200m

V 0°C

Model

Longest

RR 129.061 117.923 115.660 120.528 120.957 129.061

RF 129.044 117.936 115.615 120.573 120.946 129.044

FR 129.381 118.477 116.098 120.813 121.379 129.381

FF 129.364 118.490 116.053 120.858 121.368 129.364

Longest

Min

RR 23.243 20.696 21.263 21.180 21.348 23.243

RF 23.219 20.646 21.219 21.127 21.390 23.219

FR 23.596 21.091 21.626 21.545 21.758 23.596

FF 23.572 21.041 21.582 21.492 21.800 23.572

Fast
1200m

V 0°C

Model

Longest

RR 83.980 76.456 74.539 77.714 78.158 83.980

RF 84.262 76.237 74.357 77.474 78.041 84.262

FR 84.751 77.236 75.373 78.507 78.886 84.751

FF 85.033 77.017 75.191 78.267 78.769 85.033

Longest

Min

RR 14.732 13.269 13.408 13.143 13.625 14.732

RF 14.398 13.035 13.575 13.351 13.370 14.398

FR 15.395 13.864 14.055 13.760 14.314 15.395

FF 15.061 13.630 14.222 13.968 14.059 15.061

16 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

Fig.B.1. Longest Delays of Balanced Optimization Technique
Implementation of KASUMI Specialized-Metamorphic Cipher

Fig.B.2. Longest Min Delays of Balanced Optimization Technique
Implementation of KASUMI Specialized-Metamorphic Cipher

VI. APPENDIX C MAJOR IMPLEMENTING DIFFERENCES

AMONG KASUMI SPECIALIZED-METAMORPHIC CIPHER

AND MODIFIED KASUMI CIPHERS IN BALANCED

OPTIMIZATION TECHNIQUE

KASUMI Specialized-Metamorphic cipher consumes

less resources and routing even than KASUMI cipher

where the four operations XOR, INV, NOP, and XNOR of

specialized crypto logic unit are low synthesized

operations and the rising of maximum fan-out implements

the KASUMI Specialized-Metamorphic cipher to

consume less number of logic elements. Table C1 shows

the number of usage logic elements and their interconnects

and Table C2 shows the timing delays among KASUMI,

the KASUMI Metamorphic, the KASUMI

Generalized-Metamorphic, and the KASUMI

Specialized-Metamorphic ciphers in Balanced

optimization technique. Figures C.1 and C.2 show a

comparison chart of those timing delays.

Table C1. A resource and Routing Usage Comparison Among KASUMI Specialized-Metamorphic and Modified KASUMI Ciphers

 KASUMI Metamorphic-KASUMI
Generalized-Metamorphic

-KASUMI

Specialized-Metamorphic-

KASUMI

Total LEs 5582 7622 10559 5521

Functions

4 input 4365 5732 7759 4230

3 input 665 1333 2026 690

<=2 input 552 557 774 601

Fan-Out

Total 20884 28366 38987 20517

Max 31 93 97 34

Average 3.42 3.48 3.52 3.40

Interconnects

Block 7733 10033 13633 7387

C16 702 783 894 670

C4 4773 5906 8324 4410

Local 3124 4412 6142 3254

R24 599 703 846 580

R4 5103 5818 7819 4515

Direct Links 939 1193 1564 906

 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation 17

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

Table C2. A timing Delays Comparison Among KASUMI Specialized-Metamorphic and Modified KASUMI Ciphers

 KASUMI Metamorphic-KASUMI
Generalized-Metamorphic-

KASUMI

Specialized-Metamorphic-K

ASUMI

Slow

1200m
V 85°C

Model

Longest

RR 148.443 194.146 230.329 143.172

RF 148.506 194.096 230.327 143.277

FR 149.028 194.815 231.083 143.701

FF 149.091 194.765 231.081 143.806

Longest

Min

RR 25.630 26.335 28.950 25.782

RF 25.627 26.322 28.829 25.609

FR 26.143 26.891 29.433 26.290

FF 26.140 26.878 29.312 26.117

Slow

1200m
V 0°C

Model

Longest

RR 134.001 174.609 207.348 129.061

RF 134.175 174.587 207.314 129.044

FR 134.426 175.064 207.863 129.381

FF 134.600 175.042 207.829 129.364

Longest

Min

RR 23.116 23.697 26.042 23.243

RF 23.051 23.723 26.035 23.219

FR 23.483 24.152 26.410 23.596

FF 23.418 24.178 26.403 23.572

Fast

1200m
V 0°C

Model

Longest

RR 87.418 113.251 135.252 83.980

RF 87.090 112.990 135.013 84.262

FR 88.242 114.087 136.112 84.751

FF 87.914 113.826 135.873 85.033

Longest

Min

RR 14.740 15.098 16.722 14.732

RF 14.455 14.835 16.399 14.398

FR 15.407 15.816 17.361 15.395

FF 15.122 15.553 17.038 15.061

Fig.C.1. Longest Delays of Implementations of Modified KASUMI
Ciphers

Fig.C.2. Longest Min Delays of Implementations of Modified KASUMI
Ciphers

VII. APPENDIX D SAMPLE VHDL CODE OF THE FUNCTION

SPECIALIZED-META-FO

Multi-nested VHDL functions in packages and

component configuration of generated statements are used

to program Key_Schedual, OddRound, and EvenRound

components which are connected together in block

diagram/schematic file to implement KASUMI

Specialized-Metamorphic cipher. The function

Specialized_Meta_FO of KASUMI

Specialized-Metamorphic cipher defined through

Specialized_Meta_FOi function in

Specialized_Meta_FOi_pkg package using SCLU

function in SCLU_pkg package and

Specialized_Meta_FOij function in

Specialized_Meta_FOij_pkg package:

 SCLU function represents the Specialized Crypto

Logic Unit with two input parameters 16-bit input

and 16-bit KOij. SCLU function returns a 16-bit

output after applying the SCLU operations which are

related to OSB.

 Specialized_Meta_FOij function represents one

round of the three rounds of Specialized_Meta_FOi

function where three input parameters 32-bit input,

16-bit KOij, and 16-bit KIij returns a 32-bit output

after applying the related operations and calling the

FIij and SCLU functions from FIij_pkg, and

SCLU_pkg packages respectively.

18 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

 Specialized_Meta_FOi function calls

Specialized_Meta_FOij function three times

sequentially to implement three rounds and returning

a 32-bit output by using seven input parameters

32-bit input, 16-bit KOi1, 16-bit KIi1, 16-bit KIi2,

16-bit KOi2, 16-bit KOi3, and 16-bit KIi3.

Sample VHDL codes are:

VHDL Code for SCLU_pkg

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

PACKAGE SCLU_pkg IS

 FUNCTION SCLU(

Input :in std_logic_vector(15 downto 0);

 KOij :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector;

END SCLU_pkg;

PACKAGE BODY SCLU_pkg IS

 FUNCTION SCLU(

Input :in std_logic_vector(15 downto 0);

 KOij :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector IS

 VARIABLE OSB : std_logic_vector(1 downto 0);

 VARIABLE Output : std_logic_vector(15 downto 0);

 BEGIN

 -- Operation_selection_bits from KOij --

OSB := KOij(7) & KOij(5);

 --SCLU operations

 If OSB ="00" then Output := Input XOR KOij;

 Elsif OSB ="01" then Output := NOT Input;

Elsif OSB ="10" then Output := Input XNOR KOij;

 Elsif OSB ="11" then Output := Input;

 End If;

 RETURN Output;

 END FUNCTION SCLU;

END PACKAGE BODY SCLU_pkg;

VHDL Code for Specialized_Meta_FOij_pkg

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

-- To call FIij Function --

USE WORK.FIij_pkg.ALL;

-- To call SCLU Function --

USE WORK.SCLU_pkg.ALL;

PACKAGE Specialized_Meta_FOij_pkg IS

 FUNCTION Specialized_Meta_FOij (

Input :in std_logic_vector(31 downto 0);

KOij :in std_logic_vector(15 downto 0);

 KIij :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector;

END Specialized_Meta_FOij_pkg;

PACKAGE BODY Specialized_Meta_FOij_pkg IS

 FUNCTION Specialized_Meta_FOij (

Input :in std_logic_vector(31 downto 0);

KOij :in std_logic_vector(15 downto 0);

 KIij :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector IS

 -- The input halves Lj-1 and Rj-1 --

 VARIABLE Input_L : std_logic_vector(15 downto 0);

VARIABLE Input_R : std_logic_vector(15 downto 0);

 -- The output halves Lj and Rj --

 VARIABLE Output_L:std_logic_vector(15 downto 0);

VARIABLE Output_R:std_logic_vector(15 downto0);

 -- The output of SCLU Function --

VARIABLE Output_SCLU :

std_logic_vector(15 downto 0);

 VARIABLE Output : std_logic_vector(31 downto 0);

 BEGIN

 -- Splitting the Input

 Input_L := Input(31 downto 16);

 Input_R := Input(15 downto 0);

 -- Operation Series

 Output_L := Input_R;

 Output_SCLU := SCLU(Input_L , KOij);

 Output_R := FIij(Output_SCLU , KIij) XOR Input_R;

 -- Output of Function

 Output := Output_L & Output_R;

 RETURN Output;

 END FUNCTION Specialized_Meta_FOij;

END PACKAGE BODY Specialized_Meta_FOij_pkg;

VHDL Code for Specialized_Meta_FOi_pkg

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

-- To call Specialized_Meta_FOij Function --

USE WORK. Specialized_Meta_FOij_pkg.ALL;

PACKAGE Specialized_Meta_FOi_pkg IS

 FUNCTION Specialized_Meta_FOi (

Input :in std_logic_vector(31 downto 0);

 KOi1 :in std_logic_vector(15 downto 0);

 KOi2 :in std_logic_vector(15 downto 0);

 KOi3 :in std_logic_vector(15 downto 0);

 KIi1 :in std_logic_vector(15 downto 0);

 KIi2 :in std_logic_vector(15 downto 0);

 KIi3 :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector;

END Specialized_Meta_FOi_pkg;

PACKAGE BODY Specialized_Meta_FOi_pkg IS

 FUNCTION Specialized_Meta_FOi (

Input :in std_logic_vector(31 downto 0);

 KOi1 :in std_logic_vector(15 downto 0);

 KOi2 :in std_logic_vector(15 downto 0);

 KOi3 :in std_logic_vector(15 downto 0);

 KIi1 :in std_logic_vector(15 downto 0);

 KIi2 :in std_logic_vector(15 downto 0);

 KIi3 :in std_logic_vector(15 downto 0))

 RETURN std_logic_vector IS

18 A Specialized Lightweight Metamorphic Function for KASUMI Metamorphic Cipher and Its FPGA Implementation 19

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 8, 11-19

VARIABLE Round1 : std_logic_vector(31 downto 0);

VARIABLE Round2 : std_logic_vector(31 downto 0);

VARIABLE Round3 : std_logic_vector(31 downto 0);

 VARIABLE Output : std_logic_vector(31 downto 0);

BEGIN

-- Round 1 of Specialized_Meta_FOi

Round1 :=Specialized_Meta_FOij(Input, KOi1, KIi1);

-- Round 2 of Specialized_Meta_FOi

Round2 :=Specialized_Meta_FOij(Round1, KOi2, KIi2);

-- Round 3 of Specialized_Meta_FOi

Round3 :=Specialized_Meta_FOij(Round2, KOi3, KIi3);

 Output := Round3; -- The Output of Function

 RETURN Output;

 END FUNCTION Specialized_Meta_FOi;

END PACKAGE BODY Specialized_Meta_FOi_pkg;

REFERENCES

[1] Rabie A. Mahmoud, A. Baith Mohamed, Magdy Saeb,

“Enhancing KASUMI Security by Affixing A

Metamorphic Function and The Ensuing Hardware

Implementation,” International Journal of Computer

Science and Communication Security (IJCSCS), Vol.6,

No.1, Jan., 2016.

[2] 3GPP’s site: http://www.3gpp.org

[3] 3GPP TS 35.201 Version12.0.0, “3rd Generation

Partnership Project; Technical Specification Group

Services and System Aspects; 3G Security; Specification

of the 3GPP Confidentiality and Integrity Algorithms;

Document 1: f8 and f9 Specification,” Sep., 2014.

[4] 3GPP TS 35.202 Version12.0.0, “3rd Generation

Partnership Project; Technical Specification Group

Services and System Aspects; 3G Security; Specification

of the 3GPP Confidentiality and Integrity Algorithms;

Document 2: KASUMI Specification,” Sep., 2014.

[5] Wikipedia, KASUMI’s site:

https://en.wikipedia.org/wiki/KASUMI

[6] Rabie A. Mahmoud, Magdy Saeb, “A Generalized Crypto

Logic Unit (GCLU) with Software and Hardware

Implementations,” International Journal of Computer

Science and Communication Security (IJCSCS), Vol.4,

No.1, March, 2014.

[7] Magdy Saeb, “The Stone Cipher-192 (SC-192): A

Metamorphic Cipher,” International Journal of Computers

and Network Security (IJCNS), Vol.1, No.2, pp.1-7, Nov.,

2009.

[8] Rabie A. Mahmoud, Magdy Saeb, “Hardware

Implementation of the Stone Metamorphic Cipher,”

International Journal of Computer Science and Network

Security (IJCSNS), Vol.10, No.8, pp.54-60, 2010.

[9] Magdy Saeb, “Metamorphic Feistel Networks,”

International Journal of Computer Science and

Communication Security (IJCSCS), Vol.5, No.3, July,

2015.

[10] Rabie A. Mahmoud, Magdy Saeb, “A

Metamorphic-Enhanced Twofish Block Cipher And

Associated FPGA Implementation,” International Journal

of Computer Science and Communication Security

(IJCSCS), Vol.2, No.1, Jan., 2012.

[11] Ahmed Helmy, Magdy Saeb, A. Baith Mohamed, “A

Metamorphic-Enhanced MARS Block Cipher,”

International Journal of Computer Science and

Communication Security (IJCSCS), Vol.3, No.4, July,

2013.

[12] Rabie A. Mahmoud, Magdy Saeb, “A Metamorphic-Key-

Hopping GOST Cipher and Its FPGA Implementation,”

International Journal of Computer Science and

Communication Security (IJCSCS), Vol.3, No.7, Oct.,

2013.

[13] Çetin Kaya Koç, “Cryptographic Engineering,” Springer,

2009.

[14] Volnei A. Pedroni, “Circuit Design and Simulation with

VHDL,” 2nd Edition, MIT Press, 2010.

[15] Andrew Rushton, “VHDL for Logic Synthesis,” 3rd

Edition, John Wiley and Sons Ltd Publication, 2011.

[16] Altera’s user-support site:

https://www.altera.com/support/support-resources/design-

examples/design-software/vhdl.html

[17] ModelSim-Altera’s software-support site:

https://www.altera.com/support/support-resources/design-

software/modelsim.html

Authors’ Profiles

A. Baith MOHAMED received the BSc. in

Computer Science, Vienna University, MSc.

and Ph.D. in Computer Science Vienna

University in 1992. He is a Professor at the

Arab Academy for Science and Technology

and Maritime Transport (AASTMT),

Computer Engineering Department. In

addition, he holds the position of Vice Dean

for Training and Community Services, College of Engineering

and Technology (2010). He is also get the position of Director of

Arab Academy for Science and Technology and Maritime

Transport, Latakia, Syria branch (2013). Now he is a President

Councilor at the AASTMT in Alexandria Egypt. His research

interests include computer and Network Security, Bioinformatics,

Steganography, cryptography, and Genetic Algorithms. He was

also a member of an International project team in Europe, for

design and implementation and maintenance of subsystems in the

environment of peripheral processor controls as part of a larger

Public Switched Systems (EWSD) in SIEMENS, AG. Austria.

Also, he was a scientific researcher in the department of

Information Engineering, Seibersdorf Research Institute (Atomic

Energy Agency) in Austria, for the design and implementation of

security software system in the domain of railway automation

project (VAX/VMS, DEC systems). He was also a member of

software testing for distribution points in an international project

in AEG, Vienna, Austria. He is a senior member of IEEE

Computer Society, USA since 2001. baithmm@hotmail.com

Rabie A. Mahmoud received the B.Sc.

Degree, Faculty of Science, Tishreen

University, Latakia-Syria, in 2001, the MS.

and Ph.D. in Computational Science,

Faculty of Science, Cairo University, Egypt,

in 2007 and 2011 respectively. Currently, he

is with General Organization of Remote

Sensing (GORS), Syria and the Department

of Computer Engineering, Arab Academy of Science,

Technology & Maritime Transport, Latakia, Syria branch. His

current interests include Cryptography, FPGA Implementations

of Cryptography and Data Security Techniques.

rabiemah@yahoo.com

http://www.3gpp.org/
https://en.wikipedia.org/wiki/KASUMI
https://www.altera.com/support/support-resources/design-examples/design-software/vhdl.html
https://www.altera.com/support/support-resources/design-examples/design-software/vhdl.html
https://www.altera.com/support/support-resources/design-software/modelsim.html
https://www.altera.com/support/support-resources/design-software/modelsim.html

