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Abstract—In this paper we explore a mechanized 

verification of the NTRUEncrypt scheme, with the formal 

proof system Isabelle/HOL. More precisely, the 

functional correctness of this algorithm, in its reduced 

form, is formally verified with computer support. We 

show that this scheme is correct what is a necessary 

condition for the usefulness of any cryptographic 

encryption scheme. Besides, we present a convenient and 

application specific formalization of the NTRUEncrypt 

scheme in the Isabelle/HOL system that can be used in 

further study around the functional and security analysis 

of NTRUEncrypt family. 

 

Index Terms—Public key encryption, Lattice, 

NTRUEncrypt, Formal proof system, Higher order logic, 

Formal verification, Isabelle/HOL, Theorem proving, 

Proof assistant. 

 

I.  INTRODUCTION 

Formal proof systems are a useful approach in the area 

of verification. Formal and computer verification 

augment the traditional concept of software engineering 

by providing techniques that guarantee trustiness as well 

as correctness of software systems in a mathematical way. 

There are many possible applications of formal 

verification like automotive, medical technology, 

information technology (software/hardware security, 

network, cryptography and protocol) and so on. Some of 

the researches around with formal verification of 

cryptographic functions, such as Formal Analysis of a 

Public-Key Algorithm (functional verification and 

computational security of rabbin encryption and digital 

signature scheme)[4], Formal Proof for the Correctness 

of RSA-PSS (functional verification of probabilistic 

signature scheme RSA-PSS)[20],  A Computer Proven 

Application of the Discrete Logarithm Problem [6](from 

the thesis: Formalizing the DSA Signature Scheme in 

Isabelle/HOL[5]), Verification of Cryptographic 

Primitive SHA-256 [23] and so on, encourage us to 

formalize and verify the NTRUEncrypt Scheme. 

Now a days, because of the challenge of powerful 

quantum computer, one of the important scheme in the 

public-key cryptography is NTRUEncrypt function as 

suitable post quantum encryption scheme[16]. 

NTRUEncrypt public-key scheme (not fully) relies on the 

hardness of solving SVP (Shortest Vector Problem which 

is the problem of finding shortest vector  ̂ in the lattice of 

  as  ̂   ) and CVP (Closest Vector Problem which is 

the problem of finding a vector  ̂    that is closest to a 

target vector       not belong to lattice  ) in a 

convolution  modular lattice (since security analysis of 

NTRUEncrypt Scheme not included in this research we 

don't open them). In this paper, we explore a computer 

verification for simplified version of the NTRUEncrypt 

scheme with the formal proof system Isabelle/HOL. More 

precisely, the functional correctness of this algorithm is 

formally verified in a simplified version with computer 

support. Besides, we present a convenient formalization 

of the NTRUEncrypt scheme in the Isabelle/HOL system 

that can be used as a framework for further studies on this 

function. Further Studies in this domain can be followed 

by the topics such as: computer verification of security 

properties using a straight-forward computation model in 

Isabelle/HOL, applying of Isabelle/HOL to the complete 

version of NTRUEncrypt function, checking the 

applicability of deferent introduced traditional attacks on 

the NTRUEncrypt scheme, checking the applicability of 

quantum attacks on the NTRUEncrypt scheme (which 

need to formalize the necessary quantum primitives and 

theorems in Isabelle/HOL), and so on. 

The NTRUEncrypt public key cryptosystem, also 

known as the NTRU encryption algorithm[1], is a lattice-

based alternative to RSA and ECC which is based on the 

shortest vector problem (SVP) in a lattice (which is 

known not to be breakable using quantum computers). 

The first version of the system, which was simply called 

NTRU, was developed around 1996 by three 

mathematicians (J. Hoffstein, J.Pipher and J.H. 

Silverman)[1]. In 1996 these mathematicians together 

with D. Lieman founded the NTRU Cryptosystems, Inc. 

and were given a patent on the cryptosystem. Now the 

system is fully accepted to IEEE P1363 standards under 

the specifications for lattice-based public-key 

cryptography (IEEE P1363.1)[12, 16]. Because of the 

speed of NTRUEncrypt public key cryptosystem and its 

low memory use, it can be used in applications such as 

mobile devices, Smart-cards and so on. In April 2011, 

NTRUEncrypt was accepted as a X9.98 Standard, for use 

in the financial services industry[16]. 

This paper is organized as follows: We start in Chapter 

2 with a description of the used formal proof system. In 
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Chapter 3 we explore the mathematical background of 

NTRUEncrypt scheme. In Chapter 4 we present a main 

formalization of the NTRUEncrypt Algorithm, and in 

chapter 5 we introduced the issues related to verification 

of the NTRUEncrypt Algorithm (which include some 

formalization of scheme). At the end, in Chapter 5 some 

conclusions, as well as some comments on future works 

are given. 

 

II.  ISABELLE FORMAL PROOF SYSTEM 

Isabelle is a generic system for implementing logical 

formalisms which invented at Cambridge University and 

TU Munich[9]. Isabelle/HOL is the specialization of 

Isabelle for HOL (which abbreviates Higher-Order 

Logic), and can be applied to several logics[9]. Other 

logics distributed with Isabelle include the usual first-

order logic (FOL) or LCF (which is a version of Scotts 

logic for computable functions). Isabelle/HOL allows to 

turn executable specifications directly into codes in SML, 

OCaml, Haskell, and Scala[22]. 

Isabelle is also often referred to as a “Proof Assistant” 

underlining the process of alternating automated 

reasoning with human intervention. Theorem proving 

with Isabelle is often based on a “human-guided” 

manipulation of the proof state, where the system itself 

only executes the given commands and verifies their 

applicability until finally all subgoals have been proven 

(e.g. via reduction to already proven lemma). On the 

other hand there are also strong tools that can be applied 

to handle (suitable) proofs (or at least considerable parts 

of it) automatically.  

Isabelle comes with a large theory library of formally 

verified mathematics, including elementary number 

theory, analysis, algebra, set theory and so on. Using 

appropriate         commands we may base our (new) 

theorems upon those in the libraries by referring to them 

during the proof process wherever they are applicable. 

More informations about the Isabelle/HOL are given in 

[7-10, 22]. 

 

III.  NTRU ENCRYPTION SCHEME 

In 1998 Jeffrey Hoffstein, Jill Pipher, and Joseph 

Silverman introduced NTRU, a new public key 

cryptosystem in his well known paper[1], "NTRU: A 

Ring-Based Public Key Cryptosystem". The original idea 

for NTRUEncrypt is due to Hoffstein in 1994 and the 

system was developed by Hoffstein, Pipher, and 

Silverman during 1994-1996. NTRU features reasonably 

short key, easily created keys, high speed functions, and 

low memory requirements.  

The encryption procedure of NTRU cryptosystem uses 

a mixing system based on polynomial algebra and 

reduction modulo two numbers   and  , while the 

decryption procedure uses an unmixing system which its 

validity depends on elementary probability theory[1]. The 

security of the NTRU public key cryptosystem comes 

from the interaction of the polynomial mixing system 

with the independence of reduction modulo   and  . 

NTRUEncrypt is in fact a lattice-based public key 

cryptosystem, because underlying convolution 

polynomial ring  , - (    )       is Convolution 

Modular Lattice and security of it also rests on the 

difficulty of solving CVP and SVP in these lattices.  

NTRUEncrypt is a probabilistic cryptosystem, 

meaning that encryption includes a random element, so 

each message has many possible encryptions. Also, 

decryption Process may cause failure such that you can 

estimate this decryption failure for different centering 

algorithm (described in subsection 3.4) [3]. It is showed 

that for a recommended parameter sets, the chance of 

decryption failure can be less than      ! 

A.  NTRU Encryption Notation 

NTRU cryptosystem depends on three integer 

parameters (     ) and four set of integer
1
 vector with 

length   (or polynomials of degree     with integer 

coefficients):   ,   ,   ,   . Vectors belong to each of 

these four sets, are short (in practice with the entries of 

  ,    and  ), such that have a specific Integer bound
2
: 

    (       ),     (     ),     (     )  and 

    (     ) . We assume that    (   )     , 

    and    . The vector   have an inverse in 

modulo   (shown by   ) and have an inverse in modulo 

  (shown by   ). A vector or polynomial    ̂ in the 

ring  ̂  , - (    ) will be written as[1]: 

 

  ∑    
    

    ,            -                  (1) 

 

We write   to denote multiplication in  ̂ as a cyclic 

convolution product in  (  ) operations:  
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The ring  ̂ allow us to compute       as[2]: 
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In this paper, multiplication of an integer number with 

a vector showed by "  ", multiplication of an integer 

number with an integer number showed by "  " and 

addition of two vectors showed by " ".  

The width of a polynomial  ( )  is the difference 

between its largest coefficients,    ( ( ))  

                                                           
1 It is arbitrary to select every rings in modulo of an integer number 
2 The set of  (       ) contains the vectors that have    coefficients 

of    and    coefficients of    
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    *            +  and smallest coefficients, 

   ( ( ))      *            + which is shown as: 

 

     ( ( ))     ( ( ))     ( ( ))      (4) 

 

B.  Key Creation 

To create an NTRU keys, two randomly polynomials   

and   should be selected from    and   , that   have 

inverse in modulo   and modulo   [1]. We will denote 

these inverses by    and   , that is,        (     ) 

and        (     ) , next compute the public key 

       (     )  and private key of the system is 

(    ). 

C.  Encryption Process 

The plaintext   and additional random bits   are used 

to select a pair of encoded plaintext polynomials (   )  
       according to a public encoding scheme  . The 

knowledge of (   ) allows easy recovery of   and   in 

practice (also, knowledge of   alone allows easy 

recovery of   and  , from which r may be recomputed 

using  )[3]:  (   )  (   )  and      (,-   )   
 (    ) . To Encrypt the   selected from   , with 

randomly chosen polynomial   from    and using the 

public key  , we should compute 

              (     )[1]. 

D.  Decryption Process 

To decrypt the encrypted message   by private key, we 

should perform the following steps[1]: 

 

1)          

2)    (     ( )    )                        

3)    (          )                    

4)                    ( ) 
5)           (     ) 

6)  (    )        (,-   ) 
 

Because the polynomials  ,  ,  ,   are small, their 

products will in general have low width, thus we can find 

a correct interval that can reduce   in it so that  ( )  
 ( ) (     ) (formula  ( ) refers to Reduced   in the 

correct interval) and decryption algorithm exactly will 

recover the  [3, 21]. if we have selected wrong interval, 

the recovered value will defer from  . A decryption 

failure will occur if      (               )    

(referred to gap failure) or if 

     (               )    but we have reduced 

into wrong interval (referred to wrap failure). If gap 

failure was not observed, we should apply centring 

method on   to compute  ( ) that satisfy the following 

condition   ( )                         (two 

centring method introduced in [3]).   

One of the important problem in NTRUEncrypt is the 

parameter selection to have lowest Decryption failure 

with most efficient speed and storage. The parameter 

selection will not discussed here (the same as centering 

method), we should be able to compute the probability of 

decryption failure[3]. The likelihood of a decryption 

failure can be made arbitrarily small, IEEE P1363.1 says 

in appendix A.4.10[12] that for ternary polynomials with 

  coefficients of    and the same number of   , the 

chance of a decryption failure is given by[13]: 

 

                (     )   (   ) .
   

 
/             (5) 
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 (   )( )        .
 

 √  
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where      is the Gauss error function (as a practical 

example, for the EES1087EP2 parameter set where 

      ,        and      , the failure 

probability is           , which is a bit less than 

     ). We can choose the parameters (     ), so that 

                (     )    in which that, the selected 

parameters should be have to satisfy following 

condition[2, 13] to zero this probability (the condition 

shown below, get from [2]), 

 

   
 

 
  

   
 
 

 
                                  (6) 

 

also, we tested a C language implementation of this 

condition, and approve that for     ,    ,    with 

the above condition and every values of  , 

                (     )  become 0 (although lower bound 

     not mentioned in the [2], the proof not be affected 

for other more exact bounds of   from valid references, 

since in this proof, the selected parameter set be assumed 

with lowest effect on the proof process). At result, we 

have the following rule: 

 

(                (     )    )  (     ( )   )   (7) 

 

IV.  FORMALIZATION OF NTRUENCRYPT SCHEME 

What follows is a summary of the most important steps 

of the formalization of NTRUEncrypt Scheme in 

Isabelle/HOL in order to introduce suitable framework of 

ingredients for NTRUEncrypt algorithm, that make it 

useful for different functional and security analysis in 

future.  

Formalizing of the NTRUEncrypt involved with 

different concepts that the researches such as, Proving 

Real-Valued Inequalities by Computation in 

Isabelle/HOL[11], Proofs of properties of finite-

dimensional vector spaces using Isabelle/HOL[15], 

Defining Recursive Functions in Isabelle/HOL[18], and 

Executable matrix operations on matrices of arbitrary 

dimensions[19], help us to handle them in the design. 

Also Isabelle libraries introduced useful        files that 

we can        them in our theory (such as list, vector 

list, ring and...)[7, 17], but since use of them make the 
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proof process so much harder and more complex, it is 

decided to use them as least as possible, in other words, 

most of definitions in this research were tailored to the 

application and thus enabled short and elegant proofs that 

are not easily possible with the existing libraries (that is, 

this thesis just specialized for NTRUEncrypt family). We 

implement the problem in 3 forms: 1- (just) 

             lemmas, 2- locales[14] and 3- classes, at 

the result since the verification of this encryption scheme 

is very heavy, so we select the well-structured Isabelle 

Isar proofs with the short step[10] in proving and 

underlying hierarchy of algebraic classes[7, 14-15] in 

implementing the operations and lemmas on the 

convolution modular lattices. Note that type classes are 

only useful if they are instantiated for several types, but 

in this research, only integers to be needed. In fact, 

philosophy of using the type classes in this research is 

classification of formal primitives to introduce more 

readability in proof process! 

The                                  is the main 

theorem of our thesis. Proving of this theorem consists of 

8 main steps (main goals), that every main steps may 

have some sub steps (subgoals). For more readability of 

proving steps, the assumptions in 

                                 come with         

in their names and the lemmas used in the theorem 

proving come with         in their names.  

As will be shown in the codes, the "priority order" set 

by a number that specify the priority, such as 

(          ), so that big number cause the high priority. 

Following sample equality shows the priority order of 

operations in this research (the operator    that return the 

 -th integer element of a vector, which is not discussed in 

this paper): 

 

                             

( (    (  (   )))   ((   )   ))      ( )   (8) 

 

Note that we omit the unnecessary declarations, 

definitions, functions and lemmas in this text to make the 

thesis more convenient to read. 

A.  Basic Primitives 

Basic concepts in this formalization is the 

implementation of vectors with same length, addition and 

multiplication operation on them. The easiest way to 

achieve this goal is that, preconditions about the length of 

vectors being omnipresent with the use of unspecified 

constant definition. So the first basic primitive is 

declaration of   as a constant, that show length of vectors, 

               
Since, fixed length condition of vectors is not 

necessary in addition operation to satisfy correctness of 

related rules and assumptions in this       , we 

implemented it without length constraint of operands, 

 

                 
                               (          )        
       ,-    ,-    ,-    
       (    )    ,-        (     ,-)    

       ,-    (    )        (,-      )    
       (    )    (    )    (     )   (       )  
 

Multiplication operation on lattice vectors, against the 

addition operation, is a complex recursive function that 

implement matrix vector multiplication (described in 

section 3.1), and the correctness of it rely on fixed length 

of vector operands, so we should apply this length 

constraint on the vectors for multiplication (and other 

multiplication related operations and rules) with the 

definition of following function, 

 

                                               
                        ,-     ,-   
                            ,-   
                     (     ) ,-    (    (               ,-))   
                     (     ) (      )    

            (                     )  
 

This function assume that we reduced a polynomial in 

the modulo of      , so we just have polynomials of 

degree     and less (vectors with the length of   ) 

and because all the operations in this        have not 

vector outputs of length   , so we should only expand 

the length vectors with the zero entries in the most 

significant entries up to   entries. Implementation of the 

function that compute a polynomial modulo of      , 

have least usefulness and on the other hand heavily 

increased the proof processes. Since we implement the 

lattice integer vectors in a hierarchy of classes, so we 

apply the length constraint on this lattice vectors with the 

definition of base class        and inherit from it,   

 

                          

                          (   ,  -) 
                        ,    -        (   )     
                          
        
                                                 "        

                                     

                         
    

 

Since Isabelle2009-1, the Isabelle/HOL library already 

provides a type of lists of length   , namely       in 

HOL/Multivariate_Analysis/Finite_Cartesian_Product 

with instances for all the required group classes but, as 

mentioned at the beginning of this section, this thesis just 

specialized for NTRUEncrypt family to introduce short 

and elegant proofs (that are not easily possible with the 

existing libraries). Even if we decided to use the 

Isabelle/HOL library, the ring classes of this research 

would have to be instantiated manually, because the 

multiplication operation is specific to NTRUEncrypt. The 

        function implement Matrix vector multiplication 

with the use of               (note that inputs of these 

two recursive function is vectors of length  ), 
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                       ,-,-      
                       (   ) (   )  (   )  
          (                 )  
                                                

                          ,-   
                      (     )   

          (                  )   

          (        (       (   ))  )    )  
 

Since the underlying constructs for operation on 

convolution modular lattices implement with the 

hierarchy of algebraic classes, we should define inverse 

elements of   and   with functions of             and 

           (we define operation of             in the 

form of some propositions): 

 

                                         
                      ,-    ,-    
                     (    )    (  )                     
                                   (     ,  -   ) 

                                                      

                   
                 (      ,   -    ) 
 

We can apply a coefficient for a vector in which that 

multiply the value of the coefficient with every entries of 

that vector, 

 

                 

                       (             )       

                       (      )     
 

In this text, we show the operator modulo of an Integer 

on an integer and modulo of a vector on an integer with 

the same notation     (that defined as following 

function), 

 

            
                       (               )       

          , -         ,       -    
          (   )         ((       ) (       ))  

 

B.  Types Declaration/Definition 

In this subsection we just introduced the Declarations 

and Definitions that used in formalization and verification: 

 

 The annotation     is just to imply operation on 

vectors, 

                                
 

 The four variables  ,  ,   and   used in 3 form    , 
    and     so we implement 2 function         
and         to handle type conversions (in this 

paper each 3 forms of these variables used in same 

way), 

                      
                      
                      

      vector is the unit element of class 

            (discussed in subsection classes 

hierarchy), 

                     (   ) 
                         ,-  

 

     vector is the unit element of class 

            (discussed in subsection classes 

hierarchy), 

                     (   ) 
                       , -  

 

 Following vectors with the same notation discussed 

in section 3, 

                   
                   
                   
                    
                   
                   
                   
                            
                   
                   
                               
                    
                               
                    

 

 Following boolean variables specify certain 

conditions in the decryption algorithm and with the 

same notation discussed in section 3, 

                            
                                 

                              

 

 Following functions with the same notation 

discussed in section 3, 

         

                                   
            

                                   
                             

 

           is set of possible coefficients for  ,  ,   

and  , 
                     

                            *      +  

 

This research used lots of unspecified constants 

(       ) to simplify the proof steps. Consequently, 

inside HOL, the theorem holds only for those unspecified 

values (Only on the meta-level, when one considers the 

set-theoretic semantics of HOL, one regains generality by 

considering different models for the constants). 

C.  Classes Hierarchy 

As mentioned, because of complexity of operations in 

the convolution modular lattice vectors, we implement 
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these vectors in a classes hierarchy design, as shown in 

s.1: 

 

 

Fig.1. Diagram of class inheritance for Convolution Modular Lattice 

The algebraic type class hierarchy introduced in this 

subsection, is nearly similar to the algebraic class 

hierarchies distributed with Isabelle/HOL but the main 

difference is that the class operations here, refer directly 

to lists of length  , where   is an unspecified constant. 

This subsection divide in to 14 part that in each part we 

define a new class, instantiate it on     type and also, 

sometimes related lemmas mentioned (zero integer in this 

text showed by   and zero vector of length   showed by 

 , also unit integer showed by   and unit vector of the 

introduced multiplication with length   showed by  ). 

 

part1)       : This class is the base class and other 

classes inherit the vector length constraints from it (as 

shown before). 

 

part2)      : This class inherit from       , but 

because the operation   it don't depend on length of 

vector, so don't apply its length constraint (with   prefix), 

 

                     
                 
                             (             ) 
                              
                          
                                   
                                        

 

part3)              : This class inherit from     , 

and apply the rule of right and left associative on the   

operation, 

                             

                                   (     )      

     (     )    

      (                )                            

       ( )   (     )    (     )      
                                       

                             
 

part4)            : This class inherit from 

             , and apply the rule of left unit element on 

the   operation (note that in this class, rule of 

                 need to apply length constraint, so we 

use from this constraint by   prefix), 

 

                                 

                                    (   )    (   )  

                                       

                            

 

Part5)           : This class inherit from 

           , and apply the rule of right unit element on 

the   operation (note that in this class, rule of 

                  need to have length constraint, so we 

use from this constraint by   prefix), 

 

                              

                                    (   )     (   )   

                                   

                              
 

part6)          : This class inherit from           , 

and apply the rule of inverse element (and following this 

rule,           satisfy                       rule) on the 

  operation, 

 

                            

                                        

           ( (   ))   (   )       

      (            )                 

            (   )   (  )  

      (            )                       

        (   ) (   )  (   ) (   )  (   )  (   )  
                                  

                            
 

part7)                  : This class inherit from 

          and apply the rule of commutative on the   

operation, 
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part8)     : This class inherit from       , and 

because the operation   fully depend on length of vector, 

we apply it's length constraint (with   prefix), 

 

                     
                      
                                  (             ) 
                              
                           
                                        

                      

                      (      (   )(    (   ))) (   )    
                      

 

part9)              : This class inherit from     , 
and apply the rule of right and left associative  on the 

  operation, 

 

                          
                                              

           (     )           (     )  
      (                )                             

               (     )    (     )      
                                      
                             
 

part10)            : This class inherit from 

             , and apply the rule of left unit element 

on the   operation, 

 

                                 
                                               
                                    

                             

 

part11)           : This class inherit from 

           , and apply the rule of right unit element on 

the   operation, 

 

                              
                                               
                                   

                            

 

part12)     : This class inherit from            and 

                 (as shown in Fig. 1) and apply the rule 

of left distributive and right distributive of   operation 

on the   operation, 

 

                                           

                                           

              (     )                   
      (       )                         

         (     )                      
                             

                            

 

part13)                : This class inherit from 

     (as shown in Fig. 1) and apply the rule of 

commutative on the   operation, 

 

                            

                                              

                                        

                            
 

part14)             (Convolution  modular Lattice): 

This class just inherit from                (as shown 

in Fig. 1), 

 

                                  

                                     
                     

 

D.  Defined functions in             class 

Encryption/Decryption related functions specifically 

operate on the             class that can be defined in 

the following way: 

 

 Encryption method defined as function     , 

 

           (              )      

                                  

               

                      

(              )          
 

 Public key compute as function  , 

 

           (              )     
                                          

               (        )         
 

 We can compute   (from step 1 of decryption 

process) as the following function: 

 

           (              )   

                                  

                          
 

 Decryption method defined as function     , 

 

           (             )       

                                          

                  (        )         
 

 Width method defined as function      , 

 

          (              )      

                     

           ((    (     ))  (    (     )))  
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V.  VERIFICATION OF NTRU ENCRYPTION SCHEME 

What follows is a summary of the most important steps 

(including necessary lemmas and assumptions) of the 

formal proof in Isabelle/HOL in order to outline the 

general course. In the next subsections we described 

necessary lemmas and assumptions that used in proof of 

theory                        , after we discussed the 

implementation of Encryption/Decryption scheme 

(implemented as assumption steps in 

                       ) and in last subsection, we 

discussed briefly the proof steps of 

                        (note that all the lemmas and 

assumptions in this section defined in the context of class 

           , so we omit the command                
from these lemmas). 

A.  Lemma about the       function 

Function       introduced two important lemmas 

which defined as,  

 

                           

                   (     )    (     )      
                                           

 

B.  Lemma about the        constraint 

As mentioned, the vectors in convolution  modular 

lattice should be in the fixed length   and operator   

apply this length constraint on the our vectors, 

 

                         
                     (                   )  
                         
                       (         )  
                          
                (          )           (            )  
                                (   )       
 

and for each convolutional modular lattice vectors ( ,  , 

 ,  ,  ,  ,  ,            ,   ,   ,   ,           ,  , 

 ,   and  ) we define this sample lemma (substitute X 

with the vector name, such as  ):  

 

                                               
                             

 

C.  Lemma about multiplication inverse element 

A convolution modular lattice is a ring and each 

element of this construct may have or have not inverse 

element so we defined the multiplication inverse 

operation as the following lemma: 

 

                              
                    (           )   

              (              (     )        )  
 

D.  Lemma about the     operation 

Since operation on the algebraic constructions that 

defined by     operation, introduced longer proof step 

to handle and work on the propositions, so we defined a 

set of rules to shortening these proof steps (by guiding the 

automatic proof tools): 

 

                
         (       )                  
                
         (       )                        
                 
                   (                 )  
                
                     ((       )    )        
                
         (     )         ((       )    )        
                
          (       )     (               )  
                
        (       )   (       )                    
 

E.  Assumptions about  ,  ,   

As be mentioned, we have 3 important integer 

parameter that should apply some assumptions on them, 

 

         ,     -       
               (   )     
                   
 

F.  Assumption about       of  ,  ,  ,   

For simplicity, according to definition of 

NTRUEncrypt in [2], and with the assumption of     

(         ), if we assume the following assumptions: 

 

                             

                             

                              

                             

 
the assumptions about       of vectors  ,  ,  ,   (that 

equal to  ), and coefficients of these vectors (that belong 

to          ), can be eliminated (that is the following 

assumptions be eliminated):  

 

                             

                             

                             

                             

                  ( )     
                   ( )     
                  ( )     

                  ( )     
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G.  Assumption about Encoding Scheme 

Since the encoding and decoding scheme just be 

declared, so we use the following assumptions to define 

their operations, 

 

                       
          (     )  (     )   

        (     (     )  (      ))  
                       
          (     )  (     )   

        (     (, -   )  (     ))  
 

H.  Assumption about Probability of Decryption Failure 

We implement the                 (     )  in 

Isabelle/HOL, but since the proving process with the 

operation on     in this complex function 

(                (     )) is beyond our thesis[7, 11] and 

also if we bound the failure probability, it may be 

required to switch to probabilistic reasoning (in that 

direction, the theory 

HOL/Probability/Probability_Mass_Function might be a 

good starting point). So we assume that parameters  ,   

and   select from a specific parameter set that zeroed the 

                (     ) value (discussed in subsection 3.4), 

and consequently add the following assumption (note that 

if                 (     )  be zeroed, we have not 

          ): 

 

              
    

              

 
 
  

   
 
 

 
  

                 
                    

         (    )  (  
 

 
  

   
 
 

 
)  (   )  

                           (     )        

 

Assumptions          ,                      and 

                  correspond with phases of passing 

the gap failure, that is,                             ,  

                             and 

                            , so that proof system 

pass out this three steps of decryption phases 

automatically. 

I.  Assumption about the centering method 

If we have not            (since we assume that the 

parameters selected based on                   cause 

the                 (     ) be zeroed), the coefficients of 

 ,  ,  ,   are small, so the coefficients of       
    will lie in an interval of length less than  . We 

assume always centring method chooses the appropriate 

interval, so the polynomial   equals           

exactly, and not merely modulo  , so the             not 

be happened. The following assumption have important 

role in the proof process: 

                       
                                              

         (      (                  )    )  
 

Assumption                     correspond with 

                            , so that proof system 

pass out this step of decryption phases automatically. 

Although, transition from     to   is again assumed 

instead of proven, but we should note that proving the 

success of centering method has so complex states! 

J.  Encryption Process 

We implement the steps of encryption process as 

assumptions of                         in the 

following 3 phases (  is original input message):  

 

                                            

                                (    )    (    )  

                                                

 

K.  Decryption Process 

We implement the steps of decryption process as 

assumptions of                        in the 

following 7 phases: 

 

                                  (     )  

                              

                         (     )     (     ( )   )  

                              

              ( )     (                )  

                               

                            

        (                  )  
                               

                               
        (                 )  

                              

                             

         (                   (   )  )  
                               

            (, -            )  (     )  
 

L.  Roadmap of formal verification for NTRUEncrypt 

Theorem                         defined in the 

context of            . As be mentioned, we used a 

forward proof steps by Isabelle/Isar structure. We outline 

proof steps of                         in the following 

way (note that the following proof road map is not 

Isabelle/HOL commands and just show outline the proof 

steps):  

 
   
 
                                

                           

 (                            ) 

 (     ( )   )  
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 (                            ) 

 (                ) 

 (                            ) 

 (                            ) 

 (                            ) 

 (                            ) 
   
 
                      

                                        

                                      

                                       

                                            

                                         

                                           

                                 

                                 

                                 

                                            

                                                    

                                    

                           

                            

                                                 

                                          

                                             

                                        

 (                            ) 
   
 
                                            

 (      )     

                                      

 

As seen in the roadmap of formal verification for 

NTRUEncrypt, it is not clear what has actually been 

verified. since theorem                         

assume most of the interesting steps of the scheme being 

correct (by assumptions introduced). In fact, this research 

just fully validate the control flow of proposition 

        (   )        as following way (and other 

steps validated by some assumptions): 

 

(

 
 
 
 
 
 

        

(

 
 
 
 

  

(

 
 
  (         (        )

⏞      
 

    )

⏞                    
 

  

)

 
 

⏞                          
 

)

 
 
 
 

⏞                              
   

  

)

 
 
 
 
 
 

⏞                                        
          

 

 
  
 
    

so that   satisfy condition     (, -  )   (   )  with 

the original input message  . Verifying the goal of 

              includes the bellow subgoals which 

nearly corresponds with the                               

(and refered to layer 3 in the table 1 as skeleton of the 

proof in this research): 

 

 Subgoal 1:  (                 )             
((             )   (         ))        

 Subgoal 2:   (        )             
       (     )        

 Subgoal 3:         (     )        

(           )               
 Subgoal 4:              (       )            
 Subgoal 5:  

 (       )   ((         )⏞        
  

   (       ))       
((       )   (         ))   (       )           

 Subgoal 6:  

 ((       )   (         )⏞                
 

)   (       )       
           

 Subgoal 7:  

                                      
 Subgoal 8:      (                 )      
 Subgoal 9:  

 (             )   (         )        

(            )   (     )  
 Subgoal 10: 

      ((             )   (     ))     
(                )   (          )  

 Subgoal 11: 

      ((           )     )    
(                 )   (          )  

 Subgoal 12:  

 (                  )   (          )    

(          )   (                 )  
 Subgoal 13:  (          )                
 Subgoal 14: 

      ((           )   (     ))        

(    (                ))        
 Subgoal 15:  

     (                 )        

(                      )            
 Subgoal 16:    (         )          
 Subgoal 17: 

      (  (         ))        

     ((  (         ))      )        
 Subgoal 18:  

      (  (         )      )          
 Subgoal 19:  

 (    (                ))           
 Subgoal 20: 

      ((           ) (     ))          
 Subgoal 21:  

      ((             )        )        

     ((           )   (     ))        
 Subgoal 22:          (   )       

 

Note that the main proof steps in the roadmap 

essentially not be equal to phases of decryption. As an 

engineering design, it is best to have a high level map to 

handle the main problem (formal proof of NTRUEncrypt 
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scheme) with less details. A stack of layers in formal 

proving for NTRUEncrypt scheme be designed in Table 1 

(including layers 1 to 4) that classify the proof steps as 

independent as possible in this research (this layering 

stack is not essentially an ideal stack for layers of formal 

proof of NTRUEncrypt scheme and it is possible to have 

better layering for this scheme): 

Table 1. Stack of Layers in Formal Proof of NTRUEncrypt 

  Encoding/Decoding layer is last layer in this research to be 

verified (in this layer, the algorithm of Encoding/Decoding 

should be selected and fully defined in the formalization and at 
the end, fully validate the control flow of  

     (, -            )  (   )  for a given message  ). 

  Skeleton of the proof is validation of the control flow of 

         (   )         which is main goal in this research 
to be verified. 

  Transition from     to   should be proven as a centering 
method (which used in decryption phases) chooses the 

appropriate interval, thus the polynomial   equals        
     exactly, and not merely modulo  , so the             

not be happened (in this layer, algorithm of centering method 
should be selected and fully defined in the formalization and at 

the end, fully validate control flow of it). 

  Handling the            which happen with the probability of 

                (     ) for a given parameter set of (     ) and 

output     (     ) , so that satisfy condition      ( )    

with the chance of                 (     ) (it may need to proof 

process with the operation on     in the complex function 

                (     ) or if we bound the failure probability, it 

may be required to switch to probabilistic reasoning). 

 

VI.  CONCLUSIONS 

We explored the application of a formal proof system 

to the simplified version of NTRUEncrypt function 

introduced in [1]. More precisely, we proved the 

functional correctness of this algorithm formally with the 

Isabelle/HOL proof system. In this case, we proved 

formally that this scheme is correct what is a necessary 

condition for the usefulness of any cryptographic 

encryption scheme. A formal analysis with computer 

support provides a complex, but useful approach to verify 

the functional correctness of implementations of 

cryptographic algorithms. This formalization and 

verification is not a general scheme with high strong 

design to ideally underlay all further works in this area, 

but has some main advantages which enumerated as 

following: 

 

 This research can be seen as a start point for 

further formal proofs in NTRUEncrypt scheme. 

 Four partially independent layers introduced in 

this research (as a high level framework for formal 

verification of NTRUEncrypt scheme) which 

validated just for layer 3 (Table 1) in this research 

and other layers can be studied in further works 

(although the validation of layer 3 in this research 

can be refine in the further studies). 

 The computer-proven lemma augment the given 

database that is basic for many Isabelle theories in 

the related area.  

 The functions and other formal primitives which 

defined/declared in this research can used in the 

further studies.  

 Difficulties and problems in the formalization and 

verification phases enumerated in this paper, also 

in the most of them, the solution idea introduced 

and can be resolved easily in the further studies.  

 An algebraic type class hierarchy introduced in 

this research which can be used in the further 

studies. 

 

VII.  FURTHER STUDIES 

As mentioned in section 6 (Conclusion), difficulties 

and problems in the formalization/verification phases 

enumerated in the different sections (subsections) of this 

research, so that, most important of them can be resolved 

by following further studies: 

 

 As the constants are not polymorphic, the 

generality can equally be expressed inside HOL, 

e.g., by turning all unspecified constants into 

parameters of a locale and the resulting 

development will more usable, because the 

parameters can be instantiated inside the logic. 

 Ideally, the algorithms in this research should be 

defined (rather than axiomatised as is done in this 

research). 

 The important properties in this research should be 

proven under as weak assumptions as possible. 

 This research restrict the parameters of the 

encryption algorithm to a small set of values, so 

generality of this parameter set can be studied to 

have more usefulness of the formal proof.  

 Layer 1 of the formal proof (Table 1) which 

corresponded to Handling the           , can be 

studied to be verified (as far as possible) in the 

further studies. 

 Layer 2 of the formal proof (Table 1) which 

corresponded to centering method functionality for 

handling            , should be studied to be 

verified (as far as possible) in the further studies. 

 Layer 4 of the formal proof (Table 1) which 

corresponded to Encoding/Decoding functions can 

be studied to be verified (as far as possible) in the 

further studies. 

 A lot of space in this research is spent on re-

inventing existing libraries (in particular, the 

algebraic type class hierarchy and vectors of fixed 

length) to have short and elegant proofs (that are 

not possible easily with the existing libraries), thus 

the benefits from all the corollaries and the setup 

for proof automation that has been developed for 

the existing primitives in Isabelle/HOL libraries be 

lost and also extending the area of this proof to be 

used in other external theorems using the standard 
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Isabelle/HOL libraries, faced with problems, so 

use the existing libraries as far as possible in the 

further studies.   

 This research partially focus on elegance or 

encapsulating fundamental insights that are 

adaptable and reusable so these properties should 

be consider more in further studies. 
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Universit ät Darmstadt, 2007. 

[6] Kusch, S., Kaiser, M., "A Computer Proven Application 

of the Discrete Logarithm Problem", International 

Journal of Computer Science 2.2, 2007. 

[7] Nipkow, T., Paulson, L.C., Wenzel, M., "Isabelle/HOL—

a proof assistant for higher-order logic", Lecture Notes in 

Computer Science, vol. 2283. Springer, 2002. 

doi:10.1007/3-540-45949-9. 

[8] Nipkow, T., Klein, G., "Concrete Semantics-A Proof 

Assistant Approach", Springer, 2014. 

[9] Nipkow, T., "Programming and Proving in Isabelle/HOL", 

http://isabelle.informatik.tu-muenchen.de/, 2012. 

[10] Wenzel, M., "The Isabelle/Isar Reference Manual", TU 

MÄunchen, MÄunchen, 1999, 

http://isabelle.in.tum.de/doc/isar-ref.pdf. 

[11] Holzl, J., "Proving Real-Valued Inequalities by 

Computation in Isabelle/HOL", Diploma thesis, Institut 
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