
I. J. Computer Network and Information Security, 2016, 10, 1-11
Published Online October 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2016.10.01

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

Computational Independence in the Design of

Cryptographic Protocols

István Vajda
Technical University of Budapest, Department of Informatics, Budapest, Hungary

E-mail: vajda@hit.bme.hu

Abstract—Statistical independence of instances of

primitives and protocols is a clear-cut approach for

guaranteeing protection against harmful interactions in

concurrent and multi-execution environment. Therefore it

is surprising that computational indistinguishability of

independence from dependence between two or several

random variables received no attention since the

introduction of classic binary pseudorandom sequences.

In this work we propose the use of the notion of

computational independence (CI) in the analysis and

design of provably secure cryptographic protocols. We

generalize the classic result on equivalence of

unpredictability and CI to general non-binary random

variables. An application of this result is the use of

unpredictability-based standard secure primitives in

supporting the achievement of CI. This work is inherently

related to Canetti’s universal composition framework [4],

[5].

Index Terms—Cryptographic protocols, provable

security, universal composability.

I. INTRODUCTION

When an adversary aims to break or fabricate a

cryptographic object with some unknown parameter it

tries to collect/learn associated data from past or

concurrent events. Such a learning effort can be

neutralized if statistically independent observations are

only available for the adversary. Though such clear-cut

approach cannot be implemented in general, it can serve

as a starting step for feasible (simplified) design and

analysis of security protocols. Cost efficient realizations

unavoidably introduce statistical dependence within and

between protocol instances. Fortunately security

guarantees remain intact in a computational environment

even in such circumstances if at least some form

―computational independence‖ can be attained.

Four types of independence relations between random

variables will be considered: unpredictability (UP),

computational independence (CI), statistical

independence (SI) and functional independence (FI).

Keeping statistical independence between instances of

primitives and instances of protocols is a clear-cut

approach for guaranteeing protection against harmful

interactions in concurrent and multi-execution

environment. However protection provided by statistical

level of independence costs a lot, therefore several times

it is used only as a tool in the beginning step of the

analysis for reduction of the complexity of the analysis.

Changing from SI to cost efficient computational

independence brings into the picture the notion of CI, UP

and FI. Our definitions for notions of CI, UP and FI will

be introduced in the paper. UP essentially prevents

attacks against correctness and privacy carried out via

fabrication of valid cryptographic blocks and exploration

of private data, respectively. CI as its name indicates

provides the same independence guaranties under

complexity constraint as SI does in unconditional case.

Our main technical result claims equivalence between

unpredictability and computational independence for

general non-binary random variables. This result can also

be considered as an extension of the analogous classic

result on pseudorandom generators, the equivalence of

pseudo-randomness and unpredictability for ensembles of

binary random variables. In our case uniformity of the

underlying distributions also plays crucial role as we

show that for general distributions such equivalence does

not stand.

We explore useful relationships between independence

notions under study:

In general CI is stronger property than UP, as the

former implies the latter. We show separation result for

notions CI and SI. We define CI of protocol instances and

show relationships between the CI of protocol messages

and the CI of corresponding protocol instances. Notion of

functional independence (FI) provides the bridge to

security notion by universal composability on one side

and CI of protocol instances on the other side.

We are not aware of publication which mentions the

notion of CI in the field of protocol analysis.

We underline that UP is a constructive property which

can be directly associated to standard security properties

of primitives. Our main example is that UP provides the

bridge to EU-CMA standard-security of primitives as the

latter is an important example for the weak version of the

UP property. In this sense, we give a unified approach to

the role of independence in the analysis and design of

provably secure protocols.

Several examples help deeper understanding and serve

as illustration for our notions and arguments.

The structure of the paper is the following. Section 2

presents the related works. In Section 3 we analyze the

relationship between notions CI and SI as well as

between CI and UP. Here we show that CI is stronger

2 Computational Independence in the Design of Cryptographic Protocols

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

property than UP, in general, but under ―plausible‖

assumption the two notions become equivalent. Section 4

presents several important applications for computational

independence (CI), discussing both cryptographic

primitives and protocols. Here we also show the

relationship to the Universal Composition framework. In

Section 5 we draw conclusions. In Appendix we give our

notions for strong and weak unpredictability (UP),

illustrated with several examples.

II. RELATED WORKS

A computational version of statistical independence

appeared first in the classic paper of Yao [21] under

notions of ―effective conditional entropy‖ and ―effective

mutual information‖. The aim was to define a

computational counterpart of Shannon’s perfectly secure

encryption. The notion of computational

indistinguishability of two probability distributions

(equivalently two random variables) is fundamental in the

classic theory of standard secure cryptographic primitives.

Interestingly similar indistinguishability notion for

independence/dependence of random variables has not

been introduced until recently. Indeed, the only reference

we found to it is rather fresh [8] (compared to the time of

publication of [21]). The author of [8] after coining the

name CI returned to Yao’s application for encryption

security in [21]. In our paper we will use CI in different

context both theoretically and practically. We embed this

notion into the set of related notions mentioned above.

Furthermore our application environment for CI is much

wider than that of [8] as our aimed application

environment is the design and analysis of provably secure

protocols, in particular universally composable protocols

[4], [5]. Such a setting where many protocol instances

may run concurrently under adversarial coordination is

obviously the richest one for potential dependence

problems. Understandably, our examination is inherently

related to Canetti’s universal composition framework [4],

[5]. This framework has strong theoretical foundation and

the corresponding analysis and design techniques have

had wide application in the last decade [1-3], [6-7], [9-20].

Notions UP, CI and SI are defined for random variables,

while notion FI is inherently related to the notion of UC-

security of protocols.

III. COMPUTATIONAL INDEPENDENCE

―Natural‖ definition of computational independence of

two random variables is their computational

indistinguishability (CI) from a pair of statistically

independent random variables. One of the main points in

this work is to underline the crucial role of CI in the

design and analysis of cryptographic protocols.

Definition 1 (computational independence):

Computational indistinguishability of independence

(computational independence, CI) means computational

indistinguishability of a pair 1 1 2V =(m ,m) of random

variables from a pair of random variables 2 1 2V =(M ,M) ,

where 1M and 2M are statistically independent.

In the game of CI a distinguishing algorithm Z gets a

sample 1 2v=(v ,v) which is a realization of 1V or

2V chosen by coin flipping result  . Algorithm Z

successfully distinguishes 1V and 2V if

P(Z(v)=) 1/2+ /2  for non-negligible  . If none of

PPT algorithms is successful in the above game we say

that random variables 1m and 2m are independent by CI.

For simplicity of presentation we consider the case

when random variables 1m and 1M similarly random

variables 2m and 2M have the same probability

distribution (p.d.). Let the former be denoted by H(x) the

latter by G(y) . In other words the marginal distributions

of the two dimensional random vectors 1V and 2V are

equal. We also introduce conditional probability

distribution (c.p.d.) 2 1F(y|x)=P(m =y|m =x) . The main

result of this chapter claims equivalence between CI and

UP, where our main assumption will be that p.d-s

G(y) and F(y|x) are computationally indistinguishable

from uniform (for illustration see Fig. 1).

G(y)

F(y|x)

Fig.1. Assumption of Uniform Distributions

First we separate notions SI and CI.

Property 1: Random variables 1m and 2m are CI

independent if x= sup Var(F(y|x), G(y)) is negligible,

where mapping Var(.,.) stands for the statistical distance.

Proof: Using the definitions of CI and of statistical

distance we get

   (1, 2) [(,) | (|)]
x

y

P Z v v E P Z x y x dF y x   

 

 

[(,) | ()]

[(,) | ((|) ())]

x

y

x

y

E P Z x y x dG y

E P Z x y x d F y x G y





  

 





 Computational Independence in the Design of Cryptographic Protocols 3

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

[| (|) () |] 1/ 2 2
x

y

E dF y x dG y     

where   1 2=P Z M , M = =1/2  .

In this chapter we examine the relationship between

unpredictability (UP) and CI (our definition for UP is

placed in the Appendix). First we separate these two

notions by their strength.

Property 2: Set D of distinguishing algorithms in CI

game is strictly larger than set P of predictors (F

algorithms in Definition 5 in the Appendix).

Proof: | | | |P D : predictor (F,) can be used to

generate a distinguisher d: d(v)=1 if 1 2F(v)= (v) ,

otherwise d(v)=0 . Note the number of

1 2

2 2

k k
V V mappings (set P) is

1

2
2

2
k

k
 while the number

of 1 2
1

2 2

k k
V V


 mappings (set D) is

1 22
2

k k

, where

1 1 2 2|v |=k , |v |=k and  is the identity mapping.

The next example illustrates the intuitive meaning of

notion CI.

Example 1: Consider two instances 1I and 2I of a

protocol where the only cryptographic primitive is EU-

CMA secure digital signature, furthermore the instances

use a common signature key. EU-CMA security prevents

successful prediction of signatures in instance 2I from

signatures in instance 1I and as digital signatures are the

only cryptographic mappings, instance 2I is unpredictable

from instance 1I and vice versa. In spite of this (weak)

unpredictability, the two instances are not

computationally independent, which were the case if 1I

and 2I would use (statistically) independent signature

keys. Indeed, a distinguishing algorithm being aware of

the public verification algorithm could easily distinguish

the case of a common key from the one with independent

keys.

Consider now the case when instead of digital

signature primitive message authentication (MAC)

primitive is used. The question remains the same: can we

distinguish the cases when a common key and when

independent keys are used in the instances. Now there is

no publicly available (efficient) verification algorithm.

Assume PRF-CPA secure symmetric key encryption

algorithm generates CBC-MAC with full block-length.

Furthermore, we observe sets of MACs

1 11 11 k 11 1n k 1nS ={(m , MAC (m)) ,..., (m , MAC m))} and

2 22 21 k 21 2n k 2nS ={(m , MAC (m)) ,..., (m , MAC m))} from

instance 1I and 2I , respectively, where the messages are

different with overwhelming probability. Clearly, if we

used random function for encryption we were not able to

decide about corresponding keys if 1 2k =k or not.

Consequently this remains the case also for

pseudorandom encryption, which implies that we

identified an example for CI which is separated from SI.

Property 2 suggests that computational independence is

strictly stronger than unpredictability, in general. In this

chapter we show a condition under which UP implies CI.

A restriction will be imposed on the corresponding

distributions     F y|x , G y . We also show an argument

that in the general case of distributions CI is strictly

stronger than UP.

For simplicity of notations first we will consider the

case of identity mapping δ. The extension to the general

case of δ is given subsequently.

Let the domain of random variable m1 and m2 be

denoted by X and Y, respectively. Let

F,xH ={y : F(y|x)>0} , i.e. set F,xH Y  denotes the

support of c.p.d.  F y|x . Similarly GH denotes the

support of p.d. G. Obviously F,x GH H Y   for all x.

Assumption 1: Assume that

a) c.p.d. 2 1F(y|x)=P(m = y|m =x) and p.d.

2G(y)= P(m =y) are computationally

indistinguishable from uniform distribution,

respectively,

b) ratio ,| | / | |F x GH H is non-negligible except for

negligible set of x values.

Comments follow to Assumption 1:

to a): It is implicit in this assumption that p.d. G(y) can

efficiently be sampled. Indeed, variable m2 is a protocol

message or part of it, output of a known efficient

mapping of constants and efficiently samplable random

variables (typically coin flipping sequences).

to b) This assumption is a technical consequence of the

standard definition of algorithmic indistinguishability of

p.d-s, where the success of a distinguishing algorithm Z is

equivalent to its non-negligible gain. When we want to

inherit this gain by a predictor Z’ built on Z we need this

assumption.

Theorem 1: Under Assumption 1 unpredictability (UP)

implies computational independence (CI).

Note this claim resembles the classic theorem on the

completeness of the next-bit test: ―An ensemble of

sequences of binary random variables is pseudorandom if

and only if it is non-predictable.‖ Here pseudo-

randomness means computational indistinguishability of

an efficiently generated series of binary random variables

from a series of statistically independent uniformly

distributed binary variables (in short from a coin flipping

sequence). Prediction means prediction of the next bit

within the series from the previous bits. In contrast we

consider the algorithmic independence of non-binary

4 Computational Independence in the Design of Cryptographic Protocols

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

random variables which may have different distributions,

in general.

Proof of Theorem 1: Assume the existence of a binary

algorithm Z such that it is able to distinguish the pair of

random variables from a pair with independent elements.

(Z outputs 1 when it decides to V1). We construct an

algorithm Z’ such that it is able to predict with non-

negligible probability. Algorithms have access to pub_inf

which will not be explicit in the formulation below for

simplicity of notations. According to Assumption 1/a we

are allowed to use (genuine) uniform p.d-s for F(y|x) and

G(y) in the calculations below.

The predictor is successful if its output random

variable has distribution computationally

indistinguishable from  F y|x (which by our assumption

is uniform over F,xH). Consider the following prediction

algorithm:

Algorithm 1:

1. Z’ gets sample x as input from X.

2. Z’ choses sample Gy*: y* Hr .

3. Z’ runs Z with input (x, y*) :

if Z(x,y*)=1then Z’ outputs y*,

otherwise Z’ outputs Gy': y' Hr .

Let sP denote the probability of event E that the output

of Z’ falls into set F,xH . Note that as y* and y’ are

uniformly random over GH , furthermore F,x GH H ,

therefore distribution of the output of Z’ conditioned on

event E is uniform. It remains to prove that sP is non-

negligible. According to Algorithm 1

 
 

,

,

{ (, *) 1} { * }

{ (, *) 0} { ' }

s F x

F x

P P Z x y y H

P Z x y y H

   

   
 (1)

For the first term on the RHS of (1) we get

   
, , 1

{ (, *) 1} | { * } *
F x F x x

P Z x y y H P y H p q    ,

  ,

,

| |
*

| |

F x

x F x

G

H
q P y H

H
   . Similar lower bound can

be obtained for the second term in (1)

   
, 2

(, *) 0 '
F x x

P Z x y P y H p q   ,

and this leads to lower bound

1 2
() (1)

s x x x x
P q p p q q q      

If distinguisher Z is not available then s xP =q .

Therefore if xq is non-negligible then predictor Z’ has

non-negligible gain xq  .

Theorem 2: In the general case of distributions over pair

of random variables 1 1 2V =(m ,m) unpredictability does

not imply computational independence.

Proof: Consider the best algorithm Z* for distinguishing

1V and 2V . Algorithm Z* decides on 1V over subset of

samples
1 2V VS={z: P (z) > P (z), z XxY} . Note Z* is

insensitive to the relative magnitude (ratio

1 2V VP (z)/P (z) or difference
1 2V VP (z) - P (z)) of

probabilities. In other words Z* carries no information

about those relative values. Recall the task for predictor

Z’ is to output sample y with p.d. F(y|x) . When we

would like to generate a successful prediction algorithm

Z’ by reducing the task of prediction to a successful

distinguishing algorithm Z*, in the general case of

distributions we would fail. Indeed, as Z* is insensitive in

the above mentioned meaning we cannot expect that the

output of Z’ will have the wanted distribution. Note that

the assumed uniformity properties of distributions in

Theorem 1 are immune to this insensitivity property.

Furthermore, though the best distinguisher Z* is not

polynomial in general, the above argument remains valid

for our purposes in cases of distributions with polynomial

size of support.

A. Extension to general mapping δ and to more than two

variables

Recall the examination in the previous chapter refers to

the special case when δ is the identity mapping (i.e. we

would like to predicate the whole ―block‖ of 2m).

However according to Definition 5 for unpredictability of

2m from 1m we require that no part of 2m can be

predicted and in general the same must be true for any

efficient, deterministic binary mapping of 2m .

Property 3: Computational independence implies

unpredictability.

Proof: By contradiction assume there exists an efficient,

deterministic binary mapping  of 2m such that 2(m) is

successfully predictable from 1m with prediction

algorithm Z . Distinguisher algorithm Z’ in the

computational independence game gets input

1 2v=(v ,v) and runs algorithm Z with input 1v .

Algorithm Z’ outputs 1 (i.e. decides that pair 1 2(m ,m) is

its input) if Z predicates 2v successfully.

The extension of Assumption 1 and Theorem 1 to

general mapping  is straightforward.

Lemma 1: Assumption 1 implies Assumption 1’ for the

general case of  , where

 Computational Independence in the Design of Cryptographic Protocols 5

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

Assumption 1’: Collect polynomial many random samples

from distribution G(y) into set W and generate set

W'={ (y) : y W }  . We assume that probability

1P((m2) W' | m =x)  is non-negligible possibly except

for a negligible set of x values.

Proof: Note, that event 2{m W} on condition

1{m =x} implies event { (m2) W' }  on the same

condition for arbitrary x.

The proof of Theorem 1 can be repeated with changing

distribution G(y) to the distribution of random variable

2(m) (in Algorithm 1).

Definition 1 of CI is given for pairs of random

variables. The extension to joint independence of several

random variables is straightforward: we consider the

computational indistinguishability of a vector of the

corresponding vector of random variables

1 1 kV =(m ,...,m) from vector 2 1 kV =(M ,...,M) where

coordinate variables 1 kM ,...,M are jointly statistically

independent.

Example 2: For pseudorandom primitives CI property is

straightforward by their definition. Essentially these

definitions directly provide CI property (which in turn

implies unpredictability). Recall in those definitions

uniformity of the underlying random variables is part of

the definition (or implicit in them). Pseudorandom

security for primitives is the strongest guarantee within

computational framework. In contrast for less strong

definitions like EU-CMA, semantic security or non-

malleability the definition is unpredictability-oriented and

as shown above we arrive to CI properties under

restrictions on (or better to say by specifying) underlying

p.d-s.

IV. APPLICATIONS

In this section we present several applications for the

notion of computational independence both in the field of

secure cryptographic primitives and protocols. Our main

goal is to protect a protocol instance from the adversary

attacking in a concurrent environment. The point is that

the target instance should be computationally

independent from all other instances running in the same

environment. Such independence can be established via

proper unpredictability properties at the level of applied

cryptographic primitives. CI level of independence can be

achieved based on equivalence between UP and CI

properties like the one stated in Theorem 1.

A. CI and the cryptographic primitives

The main observation in this sub-section is that by our

definition of UP the EU-CMA standard-security property

of primitives becomes an example for the weak version of

the UP property. Subsequently, further important

examples will also be shown for unpredictability.

EU-CMA security

Consider a standard secure cryptographic primitive

given by mapping f(k,u) , where argument k and u

corresponds to key and message, respectively. The

adversary has oracle access to algorithm f(K,.) with

unknown key K and is tasked with forging output

f(K,u) for a new message u:

EU-CMA security guaranties that the adversary will

not be successful if for any poly size set

1 N{f(K,u),...,f(K,u)} requested for arbitrarily chosen

message set 1 NU={u ,...,u } , variable 2m =f(K,u) is

unpredictable from 1 1 Nm = (f(K,u),...,f(K,u)) for any u

such that iu u , i=1,...,n .

Note EU-CMA security for a primitive f is an example

for (weak) unpredictability: we require (weak)

unpredictability for any pair of random variables

1 2(m , m) , where random variable 1m is learned via

accessing the corresponding oracle and 2m is an output

of f for a fresh input.

For example when the adversary wishes to fabricate a

valid digital signature or authentication code without

knowing the corresponding secret key, m1 corresponds to

signatures (MAC values) obtained from the oracle for

messages sent in the requests, 2m will be the signature

(MAC value) for a new message m’.

Obviously, if protocol instances running concurrently

use an EU-CMA secure primitive f as a common

primitive (i.e. with the same secret key X) then

prediction-based attack against a target instance can be

neutralized if different instances are coordinated in

choosing inputs to f from disjoint subsets. Recall a

corresponding technique is used in implementation of the

JUC approach [5], where concurrent instances of the

same protocol have a common module implementing

primitive f.

In the more general GUC approach [7], the target

instance and any other instances have access to a

common public (global) variable. In this case

coordination over the input space cannot be established in

general (think on the case when one of the protocols is

controlled by an adversary). With respect to predictability

in GUC scenario the two extreme cases are the following:

In the first case anybody can code with a public

algorithm but only one party can decode (e.g. public key

encryption). Predictability is obvious and cannot be

eliminated, therefore in this case we have to change from

globally predictable instances to locally statistically

independent ones (e.g. independent encryption keys per

instance).

In the other case of primitives an honest party can

access the secret key but anybody can verify with a

public algorithm. For such primitives (weak) UP can be

maintained by requiring EU-CMA-security. The known

example is the digital signature. When a party controlling

a signature key is a party in different instances of even

different protocols he is able to ensure coordination of

signatures issued by himself in spite of global (i.e. multi-

protocol and multi-instance) use of the same instance of

6 Computational Independence in the Design of Cryptographic Protocols

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

signature primitive. It seems plausible that digital

signature is the only primitive which provides global

(weak) UP capability.

Semantically secure encryption

As we already mentioned, formulation of Definition 5

has resemblance to the standard definition of semantic

security of public key encryption with the following cast

of roles: random variables 1m and 2m correspond to a

ciphertext and corresponding cleartext, respectively,

where mapping  models the partial information on the

clear-text.

Non-malleable encryption

It is an example for (weak) unpredictability. The cast

of roles is the following: 1m =(c,M) where c is a

ciphertext for message u, M is the data collected, and

furthermore 2m is a ciphertext for message u’ such that u

and u’ are in relation R (R can be thought as included into

pub_inf).

Pseudorandom primitives

Standard secure pseudorandom primitives are PRG-,

PRF- or PRP-based. Such primitives, in principle, can be

used for key stream generation, encryption, digital

signature or MAC. These are clear examples for

unpredictability. For instance, by definition a PRP-secure

symmetric key block encryption is computationally

indistinguishable from random permutation, which

implies that different messages are encrypted, essentially,

into statistically independent ciphertexts chosen from the

total space of ciphertexts (here ―essentially‖ means that

until we use an instance of the encryptor for at most

polynomial number of messages the restriction by

invertibility requirement is negligible).

B. CI of protocol instances

An instance is the concatenation of its component

protocol messages. Let this random variable be denoted

by 1 mI(v ,...,v) where 1 mv ,...,v are the random state

variables of the protocol. Shortly we will refer to random

variable I as the transcript of the instance. UP, CI, SI type

of independence of instance can be considered between

protocol messages or parts of them or between transcripts

of different instances.

First we recall the natural definition for the statistical

independence of protocol instances.

Definition 2 (SI of protocol instances): Protocol instances

are statistically independent (SI) if their transcripts are

statistically independent.

Property 4: Protocol instances are statistically

independent iff their random state variables are

statistically independent.

Property 5: SI between pairs of messages of different

protocol instances does not imply SI of the instances (in

general).

Proof: Consider two instances 1I and 2I . Let instance 1I

consist of two messages U and V and instance 1I of a

single message W, where U, V, W are binary random

variables with equal length. Let U and W be independent,

furthermore V=U+W (mod 2). In this example messages

of 1I are (pairwise) independent from the message of 2I

but 1I and 2I are dependent.

According to Property 4 protocol instances become

statistically dependent if some of their random state

variables are statistically dependent. In the set of random

state variables we find local coin flipping sequences and

variables dependent between different instances. The

most characteristic and practically most interesting

dependence is caused by subroutines shared by different

instances (for example, a common signature module). In

this case dependence means that some state variables are

equal. The task is that in spite of statistical dependence CI

should be maintained between instances.

Definition 3 (CI for protocol instances): Protocol

instances are computationally independent if their

transcripts are computationally independent.

Property 6: SI of protocol instances implies CI of the

instances.

Proof: Straightforward.

Property 7: CI between pairs of protocol messages of

different protocol instances does not imply CI of the

instances (in general).

Proof: The proof of Property 5 can be repeated. Indeed U

and W as well as V(=U+W) and W are (pairwise) CI (as

they are (pairwise) SI), however U+V (=W) and W are

clearly not CI.

When we want to change from costly SI instances to

less costly but statistically dependent ones we have to

ensure their CI property. The corresponding base

composition rule is the following:

Composition of CI variables: Assume a series of random

variables 1 1 n nX(z) = X (z),...,X (z) are computationally

indistinguishable from series 1 nY=Y ,...,Y , where i iX (z)

is an efficient random mapping of random variable zi,

i=1,...,n . Assume furthermore that series of random

variables 1 nz=z ,...,z are computationally indistinguishable

from series 1 nw=w ,...,w . It is not hard to see by standard

reduction technique) that 1 1 n nX(w)=X (w),...,X (w) will

also be computationally indistinguishable from Y. If Y is

a series of SI instances then X(z) is a series CI instances.

Similarly if z is a series of SI instances then w is a series

CI instances of random variables. This way by the above

rule we embed a series of CI variables into a series if CI

variables.

This rule of composition fits naturally to the following

scenario. Let X stand for a series of different instances

 Computational Independence in the Design of Cryptographic Protocols 7

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

from a protocol, where i iX (z) corresponds to the

transcript of the i-th instance. Let iz and iw correspond

to the output of a cryptographic primitive by the ideal

functionality and by realization, respectively. Series Y is

the ideal realization with statistically independent states

per protocol instance. In such scenario X(w) is the

realization of Y with computationally independent

realized instances where those instances use

computationally independent outputs of the cryptographic

primitive.

Composition of CI protocol instances: Composability of

instances of protocols means that if we know/prove that a

single instance of a protocol (the stand alone case)

securely implements the task then the same is true for

arbitrary many concurrent instances of the protocol. The

main technical tool for proving such statement is the

standard hybrid argument which assumes statistically

independent instances. This is the way also in the

Canetti’s UC framework where the composition theorem

[4] is proved for the generalized scenario where

concurrent composition is carried out at the level of

subroutines of a main protocol (in the hybrid protocol

model). This is the first step of design and analysis. In the

second step we change to less costly realization with

computationally only independent instances.

In a typical example while in the ideal case

cryptographic keys are independent (fresh) in different

instances running between the same set of parties, in real

implementation it is typical that the same keys are used in

different instances of the same protocol. This way

(statistical) dependence arises among such protocol

instances induced by the (statistical) dependence of

instances of primitives. However by careful selection and

use of those primitives the protocol instances may remain

computationally independent and the security guaranties

remain intact. ―Carefulness‖ means the unpredictability

property for the primitives. This way though statistical

dependence arises between instances it will not be of help

for an adversary looking for harmful interactions between

the instances if the implementation guarantees

computational independence.

Intuitively, computational independence of the target

instance and all other instances is equivalent to the

requirement that even with adaptive access to concurrent

instances the task of breaking the target instance remains

hard for the adversary. An adversary is successful against

a protocol realization if it is able to break privacy or

correctness guaranties. In case of computationally

dependent concurrent instances the adversary tries to

exploit this dependence. Our point here is that this

intuition is grounded as by definition a set of protocol

instances with (mutually) computational independence

property is equivalent to an ―associated‖ set with

(mutually) statistically independent elements. Here

―associated‖ means replacing statistically dependent state

variables with independent ones. In other words the

standard hybrid argument can directly be applied to

concurrent protocol instances with CI property. This

means that composition of statistically dependent but

computationally independent instances is a one step

action.

C. Dependence models in UC

Three dependence models are defined in UC between

concurrent protocol instances which are base UC [4],

JUC (Joint-state UC) [5] and GUC (Global-state UC) [7].

In base UC in the real system the target instance has no

common state variable with any other instances. In base

UC statistical independence of concurrent instances is the

result of the so-called ―subroutine respecting‖, the

statistical independence of inputs to different instances as

well as the statistical independence of local random

variables at different instances. Property of ―subroutine

respecting‖ means that different instances do not

communicate with each other (directly or via a common

module). The result is that in this base model different

instances cannot have any dependent state variable (at

any step of their run). It follows that the target instance is

statistically independent (SI) from all other instances in

the environment. Computational independence (CI)

provides the same independence guaranties under

complexity constraint as SI in unconditional case. For

example protocol instances can securely be composed

parallel in case of CI as in case of SI.

In JUC the target instance and instances from the same

protocol share a common variable which implies their

statistical dependence [5]. Computational independence

of such instances can be ensured under UP assumptions

on the applied primitives. Functional independence (FI) is

straightforward link to the UC analysis of protocols.

Instead of random variables like in case of UP, CI and SI

it is defined for functioning protocol instances, where a

need for independence guarantee arises both for outputs

an also for the series of protocol messages. Accordingly

FI is related both to (UC-) secure emulation and also to

harmful interactions between concurrently running

instances.

In GUC the target instance and any other instances

have access to a common globally accessible variable [7].

In this case computational independence is much harder

to establish.

D. Functional independence of protocol instances

Protocols can be considered as complex primitives,

with special feature that they are executed via the

interaction of at least two parties and therefore details of

the computation of protocol outputs can also be seen and

can potentially be attacked by an adversary. Accordingly

both the series of protocol messages and the input/output

messages has to be included into a random variable which

represents the run of an instance of the protocol. Recall

such a random variable corresponds to the information

seen by the distinguishing environment at the global

interface in the UC system model with dummy adversary

[4]. We defined the UP, CI and SI type of independence

of instances as the independence of their transcripts

where the aim is reduction of the complexity of the

analysis to that of a single instance. The second step is

8 Computational Independence in the Design of Cryptographic Protocols

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

the realization with CI only instances. By the complex

notion of functional independence (FI) we want to cover

this two step approach by one notion.

The base scenario is the following: consider two sets of

concurrent instances 1 nS1={I ,...,I } , 1 nS2={J ,...,J } ,

where in set 1S the instances are in SI relationship, while

in set 2S they are statistically dependent. The interface

between 1S (2S) and the distinguisher corresponds to the

standard global interface of the UC framework, where the

instances of the sets are bunched into one virtual instance
(1) (2)S (S) the same way as by the multi-session extension

in Joint State UC approach (informally, it is a parallel-to-

serial converter followed by its inverse, a serial-to-

parallel one on the level of input/output packets to/from

instances).

Definition 4 (FI for protocol instances): Sets 1S and 2S

of protocol instances are functionally independent if

multi-session extensions (2)S is computationally

indistinguishable from extension (1)S by the

distinguishing environment at the global interface.

Obviously functional independence is more

comprehensive property than CI, in general. Indeed, a

protocol containing a protocol message ―A→B: Output

secret_key‖ might have been implemented with

concurrent CI instances it will not provide FI, when S1 is

a set of ideal instances.

Property 8: Definition 4 of functional independence for

sets 1S and 2S of instances of a protocol reduces to

a) stand-alone analysis of secure realization if

elements of 1S and 2S are SI instances of the

corresponding ideal protocol and instances of a

realization with statistically dependent state

variables, respectively,

b) Computational independence if elements of 1S and

2S are instances of a realization with statistically

independent and dependent state variables,

respectively.

Example 3: Consider the special case when only one type

of primitives is used by the protocol. In such cases CI

between protocol instances of the given protocol can be

reduced to the CI between instances of the primitives.

Assume a protocol which uses a single type of

cryptographic primitive, a digital signature primitive.

Furthermore consider the common state scenario, i.e.

different instances of the protocol share a common

signature key, therefore they become statistically

dependent.

In the first step the elements in S1 and S2 are

(statistically independent) instances of the corresponding

ideal protocol and SI instances of the protocol (via

statistically independent signature keys), respectively.

This first step is equivalent to the stand alone analysis,

which is the test for UC secure emulation of the ideal

functionality. As it is well known EU-CMA secure

signature primitive is sufficient for reaching base UC

security [4] (of course only if the hybrid protocol which

is hybrid in ideal signature primitive is secure, e.g. it does

not contain ―catastrophic‖ protocol message like ―A→B:

Output secret_key‖).

In the second step 1 2S '=S and 2S ' contains instances

with common signature key. The distinguisher is

successful if it can exploit the statistical dependence

between digital signatures in different instances within set

2S ' . Intuitively, the only way for such success is

prediction of digital signature with non-negligible

probability. Here we can use once again the EU-CMA

property to foil such prediction attack.

Note EU-CMA is the general security requirement in

case of instance dependence caused by shared subroutines.

Indeed, two security measures have to be taken in case of

shared subroutines. First disjoint (sub)spaces of inputs to

the common module has to be maintained by different

subroutines to avoid trivial adversarial interactions.

Secondly successful forging has to be prevented. As we

saw in Section 3 UP property induced by EU-CMA

implies also CI according to Theorem 1.

V. CONCLUSIONS

Unpredictability (UP, Definition 5) guaranties prevent

attacks against correctness and privacy carried out via

fabrication of valid cryptographic blocks and exploration

of private data, respectively. Unpredictability-based

standard secure primitives support achievement of

computational independence (CI, Definition 1) within and

between protocol instances via equivalence result in

Theorem 1. Obvious fact that statistical independence (SI)

of protocol instances provides the strongest guarantee

against interaction attacks. By the equivalence of CI to

statistical independence (SI) within an environment of

efficient algorithms we arrive to a chain of equivalence

relations between independence properties (UP CI  SI)

which provides the unified fundament for equivalently

secure but cost efficient realizations. Computational

uniformity of the corresponding distributions is crucial

assumption in UP CI claim.

REFERENCES

[1] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov and J.

K. Tsay. Cryptographically Sound Security Proofs for

Basic And Public-Key Kerberos. Proc. 11th European

Symp. on Research. in Comp. Sec, 2006.

[2] M. Burmester et.al: Universally Composable RFID

Identification and Authentication Protocols, ACM

Transactions on Information and System Security

(TISSEC) TISSEC Homepage archive, Vol 12, Issue 4,

Article No. 21, April 2009.

[3] J. Camensisch, S. Krenn and V. Soup. A Framework for

Practical Universally Composable Zero-Knowledge

Protocols, In: Lee, D.H., Wang, X. (eds.) Asiacrypt 2011.

[4] R. Canetti. Universally Composable Security: A New

Paradigm for Cryptographic Protocols. Cryptology ePrint

Archive: Report 2000/067. (received 22 Dec 2000, revised

http://tissec.acm.org/
http://dl.acm.org/citation.cfm?id=J789&picked=prox&cfid=813856076&cftoken=55079699

 Computational Independence in the Design of Cryptographic Protocols 9

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

13 Dec 2005).

[5] R. Canetti and T. Rabin. Universal Composition with

Joint State. Crypto’03, 2003.

[6] R. Canetti et.al: Universally Composable Password-Based

Key Exchange, Advances in Cryptology – EUROCRYPT

2005, LNCS Vol. 3494, pp. 404-421, 2005.

[7] R. Canetti, Y. Dodis, R. Pass and S. Walfish. Universally

Composable Security with Global Setup. Cryptology

ePrint Archive: Report 2006/432. 20 Nov 2006

[8] B. Fay, Computational independence, Cryptology ePrint

Archive: Report 2014/1013, 2014.

[9] S. Gajek, M. Manulis, O. Pereira, A-R. Sadeghi, J.

Schwenk. Universally Composable Security Analysis of

TLS. ProvSec 2008: 313-327.

[10] J. A. Garay, P. MacKenzie, and K. Yang. Strengthening

zero-knowledge protocols using signatures. Journal of

Cryptology, 19(2):169-209, 2006.

[11] J. A. Garay, D. Wichs, H-S. Zhouz. Somewhat Non-

Committing Encryption and Efficient Adaptively Secure

Oblivious Transfer. CRYPTO 2009: 505-523.

[12] F. B. Hamouda et. al: Efficient UC-Secure Authenticated

Key-Exchange for Algebraic Languages, Proceedings of

the 16th International Conference on Practice and Theory

in Public-Key Cryptography (PKC '13), 26 February - 1

March 2013, Nara, Japan, Kaoru Kurosawa Ed., Springer-

Verlag, 2013.

[13] D. Hofheinz, J. Muller-Quade and R. Steinwandt:

Initiator-Resilient Universally Composable Key Exchange,

Computer Security – ESORICS 2003 Volume 2808 of the

series Lecture Notes in Computer Science, pp. 61-84,

2003.

[14] H. Jayasree and A. Damodaram: A Novel Fair

Anonymous Contract Signing Protocol for E-Commerce

Applications. International Journal of Network Security &

Its Applications (IJNSA), Vol.4, No.5, September 2012.

[15] Y. Lindell. Highly-Efficient Universally-Composable

Commitments based on the DDH Assumption.

EUROCRYPT 2011: 446-466.

[16] I. Vajda. A Universal Composability Framework for

Anonymous Communications. Journal of Computer and

Communications Security. 3, 3, 33–44, 2013.

[17] I. Vajda. Provably Secure On-demand Routing Protocols.

Pioneer Journal of Computer Science and Engineering

Technology, 6, 1–2, 19–39, 2013.

[18] I. Vajda. A Proof Technique for Security Assessment of

On-demand Ad Hoc Routing Protocols. International

Journal of Security and Networks, 9, 1, 12–19. DOI:

10.1504/IJSN.2014.059329, 2013.

[19] I. Vajda. Can Universally Composable Cryptographic

Protocols Be Practical? International Journal of

Computer Network and Information Security, 7, 10, 1-12.

DOI: 10.5815/ijcnis.2015.10.03, 2014.

[20] I. Vajda. On the Analysis of Time Aware Protocols in

Universally Composable Framework. International

Journal of Information Security, (online) 14, 4, 1-10. DOI:

10.1007/s10207-015-0300-2, August 2015, (print) 15:403-

412, 2016.

[21] A.C.Yao. Theory and applications of trapdoor functions.

Proceedings of the 23rd IEEE Symposium on Foundations

of Computer Science, 1982.

Authors’ Profiles

István Vajda graduated from the

Telecommunication Department at the

Technical University of Budapest. He

received the PhD and DSc degrees in

1985 and 1997, respectively. Since 1998,

he has been a Professor at the Department

of Informatics. He is the co-founder of the

Laboratory of Cryptography and Systems

Security (CrySyS). During 1990’s his

research interest was in algebraic code designs for secure

multiple access channels. Recently, his research interests are in

design and analysis of secure systems, with a special emphasis

on provably secure cryptographic primitives and protocols. His

application expertise covers secure wireless communication,

secure routing and sensor networks.

APPENDIX

Assume an adversary has access to a set S of protocol

instances (observations from past or concurrent events)

and aims to find a harmful interaction with a target

instance T. He is considered successful if he is able attack

T in its privacy or correctness properties, which means

finding out a priori secret information carried by T or

modifying instance T to T’ in order to distort the output at

honest parties, respectively. The modification typically

means changing blocks within protocol messages of

instance T where those blocks are composed from outputs

of cryptographic primitives, for instance changing a

digital signature. In this context the aim of the designer is

to guarantee unpredictability between instances in set S

and the wished instance T’.

Recall, random variables 1m and 2m are statistically

independent (SI) if 2 1 2P(m =y|m =x)=P(m =y) for all x,y

from the corresponding spaces (in shorthand notation

2 1 2P(m |m)=P(m)). The intuitive meaning of the above

definition is that if in the knowledge of the outcome of

random variable 1m the probability distribution of

random variable 2m is unchanged to its a priori

distribution the two random variables are (statistically)

independent. We look for an analogous definition when

we can rely only on probabilistic polynomial time (PPT)

algorithmic resources, in particular the above probability

distributions are not available and at most we can access

only to polynomial number of samples from them

(polynomial in security parameter n).

Definition 5 (unpredictability): Random variable 2m is

unpredictable from random variable 1m if for any PPT

algorithm F and any efficiently computable binary

mapping  there exists a PPT algorithm F’ (simulator)

such that difference

I(F, , m1, m2, n) = 

1 2 2|P[F(m , _ inf , n) = (m)]-P[F'(_ inf , n) = (m)]|pub pub 

is negligible in parameter n, where n is a natural number.

Set pub_inf contains all public information.

http://link.springer.com/book/10.1007/b136415
http://link.springer.com/book/10.1007/b136415
http://dblp.uni-trier.de/pers/hd/m/Manulis:Mark
http://dblp.uni-trier.de/pers/hd/p/Pereira:Olivier
http://dblp.uni-trier.de/pers/hd/s/Sadeghi:Ahmad=Reza
http://dblp.uni-trier.de/pers/hd/s/Schwenk:J=ouml=rg
http://dblp.uni-trier.de/pers/hd/s/Schwenk:J=ouml=rg
http://dblp.uni-trier.de/db/conf/provsec/provsec2008.html#GajekMPSS08
http://dblp.uni-trier.de/db/conf/crypto/crypto2009.html#GarayWZ09
http://link.springer.com/book/10.1007/b13237
http://link.springer.com/bookseries/558
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2011.html#Lindell11
http://dx.doi.org/10.1504/IJSN.2014.059329
https://en.wikipedia.org/wiki/Andrew_Chi-Chih_Yao
http://www.di.ens.fr/users/phan/secuproofs/yao82.pdf

10 Computational Independence in the Design of Cryptographic Protocols

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

Definition 6 (strong predictability): Random variable m2

is strongly predictable from random variable 1m if it is

predictable for identity mapping (x)=x .

As 2 2P(m)=P(m |r) for an independent random variable

r, difference 2 1 2|P(m | m)-P(m |r)| is nonzero iff 1m and

2m are dependent. Note the analogy to the formulation of

Definition 5. In this sense unpredictability by Definition 5

is also a definition of algorithmic independence. In spite

of that analogy we will keep the name predictability (and

unpredictability) in connection with the above definition

as under computational independence we will mean

algorithmic indistinguishability from statistical

independence (defined in Section 2).

An adversary by standard is a network adversary,

however an adversary may also corrupt honest parties. A

corruption adversary can access to private data of the

party. The adversary may use such extra information for

increasing the success probability of attacking the

protocol messages of the remaining honest parties.

Formally the extra information is included in variable m1

when predicting variable m2.

For further motivation for formula (1) we give a few

simple examples below:

Example 4: Let 2 1m =Rev(m) , where Rev is the bit order

reversion algorithm, which is an obvious instance for the

strongest dependence and predictability. Indeed for

F=Rev we get 1 2I(F, , m , m ,n) ~ 1 , for any  . If 1m

and 2m are constants, formally they are statistically

independent, however they would be in the strongest

predictability relationship if we would not include

constants into pub_inf. Consider also a refined version of

this example. Let independent random variables 1Z and

2Z be such that they take values from sets 1{x, m } and

2{y, m } , respectively, with probability distribution

(, 1-)  both, where random variables x and y are not in

relation of bit reversion. For bit reversion algorithm F and

mapping (x)=x , we get
1 2Prob(F(Z , _inf) = (Z))=1-pub   ,

which for small μ takes high value. However there exists

algorithm F’ which simply outputs value m2 (from the

known ―space‖ Z2), which leads to 1 2I(F, , Z , Z , n) = 0 .

So the wanted consistency will not be broken.

Example 5: Consider the example where
c

1 1 2 2m =(u, r), m =(u ,r) such that random variable
cu is

the binary complement of variable u with length m,

furthermore 1r and 2r are independent variables with

length n. Obviously, 1m and 2m are statistically

dependent. If we would define unpredictability by

requiring the prediction of all bits of 2m (case of (x)=x)

the obvious and strong dependence in the prefix between

1m and 2m could not be detected by formula (1). Indeed

for the performance of best predictor F which

complements the first m bits of the input but unavoidably

fails predicting the n-bit suffix is
-n

1 2Prob(F(m , _inf) = m)=2pub which equals to the

performance of the corresponding simulator, leading

finally to the wanted result I=0.

Note, formulation of Definition 5 has some

resemblance also to the standard definition of semantic

security of public key encryption. In that definition

random variables m1 and m2 correspond to a ciphertext

and corresponding cleartext, respectively, where mapping

δ models the partial information on the clear-text,

furthermore randomness is generated by the random

selection of the encryption key, the clear-text (by

arbitrary distribution over the domain of clear-texts), one-

time randomness used in encryption as well as random

bits generated by PPT algorithms F and F’. In that respect,

Definition 5 can be viewed as extension to this approach,

where our main goal is to extend the concept to protocols,

where the pair of random variables 1 2(m ,m) (m1,m2) can

be associated to different cryptographic objects not just to

encryption, e.g. to protocol messages from concurrent or

past instances. Furthermore Definition 5 aims to grasp the

concept of independence/dependence, e.g.

computationally indistinguishable substitution of

statistically independent objects.

Usefulness of strong predictability (Definition 6) is

obvious in the following application scenario. Assume an

adversary wants to forge a protocol message (2m) of a

protocol instance with the aim to maliciously divert the

run of the instance. For this aim the adversary collects a

binary string 1m from concurrent and/or past instances

and devices an algorithm F, which for input 1m outputs a

predicate to 2m (with non-negligible success). Note here

complete protocol messages have to be forged (i.e. not

only a subset of their bits selected by appropriate

mapping ). For instance, if 2m contains a substring

which is an element from the output domain of a

cryptographic primitive, it is obvious that such an

element has to be produced fully.

For another example consider the interleaving attack

where complete protocol messages (or cryptographic

blocks of them) are copy-pasted into the target instance

from concurent or past instances. Such straightforward

possibility is the simplest way of prediction.

For soundness of Definition 5 consistency must be kept

between statistical independence and unpredictability: the

former should imply the latter.

Property 9: Definition 5 of unpredictability is consistent

with statistical independence: the latter implies the former.

Proof: For short referencing let random variable δ(m2) be

denoted by m’ and let H stand for its probability

distribution. Assume that random variables 1m and m’ are

(statistically) independent. It follows that no predictor F

can perform better than a (potentially unbounded)

algorithm which outputs maximum likelihood estimate

m‖ on m’, where m‖= indmax H(x), i.e.

 Computational Independence in the Design of Cryptographic Protocols 11

Copyright © 2016 MECS I.J. Computer Network and Information Security, 2016, 10, 1-11

1Prob(F(m , _inf) = m') H(m")pub  for any F.

Obviously, similar limit stands for the performance of

any simulator F’. Now, the proof is obvious if H(m") is

negligibly small. Fortunately, the proof is straightforward

even for the general case:

Because of the assumed statistical independence

1Prob(F(m , _inf) = m') = Prob(F(r', _inf) = m')pub pub for

any F where r’ is an independent random element. Note,

the best simulator is trivial as F’ is PPT algorithm and it

is able to generate random element r’ and run F with

input (r', _inf)pub . This implies 1 2I(F, , m , m , n) =0 .

How to cite this paper: István Vajda,"Computational Independence in the Design of Cryptographic Protocols",

International Journal of Computer Network and Information Security(IJCNIS), Vol.8, No.10, pp.1-11, 2016.DOI:

10.5815/ijcnis.2016.10.01

