
I. J. Computer Network and Information Security, 2016, 4, 44-55
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.04.06

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

Formal Verification of NTRUEncrypt Scheme

Gholam Reza Moghissi
ICT Department, Malek-e-Ashtar University of Technology, Tehran, Iran

E-mail: ftmsecure_ubbao@mut.ac.ir

Ali Payandeh
ICT Department, Malek-e-Ashtar University of Technology, Tehran, Iran

E-mail: payandeh@mut.ac.ir

Abstract—In this paper we explore a mechanized

verification of the NTRUEncrypt scheme, with the formal

proof system Isabelle/HOL. More precisely, the

functional correctness of this algorithm, in its reduced

form, is formally verified with computer support. We

show that this scheme is correct what is a necessary

condition for the usefulness of any cryptographic

encryption scheme. Besides, we present a convenient and

application specific formalization of the NTRUEncrypt

scheme in the Isabelle/HOL system that can be used in

further study around the functional and security analysis

of NTRUEncrypt family.

Index Terms—Public key encryption, Lattice,

NTRUEncrypt, Formal proof system, Higher order logic,

Formal verification, Isabelle/HOL, Theorem proving,

Proof assistant.

I. INTRODUCTION

Formal proof systems are a useful approach in the area

of verification. Formal and computer verification

augment the traditional concept of software engineering

by providing techniques that guarantee trustiness as well

as correctness of software systems in a mathematical way.

There are many possible applications of formal

verification like automotive, medical technology,

information technology (software/hardware security,

network, cryptography and protocol) and so on. Some of

the researches around with formal verification of

cryptographic functions, such as Formal Analysis of a

Public-Key Algorithm (functional verification and

computational security of rabbin encryption and digital

signature scheme)[4], Formal Proof for the Correctness

of RSA-PSS (functional verification of probabilistic

signature scheme RSA-PSS)[20], A Computer Proven

Application of the Discrete Logarithm Problem [6](from

the thesis: Formalizing the DSA Signature Scheme in

Isabelle/HOL[5]), Verification of Cryptographic

Primitive SHA-256 [23] and so on, encourage us to

formalize and verify the NTRUEncrypt Scheme.

Now a days, because of the challenge of powerful

quantum computer, one of the important scheme in the

public-key cryptography is NTRUEncrypt function as

suitable post quantum encryption scheme[16].

NTRUEncrypt public-key scheme (not fully) relies on the

hardness of solving SVP (Shortest Vector Problem which

is the problem of finding shortest vector ̂ in the lattice of

 as ̂) and CVP (Closest Vector Problem which is

the problem of finding a vector ̂ that is closest to a

target vector not belong to lattice) in a

convolution modular lattice (since security analysis of

NTRUEncrypt Scheme not included in this research we

don't open them). In this paper, we explore a computer

verification for simplified version of the NTRUEncrypt

scheme with the formal proof system Isabelle/HOL. More

precisely, the functional correctness of this algorithm is

formally verified in a simplified version with computer

support. Besides, we present a convenient formalization

of the NTRUEncrypt scheme in the Isabelle/HOL system

that can be used as a framework for further studies on this

function. Further Studies in this domain can be followed

by the topics such as: computer verification of security

properties using a straight-forward computation model in

Isabelle/HOL, applying of Isabelle/HOL to the complete

version of NTRUEncrypt function, checking the

applicability of deferent introduced traditional attacks on

the NTRUEncrypt scheme, checking the applicability of

quantum attacks on the NTRUEncrypt scheme (which

need to formalize the necessary quantum primitives and

theorems in Isabelle/HOL), and so on.

The NTRUEncrypt public key cryptosystem, also

known as the NTRU encryption algorithm[1], is a lattice-

based alternative to RSA and ECC which is based on the

shortest vector problem (SVP) in a lattice (which is

known not to be breakable using quantum computers).

The first version of the system, which was simply called

NTRU, was developed around 1996 by three

mathematicians (J. Hoffstein, J.Pipher and J.H.

Silverman)[1]. In 1996 these mathematicians together

with D. Lieman founded the NTRU Cryptosystems, Inc.

and were given a patent on the cryptosystem. Now the

system is fully accepted to IEEE P1363 standards under

the specifications for lattice-based public-key

cryptography (IEEE P1363.1)[12, 16]. Because of the

speed of NTRUEncrypt public key cryptosystem and its

low memory use, it can be used in applications such as

mobile devices, Smart-cards and so on. In April 2011,

NTRUEncrypt was accepted as a X9.98 Standard, for use

in the financial services industry[16].

This paper is organized as follows: We start in Chapter

2 with a description of the used formal proof system. In

 Formal Verification of NTRUEncrypt Scheme 45

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

Chapter 3 we explore the mathematical background of

NTRUEncrypt scheme. In Chapter 4 we present a main

formalization of the NTRUEncrypt Algorithm, and in

chapter 5 we introduced the issues related to verification

of the NTRUEncrypt Algorithm (which include some

formalization of scheme). At the end, in Chapter 5 some

conclusions, as well as some comments on future works

are given.

II. ISABELLE FORMAL PROOF SYSTEM

Isabelle is a generic system for implementing logical

formalisms which invented at Cambridge University and

TU Munich[9]. Isabelle/HOL is the specialization of

Isabelle for HOL (which abbreviates Higher-Order

Logic), and can be applied to several logics[9]. Other

logics distributed with Isabelle include the usual first-

order logic (FOL) or LCF (which is a version of Scotts

logic for computable functions). Isabelle/HOL allows to

turn executable specifications directly into codes in SML,

OCaml, Haskell, and Scala[22].

Isabelle is also often referred to as a “Proof Assistant”

underlining the process of alternating automated

reasoning with human intervention. Theorem proving

with Isabelle is often based on a “human-guided”

manipulation of the proof state, where the system itself

only executes the given commands and verifies their

applicability until finally all subgoals have been proven

(e.g. via reduction to already proven lemma). On the

other hand there are also strong tools that can be applied

to handle (suitable) proofs (or at least considerable parts

of it) automatically.

Isabelle comes with a large theory library of formally

verified mathematics, including elementary number

theory, analysis, algebra, set theory and so on. Using

appropriate commands we may base our (new)

theorems upon those in the libraries by referring to them

during the proof process wherever they are applicable.

More informations about the Isabelle/HOL are given in

[7-10, 22].

III. NTRU ENCRYPTION SCHEME

In 1998 Jeffrey Hoffstein, Jill Pipher, and Joseph

Silverman introduced NTRU, a new public key

cryptosystem in his well known paper[1], "NTRU: A

Ring-Based Public Key Cryptosystem". The original idea

for NTRUEncrypt is due to Hoffstein in 1994 and the

system was developed by Hoffstein, Pipher, and

Silverman during 1994-1996. NTRU features reasonably

short key, easily created keys, high speed functions, and

low memory requirements.

The encryption procedure of NTRU cryptosystem uses

a mixing system based on polynomial algebra and

reduction modulo two numbers and , while the

decryption procedure uses an unmixing system which its

validity depends on elementary probability theory[1]. The

security of the NTRU public key cryptosystem comes

from the interaction of the polynomial mixing system

with the independence of reduction modulo and .

NTRUEncrypt is in fact a lattice-based public key

cryptosystem, because underlying convolution

polynomial ring , - () is Convolution

Modular Lattice and security of it also rests on the

difficulty of solving CVP and SVP in these lattices.

NTRUEncrypt is a probabilistic cryptosystem,

meaning that encryption includes a random element, so

each message has many possible encryptions. Also,

decryption Process may cause failure such that you can

estimate this decryption failure for different centering

algorithm (described in subsection 3.4) [3]. It is showed

that for a recommended parameter sets, the chance of

decryption failure can be less than !

A. NTRU Encryption Notation

NTRU cryptosystem depends on three integer

parameters () and four set of integer
1
 vector with

length (or polynomials of degree with integer

coefficients): , , , . Vectors belong to each of

these four sets, are short (in practice with the entries of

 , and), such that have a specific Integer bound
2
:

 (), (), () and

 () . We assume that () ,

 and . The vector have an inverse in

modulo (shown by) and have an inverse in modulo

 (shown by). A vector or polynomial ̂ in the

ring ̂ , - () will be written as[1]:

 ∑

 , - (1)

We write to denote multiplication in ̂ as a cyclic

convolution product in () operations:

 (2)

 ∑

 ∑

 ∑
 ()

The ring ̂ allow us to compute as[2]:

[

]

[

]

[

]

 (3)

In this paper, multiplication of an integer number with

a vector showed by " ", multiplication of an integer

number with an integer number showed by " " and

addition of two vectors showed by " ".

The width of a polynomial () is the difference

between its largest coefficients, (())

1 It is arbitrary to select every rings in modulo of an integer number
2 The set of () contains the vectors that have coefficients

of and coefficients of

46 Formal Verification of NTRUEncrypt Scheme

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

 * + and smallest coefficients,

 (()) * + which is shown as:

 (()) (()) (()) (4)

B. Key Creation

To create an NTRU keys, two randomly polynomials

and should be selected from and , that have

inverse in modulo and modulo [1]. We will denote

these inverses by and , that is, ()

and () , next compute the public key

 () and private key of the system is

().

C. Encryption Process

The plaintext and additional random bits are used

to select a pair of encoded plaintext polynomials ()
 according to a public encoding scheme . The

knowledge of () allows easy recovery of and in

practice (also, knowledge of alone allows easy

recovery of and , from which r may be recomputed

using)[3]: () () and (,-)
 () . To Encrypt the selected from , with

randomly chosen polynomial from and using the

public key , we should compute

 ()[1].

D. Decryption Process

To decrypt the encrypted message by private key, we

should perform the following steps[1]:

1)

2) (())

3) ()

4) ()
5) ()

6) () (,-)

Because the polynomials , , , are small, their

products will in general have low width, thus we can find

a correct interval that can reduce in it so that ()
 () () (formula () refers to Reduced in the

correct interval) and decryption algorithm exactly will

recover the [3, 21]. if we have selected wrong interval,

the recovered value will defer from . A decryption

failure will occur if ()

(referred to gap failure) or if

 () but we have reduced

into wrong interval (referred to wrap failure). If gap

failure was not observed, we should apply centring

method on to compute () that satisfy the following

condition () (two

centring method introduced in [3]).

One of the important problem in NTRUEncrypt is the

parameter selection to have lowest Decryption failure

with most efficient speed and storage. The parameter

selection will not discussed here (the same as centering

method), we should be able to compute the probability of

decryption failure[3]. The likelihood of a decryption

failure can be made arbitrarily small, IEEE P1363.1 says

in appendix A.4.10[12] that for ternary polynomials with

 coefficients of and the same number of , the

chance of a decryption failure is given by[13]:

 () () .

/ (5)

where

 ()() .

 √
/ () √

where is the Gauss error function (as a practical

example, for the EES1087EP2 parameter set where

 , and , the failure

probability is , which is a bit less than

). We can choose the parameters (), so that

 () in which that, the selected

parameters should be have to satisfy following

condition[2, 13] to zero this probability (the condition

shown below, get from [2]),

 (6)

also, we tested a C language implementation of this

condition, and approve that for , , with

the above condition and every values of ,

 () become 0 (although lower bound

 not mentioned in the [2], the proof not be affected

for other more exact bounds of from valid references,

since in this proof, the selected parameter set be assumed

with lowest effect on the proof process). At result, we

have the following rule:

(()) (()) (7)

IV. FORMALIZATION OF NTRUENCRYPT SCHEME

What follows is a summary of the most important steps

of the formalization of NTRUEncrypt Scheme in

Isabelle/HOL in order to introduce suitable framework of

ingredients for NTRUEncrypt algorithm, that make it

useful for different functional and security analysis in

future.

Formalizing of the NTRUEncrypt involved with

different concepts that the researches such as, Proving

Real-Valued Inequalities by Computation in

Isabelle/HOL[11], Proofs of properties of finite-

dimensional vector spaces using Isabelle/HOL[15],

Defining Recursive Functions in Isabelle/HOL[18], and

Executable matrix operations on matrices of arbitrary

dimensions[19], help us to handle them in the design.

Also Isabelle libraries introduced useful files that

we can them in our theory (such as list, vector

list, ring and...)[7, 17], but since use of them make the

 Formal Verification of NTRUEncrypt Scheme 47

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

proof process so much harder and more complex, it is

decided to use them as least as possible, in other words,

most of definitions in this research were tailored to the

application and thus enabled short and elegant proofs that

are not easily possible with the existing libraries (that is,

this thesis just specialized for NTRUEncrypt family). We

implement the problem in 3 forms: 1- (just)

 lemmas, 2- locales[14] and 3- classes, at

the result since the verification of this encryption scheme

is very heavy, so we select the well-structured Isabelle

Isar proofs with the short step[10] in proving and

underlying hierarchy of algebraic classes[7, 14-15] in

implementing the operations and lemmas on the

convolution modular lattices. Note that type classes are

only useful if they are instantiated for several types, but

in this research, only integers to be needed. In fact,

philosophy of using the type classes in this research is

classification of formal primitives to introduce more

readability in proof process!

The is the main

theorem of our thesis. Proving of this theorem consists of

8 main steps (main goals), that every main steps may

have some sub steps (subgoals). For more readability of

proving steps, the assumptions in

 come with

in their names and the lemmas used in the theorem

proving come with in their names.

As will be shown in the codes, the "priority order" set

by a number that specify the priority, such as

(), so that big number cause the high priority.

Following sample equality shows the priority order of

operations in this research (the operator that return the

 -th integer element of a vector, which is not discussed in

this paper):

(((())) (())) () (8)

Note that we omit the unnecessary declarations,

definitions, functions and lemmas in this text to make the

thesis more convenient to read.

A. Basic Primitives

Basic concepts in this formalization is the

implementation of vectors with same length, addition and

multiplication operation on them. The easiest way to

achieve this goal is that, preconditions about the length of

vectors being omnipresent with the use of unspecified

constant definition. So the first basic primitive is

declaration of as a constant, that show length of vectors,

Since, fixed length condition of vectors is not

necessary in addition operation to satisfy correctness of

related rules and assumptions in this , we

implemented it without length constraint of operands,

 ()
 ,- ,- ,-
 () ,- (,-)

 ,- () (,-)
 () () () ()

Multiplication operation on lattice vectors, against the

addition operation, is a complex recursive function that

implement matrix vector multiplication (described in

section 3.1), and the correctness of it rely on fixed length

of vector operands, so we should apply this length

constraint on the vectors for multiplication (and other

multiplication related operations and rules) with the

definition of following function,

 ,- ,-
 ,-
 () ,- ((,-))
 () ()

 ()

This function assume that we reduced a polynomial in

the modulo of , so we just have polynomials of

degree and less (vectors with the length of)

and because all the operations in this have not

vector outputs of length , so we should only expand

the length vectors with the zero entries in the most

significant entries up to entries. Implementation of the

function that compute a polynomial modulo of ,

have least usefulness and on the other hand heavily

increased the proof processes. Since we implement the

lattice integer vectors in a hierarchy of classes, so we

apply the length constraint on this lattice vectors with the

definition of base class and inherit from it,

 (, -)
 , - ()

 "

Since Isabelle2009-1, the Isabelle/HOL library already

provides a type of lists of length , namely in

HOL/Multivariate_Analysis/Finite_Cartesian_Product

with instances for all the required group classes but, as

mentioned at the beginning of this section, this thesis just

specialized for NTRUEncrypt family to introduce short

and elegant proofs (that are not easily possible with the

existing libraries). Even if we decided to use the

Isabelle/HOL library, the ring classes of this research

would have to be instantiated manually, because the

multiplication operation is specific to NTRUEncrypt. The

 function implement Matrix vector multiplication

with the use of (note that inputs of these

two recursive function is vectors of length),

48 Formal Verification of NTRUEncrypt Scheme

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

 ,-,-
 () () ()
 ()

 ,-
 ()

 ()

 ((())))

Since the underlying constructs for operation on

convolution modular lattices implement with the

hierarchy of algebraic classes, we should define inverse

elements of and with functions of and

 (we define operation of in the

form of some propositions):

 ,- ,-
 () ()
 (, -)

 (, -)

We can apply a coefficient for a vector in which that

multiply the value of the coefficient with every entries of

that vector,

 ()

 ()

In this text, we show the operator modulo of an Integer

on an integer and modulo of a vector on an integer with

the same notation (that defined as following

function),

 ()

 , - , -
 () (() ())

B. Types Declaration/Definition

In this subsection we just introduced the Declarations

and Definitions that used in formalization and verification:

 The annotation is just to imply operation on

vectors,

 The four variables , , and used in 3 form ,
 and so we implement 2 function
and to handle type conversions (in this

paper each 3 forms of these variables used in same

way),

 vector is the unit element of class

 (discussed in subsection classes

hierarchy),

 ()
 ,-

 vector is the unit element of class

 (discussed in subsection classes

hierarchy),

 ()
 , -

 Following vectors with the same notation discussed

in section 3,

 Following boolean variables specify certain

conditions in the decryption algorithm and with the

same notation discussed in section 3,

 Following functions with the same notation

discussed in section 3,

 is set of possible coefficients for , ,

and ,

 * +

This research used lots of unspecified constants

() to simplify the proof steps. Consequently,

inside HOL, the theorem holds only for those unspecified

values (Only on the meta-level, when one considers the

set-theoretic semantics of HOL, one regains generality by

considering different models for the constants).

C. Classes Hierarchy

As mentioned, because of complexity of operations in

the convolution modular lattice vectors, we implement

 Formal Verification of NTRUEncrypt Scheme 49

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

these vectors in a classes hierarchy design, as shown in

s.1:

Fig.1. Diagram of class inheritance for Convolution Modular Lattice

The algebraic type class hierarchy introduced in this

subsection, is nearly similar to the algebraic class

hierarchies distributed with Isabelle/HOL but the main

difference is that the class operations here, refer directly

to lists of length , where is an unspecified constant.

This subsection divide in to 14 part that in each part we

define a new class, instantiate it on type and also,

sometimes related lemmas mentioned (zero integer in this

text showed by and zero vector of length showed by

 , also unit integer showed by and unit vector of the

introduced multiplication with length showed by).

part1) : This class is the base class and other

classes inherit the vector length constraints from it (as

shown before).

part2) : This class inherit from , but

because the operation it don't depend on length of

vector, so don't apply its length constraint (with prefix),

 ()

part3) : This class inherit from ,

and apply the rule of right and left associative on the

operation,

 ()

 ()

 ()

 () () ()

part4) : This class inherit from

 , and apply the rule of left unit element on

the operation (note that in this class, rule of

 need to apply length constraint, so we

use from this constraint by prefix),

 () ()

Part5) : This class inherit from

 , and apply the rule of right unit element on

the operation (note that in this class, rule of

 need to have length constraint, so we

use from this constraint by prefix),

 () ()

part6) : This class inherit from ,

and apply the rule of inverse element (and following this

rule, satisfy rule) on the

 operation,

 (()) ()

 ()

 () ()

 ()

 () () () () () ()

part7) : This class inherit from

 and apply the rule of commutative on the

operation,

50 Formal Verification of NTRUEncrypt Scheme

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

part8) : This class inherit from , and

because the operation fully depend on length of vector,

we apply it's length constraint (with prefix),

 ()

 (()(())) ()

part9) : This class inherit from ,
and apply the rule of right and left associative on the

 operation,

 () ()
 ()

 () ()

part10) : This class inherit from

 , and apply the rule of left unit element

on the operation,

part11) : This class inherit from

 , and apply the rule of right unit element on

the operation,

part12) : This class inherit from and

 (as shown in Fig. 1) and apply the rule

of left distributive and right distributive of operation

on the operation,

 ()
 ()

 ()

part13) : This class inherit from

 (as shown in Fig. 1) and apply the rule of

commutative on the operation,

part14) (Convolution modular Lattice):

This class just inherit from (as shown

in Fig. 1),

D. Defined functions in class

Encryption/Decryption related functions specifically

operate on the class that can be defined in

the following way:

 Encryption method defined as function ,

 ()

()

 Public key compute as function ,

 ()

 ()

 We can compute (from step 1 of decryption

process) as the following function:

 ()

 Decryption method defined as function ,

 ()

 ()

 Width method defined as function ,

 ()

 ((()) (()))

 Formal Verification of NTRUEncrypt Scheme 51

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

V. VERIFICATION OF NTRU ENCRYPTION SCHEME

What follows is a summary of the most important steps

(including necessary lemmas and assumptions) of the

formal proof in Isabelle/HOL in order to outline the

general course. In the next subsections we described

necessary lemmas and assumptions that used in proof of

theory , after we discussed the

implementation of Encryption/Decryption scheme

(implemented as assumption steps in

) and in last subsection, we

discussed briefly the proof steps of

 (note that all the lemmas and

assumptions in this section defined in the context of class

 , so we omit the command
from these lemmas).

A. Lemma about the function

Function introduced two important lemmas

which defined as,

 () ()

B. Lemma about the constraint

As mentioned, the vectors in convolution modular

lattice should be in the fixed length and operator

apply this length constraint on the our vectors,

 ()

 ()

 () ()
 ()

and for each convolutional modular lattice vectors (, ,

 , , , , , , , , , , ,

 , and) we define this sample lemma (substitute X

with the vector name, such as):

C. Lemma about multiplication inverse element

A convolution modular lattice is a ring and each

element of this construct may have or have not inverse

element so we defined the multiplication inverse

operation as the following lemma:

 ()

 (())

D. Lemma about the operation

Since operation on the algebraic constructions that

defined by operation, introduced longer proof step

to handle and work on the propositions, so we defined a

set of rules to shortening these proof steps (by guiding the

automatic proof tools):

 ()

 ()

 ()

 (())

 () (())

 () ()

 () ()

E. Assumptions about , ,

As be mentioned, we have 3 important integer

parameter that should apply some assumptions on them,

 , -
 ()

F. Assumption about of , , ,

For simplicity, according to definition of

NTRUEncrypt in [2], and with the assumption of

(), if we assume the following assumptions:

the assumptions about of vectors , , , (that

equal to), and coefficients of these vectors (that belong

to), can be eliminated (that is the following

assumptions be eliminated):

 ()
 ()
 ()

 ()

52 Formal Verification of NTRUEncrypt Scheme

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

G. Assumption about Encoding Scheme

Since the encoding and decoding scheme just be

declared, so we use the following assumptions to define

their operations,

 () ()

 (() ())

 () ()

 ((, -) ())

H. Assumption about Probability of Decryption Failure

We implement the () in

Isabelle/HOL, but since the proving process with the

operation on in this complex function

(()) is beyond our thesis[7, 11] and

also if we bound the failure probability, it may be

required to switch to probabilistic reasoning (in that

direction, the theory

HOL/Probability/Probability_Mass_Function might be a

good starting point). So we assume that parameters ,

and select from a specific parameter set that zeroed the

 () value (discussed in subsection 3.4),

and consequently add the following assumption (note that

if () be zeroed, we have not

):

 () (

) ()

 ()

Assumptions , and

 correspond with phases of passing

the gap failure, that is, ,

 and

 , so that proof system

pass out this three steps of decryption phases

automatically.

I. Assumption about the centering method

If we have not (since we assume that the

parameters selected based on cause

the () be zeroed), the coefficients of

 , , , are small, so the coefficients of
 will lie in an interval of length less than . We

assume always centring method chooses the appropriate

interval, so the polynomial equals

exactly, and not merely modulo , so the not

be happened. The following assumption have important

role in the proof process:

 (())

Assumption correspond with

 , so that proof system

pass out this step of decryption phases automatically.

Although, transition from to is again assumed

instead of proven, but we should note that proving the

success of centering method has so complex states!

J. Encryption Process

We implement the steps of encryption process as

assumptions of in the

following 3 phases (is original input message):

 () ()

K. Decryption Process

We implement the steps of decryption process as

assumptions of in the

following 7 phases:

 ()

 () (())

 () ()

 ()

 ()

 (())

 (, -) ()

L. Roadmap of formal verification for NTRUEncrypt

Theorem defined in the

context of . As be mentioned, we used a

forward proof steps by Isabelle/Isar structure. We outline

proof steps of in the following

way (note that the following proof road map is not

Isabelle/HOL commands and just show outline the proof

steps):

 ()

 (())

 Formal Verification of NTRUEncrypt Scheme 53

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

As seen in the roadmap of formal verification for

NTRUEncrypt, it is not clear what has actually been

verified. since theorem

assume most of the interesting steps of the scheme being

correct (by assumptions introduced). In fact, this research

just fully validate the control flow of proposition

 () as following way (and other

steps validated by some assumptions):

(

(

(

 (()

⏞

)

⏞

)

⏞

)

⏞

)

⏞

so that satisfy condition (, -) () with

the original input message . Verifying the goal of

 includes the bellow subgoals which

nearly corresponds with the

(and refered to layer 3 in the table 1 as skeleton of the

proof in this research):

 Subgoal 1: ()
(() ())

 Subgoal 2: ()
 ()

 Subgoal 3: ()

()
 Subgoal 4: ()
 Subgoal 5:

 () (()⏞

 ())
(() ()) ()

 Subgoal 6:

 (() ()⏞

) ()

 Subgoal 7:

 Subgoal 8: ()
 Subgoal 9:

 () ()

() ()
 Subgoal 10:

 (() ())
() ()

 Subgoal 11:

 (())
() ()

 Subgoal 12:

 () ()

() ()
 Subgoal 13: ()
 Subgoal 14:

 (() ())

(())
 Subgoal 15:

 ()

()
 Subgoal 16: ()
 Subgoal 17:

 (())

 ((()))
 Subgoal 18:

 (())
 Subgoal 19:

 (())
 Subgoal 20:

 (() ())
 Subgoal 21:

 (())

 (() ())
 Subgoal 22: ()

Note that the main proof steps in the roadmap

essentially not be equal to phases of decryption. As an

engineering design, it is best to have a high level map to

handle the main problem (formal proof of NTRUEncrypt

54 Formal Verification of NTRUEncrypt Scheme

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

scheme) with less details. A stack of layers in formal

proving for NTRUEncrypt scheme be designed in Table 1

(including layers 1 to 4) that classify the proof steps as

independent as possible in this research (this layering

stack is not essentially an ideal stack for layers of formal

proof of NTRUEncrypt scheme and it is possible to have

better layering for this scheme):

Table 1. Stack of Layers in Formal Proof of NTRUEncrypt

 Encoding/Decoding layer is last layer in this research to be

verified (in this layer, the algorithm of Encoding/Decoding

should be selected and fully defined in the formalization and at
the end, fully validate the control flow of

 (, -) () for a given message).

 Skeleton of the proof is validation of the control flow of

 () which is main goal in this research
to be verified.

 Transition from to should be proven as a centering
method (which used in decryption phases) chooses the

appropriate interval, thus the polynomial equals
 exactly, and not merely modulo , so the

not be happened (in this layer, algorithm of centering method
should be selected and fully defined in the formalization and at

the end, fully validate control flow of it).

 Handling the which happen with the probability of

 () for a given parameter set of () and

output () , so that satisfy condition ()

with the chance of () (it may need to proof

process with the operation on in the complex function

 () or if we bound the failure probability, it

may be required to switch to probabilistic reasoning).

VI. CONCLUSIONS

We explored the application of a formal proof system

to the simplified version of NTRUEncrypt function

introduced in [1]. More precisely, we proved the

functional correctness of this algorithm formally with the

Isabelle/HOL proof system. In this case, we proved

formally that this scheme is correct what is a necessary

condition for the usefulness of any cryptographic

encryption scheme. A formal analysis with computer

support provides a complex, but useful approach to verify

the functional correctness of implementations of

cryptographic algorithms. This formalization and

verification is not a general scheme with high strong

design to ideally underlay all further works in this area,

but has some main advantages which enumerated as

following:

 This research can be seen as a start point for

further formal proofs in NTRUEncrypt scheme.

 Four partially independent layers introduced in

this research (as a high level framework for formal

verification of NTRUEncrypt scheme) which

validated just for layer 3 (Table 1) in this research

and other layers can be studied in further works

(although the validation of layer 3 in this research

can be refine in the further studies).

 The computer-proven lemma augment the given

database that is basic for many Isabelle theories in

the related area.

 The functions and other formal primitives which

defined/declared in this research can used in the

further studies.

 Difficulties and problems in the formalization and

verification phases enumerated in this paper, also

in the most of them, the solution idea introduced

and can be resolved easily in the further studies.

 An algebraic type class hierarchy introduced in

this research which can be used in the further

studies.

VII. FURTHER STUDIES

As mentioned in section 6 (Conclusion), difficulties

and problems in the formalization/verification phases

enumerated in the different sections (subsections) of this

research, so that, most important of them can be resolved

by following further studies:

 As the constants are not polymorphic, the

generality can equally be expressed inside HOL,

e.g., by turning all unspecified constants into

parameters of a locale and the resulting

development will more usable, because the

parameters can be instantiated inside the logic.

 Ideally, the algorithms in this research should be

defined (rather than axiomatised as is done in this

research).

 The important properties in this research should be

proven under as weak assumptions as possible.

 This research restrict the parameters of the

encryption algorithm to a small set of values, so

generality of this parameter set can be studied to

have more usefulness of the formal proof.

 Layer 1 of the formal proof (Table 1) which

corresponded to Handling the , can be

studied to be verified (as far as possible) in the

further studies.

 Layer 2 of the formal proof (Table 1) which

corresponded to centering method functionality for

handling , should be studied to be

verified (as far as possible) in the further studies.

 Layer 4 of the formal proof (Table 1) which

corresponded to Encoding/Decoding functions can

be studied to be verified (as far as possible) in the

further studies.

 A lot of space in this research is spent on re-

inventing existing libraries (in particular, the

algebraic type class hierarchy and vectors of fixed

length) to have short and elegant proofs (that are

not possible easily with the existing libraries), thus

the benefits from all the corollaries and the setup

for proof automation that has been developed for

the existing primitives in Isabelle/HOL libraries be

lost and also extending the area of this proof to be

used in other external theorems using the standard

 Formal Verification of NTRUEncrypt Scheme 55

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 4, 44-55

Isabelle/HOL libraries, faced with problems, so

use the existing libraries as far as possible in the

further studies.

 This research partially focus on elegance or

encapsulating fundamental insights that are

adaptable and reusable so these properties should

be consider more in further studies.

REFERENCES

[1] Hoffstein, J., Pipher, J., Silverman, J.H., "NTRU: A ring-

based public key cryptosystem", Lecture Notes in

Computer Science, 1998.

[2] Bernstein, D.J., "Post-Quantum Cryptography",

Department of Computer Science, University of Illinois at

Chicago, 2008.

[3] Silverman, J.H., Whyte, W., "Estimating decryption

failure probabilities for NTRUEncrypt", Technical report,

NTRU Cryptosystems, Report #018, version 1, available

at http://www.ntru.com, 2003.

[4] Kaiser, M., Buchmann, J., "Formal Analysis of a Public-

Key Algorithm", International Journal of Computer

Science 2.2, 2007.

[5] Kusch, S., Buchmann, J., "Formalizing the DSA Signature

Scheme in Isabelle/ HOL", Diplomarbeit, Technische

Universit ät Darmstadt, 2007.

[6] Kusch, S., Kaiser, M., "A Computer Proven Application

of the Discrete Logarithm Problem", International

Journal of Computer Science 2.2, 2007.

[7] Nipkow, T., Paulson, L.C., Wenzel, M., "Isabelle/HOL—

a proof assistant for higher-order logic", Lecture Notes in

Computer Science, vol. 2283. Springer, 2002.

doi:10.1007/3-540-45949-9.

[8] Nipkow, T., Klein, G., "Concrete Semantics-A Proof

Assistant Approach", Springer, 2014.

[9] Nipkow, T., "Programming and Proving in Isabelle/HOL",

http://isabelle.informatik.tu-muenchen.de/, 2012.

[10] Wenzel, M., "The Isabelle/Isar Reference Manual", TU

MÄunchen, MÄunchen, 1999,

http://isabelle.in.tum.de/doc/isar-ref.pdf.

[11] Holzl, J., "Proving Real-Valued Inequalities by

Computation in Isabelle/HOL", Diploma thesis, Institut

f ür Informatik, Technische Universit ät M ünchen, 2009.

[12] "IEEE P1363.1. Public-key cryptographic techniques

based on hard problems over lattices",

http://grouper.ieee.org/groups/1363/lattPK/index.html,

Accessed May 31, 2014.

[13] Hoffstein, J., Howgrave-Graham, N., Pipher, J.,

Silverman, J.H., Whyte, W., "Hybrid lattice reduction and

meet in the middle resistant parameter selection for

ntruencrypt", NTRU Cryptosystems, Inc., Acton, MA,

Tech. Rep., 2007.

[14] Ballarin, C., "Tutorial to locales and locale interpretation",

In L. Lambán, A. Romero, and J. Rubio, editors,

Contribuciones Científicas en honor de Mirian Andrés

Gómez. Servicio de Publicaciones de la Universidad de

La Rioja, Logroño, Spain, 2010.

[15] Mallagaray, J.D., "Proofs of properties of finite-

dimensional vector spaces using Isabelle/HOL",

Universidad de La Rioja, 2011/2012,

http://www.unirioja.es/cu/jodivaso/degree_thesis/.

[16] Security Innovation, https://www.securityinnovation.com/.

Accessed August 9, 2013.

[17] Nipkow, T., "What's in Main", Isabelle TUM, 2013,

http://isabelle.in.tum.de/doc/main.pdf.

[18] Krauss, A., "Defining Recursive Functions in

Isabelle/HOL", Isabelle TUM, 2008,

http://isabelle.in.tum.de/documentation.html.

[19] Sternagel, C., Thiemann, R., "Executable matrix

operations on matrices of arbitrary dimensions", Archive

of Formal Proofs, 2010.

[20] Lindenberg, C., Wirt, K., Buchmann, J., "Formal proof for

the correctness of RSA-PSS", IACR Cryptology ePrint

Archive 2006, 11.

[21] Silverman, J.H., "An Introduction to the Theory of

Lattices and Applications to Cryptography",

Computational Number Theory and Applications to

Cryptography, University of Wyoming, 2006.

[22] Isabelle-TUM, https://isabelle.in.tum.de/(2013). Accessed

December 05, 2013.

[23] Appel, A.W., "Verification of a Cryptographic Primitive:

SHA-256", ACM Transactions on Programming

Languages and Systems (TOPLAS), Princeton University,

2015.

Authors’ Profiles

Gholam Reza Moghissi, is currently a Master student

(Information Security) in ICT Department at Malek-e-Ashtar

University of Technology, Tehran, Iran.

Ali Payandeh, is now an assistant professor in the Department

of Information and Communications Technology at Malek-e-

Ashtar University of Technology, Iran.

How to cite this paper: Gholam Reza Moghissi, Ali Payandeh,"Formal Verification of NTRUEncrypt Scheme",

International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.4, pp.44-55, 2016.DOI:

10.5815/ijcnis.2016.04.06

http://www.webpage.ext/page

