
I. J. Computer Network and Information Security, 2015, 8, 30-38
Published Online July 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.08.04

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

An Extended Approach for Efficient Data Storage in

Cloud Computing Environment

Fatemeh shieh
Department of Computer Engineering, Mahallat Branch, Islamic Azad University, Mahallat, Iran

Email: Fatemeh.shieh@gmial.com

Mostafa Ghobaei Arani
Department of Computer Engineering, Parand Branch, Islamic Azad University, Tehran, Iran

Email: mostafaghobaei@piau.ac.ir

Mahboubeh Shamsi
Department of Computer Engineering, Qom Branch, University Of Technology Qom,Iran

Email: shamsi@qut.ac.ir

Abstract—In recent years, the advent of online data

storage services has been enabled users to save their data

and operational programs in cloud databases. Using an

efficient and intelligent management helps to optimize

quality of provided services. Also it is possible to

increase throughput of services by eliminating repeated

data. In following article we have offered a completely

dynamic approach to detect and eliminate duplicated data

which exist in shared storage resources among virtual

machines. Results of simulation show that proposed

approach, compared to the similar approaches, will save

the storage space substantially by reducing usage of CPU,

RAM, also will increase rate of de-duplication data up to

23 %.

Index Terms—Cloud computing, Virtual machine, Data

storage system, De-duplication.

I. INTRODUCTION

Cloud computing technology is currently one of the

popular and developing technologies and a successful

example of distributed computing. Cloud computing is a

model for an easy provision of network access, based on

demand, for a shared storage of configurable computing

resources (i.e. networks, servers, applications, services,

etc.), which is capable of being provided and released

very quickly with minimal management efforts, and

minimal interaction with the service provider [1,2].

Changing business requirements and outburst of digital

data have been launched huge demands for efficient high

volume data storage. Due to the limited financial

resources and the increasing cost of storing electronic

data, people often tend to storage their data in the context

of cloud [3].

Cloud Computing technology enables users to transfer

their operational data and programs to the web then

operate the programs without commitment to have any

special physical infrastructure [4,5]. All cloud services

that have been offered, allow their users to halt problems

using two important aspects of Dependability and

Elasticity. One other important aspect is the use of

virtualization technology through cloud services [4,6,7,8].

Virtual machines (VMs) make possible to increase

services, transferring applications in cloud. It is easier

and faster to deploy a new virtual machine or move it to

another physical server in the comparison of deploying a

new physical server. Virtualization also makes possible

having more control over cloud resources such as disk,

network and computing power. Hence, these resources

can be distributed in accordance to the requirements of

the applications. Using virtual machines is an important

factor to achieve elasticity. Both Cloud services and

Online support services access lots of data which are

required continuously to storage data, consequently, a

large number of duplicate data will be among them [9].

One of the useful techniques is removing duplicate

(De-duplication) data that simplifies and improves the

management of storage. De-duplication technique detects

and eliminates duplicated data and store only one copy of

the data, so that reduces the space required for data

storage. So it is clear that the removal of duplicated data
helps to decrease size of storage memory in databases [10,

11, 12]. De-duplication process performed in four steps:

in the first step, files are divided to smaller parts. In

second step a new part will be generated. Control of

similarity in the contents of data is performed by secure

hash algorithm (SHA-1) (other methods can be performed

too). In third step the structure of metadata will be

updated. And in fourth step rest of data remained after

De-duplication process, will be saved on the common

storage resource [13]. In this article we have offered a

dynamic approach to save data which has less overhead

I/O read and write requests. The proposed approach has

increased the rate of De-duplication to 23% so the rate

reaches to78 % and there will be substantial decrease in

CPU and RAM usage.

This paper is continued as follows: In the second part,

the related work will be reviewed. In the third section, we

 An Extended Approach for Efficient Data Storage in Cloud Computing Environment 31

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

describe the proposed approach. Evaluate the

effectiveness of the proposed approach will be described

in Section IV, and finally Section V is devoted to

conclusions and future work.

II. RELATED WORKS

This section provides an overview of the various

researches to detect and remove duplicated data, and the

advantages and disadvantages of them will be briefly

examined.

Jin-Yong Ha et al [14], proposed a scheme called

―Chunking aware of the content of the block (BLK -

CAC)‖ to increase the rate of De-duplication in the solid

state drives (SSD). In this scheme, each block is divided

into several Chunks according to its content. They

reviewed the results of related simulation, and concluded

that rate of de-duplication in method of BLK-CAC is

higher than the other similar methods. Also the method

BLK-CAC, can more effectively serve large size files.

Meyer et al [15], proposed a method of calculating the

total hash amount of the file content. They assessed the

effectiveness of this strategy in the same part of the data.

If two files have the same hash, then they will consist of

duplicate content. Method were place at the lowest

position in the rankings compared to a fixed size block

and Chunking. It causes decreasing the throughput

substantially because of computing huge amount of data

for updating and repeated calculating SHA-1 digest.

F.Chen et al [14, 16] in 2011 invented two methods

including ―Chunking aware of the content of the file‖

(FILE-CAC) and ―Chunking with the fixed size block‖

(BLK - FSC). Their studies showed that it was difficult to

achieve high de-duplication rate in these two methods,

Because the methods were not able to detect duplicated

chunks at the time of inserting or removing a Chunk

among others, hence there would be a relatively low de-

duplication rate.

George Bebis et al. invented ―Super-fingerprint

method‖ to detect similar data in 2009 [17]. A Super-

fingerprint is a group of fingerprints belonging to

different parts of a file. as a Super-fingerprint is taken

from several files, so that files with one or more similar

super fingerprint will be similar.

―Simple de-duplication approach‖ [18], was promoted

by Mr. João Tiago in 2009. The approach detected and

destroyed duplicated data on servers in which multiple

virtual machines were running. Virtual machines stored

their pictures on a shared storage. This process partially

reduced the amount of used memory of CPU and RAM.

However this approach has a weak and low de-

duplication rate whenever shared blocks need to be

updated.

Another method was founded by U. Manber in 2008

[19, 20], which was in fact, a combination of Rabin

Fingerprint and Chunking methods. Whenever a file was

changed, this method had better performance compared

to the other methods were introduced previously because

it required computing signatures only for changed chunks

whereas the other approaches needed to compute

signature of all blocks of that file. The very high cost is

one of the major disadvantages of this method.

RSYNC
1

 method by Policroniades et al [21], was

offered in 2004 to reduce the using bandwidth and to

update two files (were used on separate computers) with

the same content. By this solution, receiver separates files

inside blocks and calculates hash functions for each block.

The sender receives hash blocks and compares them with

hashed file blocks. So RSYNC sends data only to those

blocks whose receiver has lost data. Also it sends data to

the other files or blocks whose receivers are present there.

J.Lavoie, J.M.Tracey [20] in 2004, proposed a method

named ―fixed size block‖ which can find duplicates in the

block. Using this method, updates which changes part of

file, cancels the other SHA-1 digest for the other blocks.

As a result, the reference counter of the block is reduced

and the SHA-1 digest is calculated for the new block.

Using this approach increases the amount of storage

space.

J.M.Tracey et al [22, 23], proposed REBL method in

2004, which was in fact a combination of compression

and Chunking. It is able to detect and eliminate

duplicated data like other approaches but low

performance power and high costs are its

disadvantageous.

Fred Douglis et al [24, 25], proposed ―Delta encoding

technique‖ to reduce the redundancy of similar files. The

mentioned technique detects similar files then decreases

the copied information. This technique can be used to

compress several files also to reduce redundancy across

multiple files.

III. DE-DUPLICATION IN CLOUD COMPUTING

ENVIRONMENT

The sharp growth of users’ demands on cloud storage

services, led us to study on de-duplication methods in

order to find their pros and cons also to suggest an

approach which will be able to solve low rate of de-

duplication and high I/O overhead rate optimizing use of

CPU and RAM spaces. On the other hand, most of the de-

duplication approaches proposed so far has been static, so

that after updating shared data, no longer they are not
able to detect and remove duplicated data, hence, always

have suffered from low de-duplication rate. So we're

going to offer a new dynamic approach to improve

sharing modules in a simple approach [18] which will be

able to detect and remove duplicated data after updating

part of shared data. In the proposed approach, de-

duplication rate increases, the overhead of I/O reading

and writing request and usage of CPU and RAM are

greatly reduced. In the following, we will examine the

proposed approach in detail.

A. proposed approach

In this paper, the framework of de-duplication consists

of 3 main modules including: I/O Interception Module,

Share Module and Garbage Collector Module. It should

32 An Extended Approach for Efficient Data Storage in Cloud Computing Environment

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

be noted that due to better memory management, we have

used a fixed block size of 4KB. The data structures

needed for de-duplication in the proposed approach and

performance of each has been shown in Table 1.

Table 1. Data structures needed to de-duplication in the proposed approach

It should be noted that Dirty address table uses to

reduce the overhead of writing requests, but in this case

we will require more disk space. Also, there should be a

balance (trade-off) between the space consumed and the

amount of I/O overhead writing operations. The purpose

of the mechanism of Copy-on-write (COW), is the

physical address which will be shared by more than one

virtual addresses. Whenever the contents of a COW block

needs to be updated, it does not change the block directly,

but a new version will be written that the updated data

will be corrected on.

 I/O Interception Module: I/O interception

Module is responsible to intercept the request of

I/O which are sent to the virtual disks on the

blocks by the virtual machines. There is only one

interception module I/O for any VM. This module

only needs to check the L2P table in reading

requests so that it will be able to convert virtual

addresses to physical addresses, but for writing

requests it needs Dirty addresses table in addition

to L2P address table.

 Share Module: This module firstly checks the

Dirty addresses. The addresses are not shared at

the table immediately, because there might be

some addresses among them which their blocks

have been changing constantly. So there is no

advantage in sharing them. If the block is shared,

constantly changing or modifying, it leads

increasing use of COW mechanism and

respectively overflow of writing requests increases

too. Therefore young and old sets will be used to

avoid the storage of this type of blocks. It should

be noted that Share Module performs the task

concurrently for all VMs.

By selecting the virtual addresses which are ready to

share, each of them can be processed independently and

this is done by examining the entries in the L2P

interpretation table. To share blocks, firstly virtual

addresses existed in the L2P interpretation table should

be updated according to new physical addresses in the

entry of DHT table. After that a copy of duplicate block

shared and duplicate content removed then the relevant

physical block will be released.

Finally, it should be added one unit to number of fields

relevant to the shared virtual addresses which are

describing the physical blocks. Otherwise the physical

address will be added to DHT table as a new entry and

the block will be dedicated to the COW mechanism.

Whenever Share Module is working to share a physical

address, simultaneously an update request for a block or

blocks of addresses to be issued by user, it means a small

piece of data like a chunk has been removed from set of

chunks of a block or a new chunk will be inserted among

chunks of the block. (When a data among Chunks of a

sharing block has been written, the number of Chunks

and pointer of L2P table to an element are shared in the

relevant entry of L2P table). In this case, for inserting or

removing a chunk, all the chunks which are located after

Description Table

The virtual addresses related to read and write I/O requests are

mapped to physical addresses. Each VM has its own L2P table.
L2P interpretation table

This table includes all virtual addresses. Following the introduction

of a writing request, the writing operation is done normally without

considering contents of request related to its duplication. Also

address of virtual machine is registered. Then share module checks

it. Any virtual machine has its own Dirty address table.

Dirty address table

The table is used to check duplications DHT Table (Distribution Hash Table)

The table includes physical addresses which have retrieved by GC

module and I/O interception module offers them to the addresses

needing them.

P2LExplanation table

This table contains all the unique Chunks with their reference field.

This field indicates the number of L2P elements, which have shared

a single Chunk. Hence, each entry in the table contains a Fingerprint

of Chunk, the number of L2P in a chunk and the reference field

related to it.

Storage table Fingerprint

 An Extended Approach for Efficient Data Storage in Cloud Computing Environment 33

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

changed chunk, will be shifted so that de-duplication of

these chunks will not perform well, provided the system

has fixed size Chunks.

So in the proposed approach we will consider various

size of chunks as a result we will be able to remove

content of duplicated chunks which are located after

position of inserted or removed chunk easily. Also we

will be able to prevent their storage so the rate of de-

duplication will be increased. Therefore we consider

three phase of Chunking, Fingerprinting and Adjustment

for this part of our approach. So after receiving an update

request for a block or blocks of sharing physical address,

we enter in Chunking phase. In Chunking phase, every

block will be divided to many chunks in various size and

contents. We use Rabin, Fingerprint method to find out

content of Chunks. Also we suppose 12 existed chunks

inside any block to improve management of memory also

to prevent losing space.

Chunking phase continues until observing the

boundaries of block, then we enter in Fingerprinting

phase. In Fingerprinting phase, using the SHA-1 hash

function, will be dedicated a 160-bit a Fingerprint for the

entire Chunks of this block. Then at the adjustment phase

fingerprints of the Chunk and Fingerprints on the table of

fingerprint storage will be compared. By confirming the

adjustment between fingerprints and existed fingerprints

on the storage table, the content of a copy of duplicated

chunks will be shared on the fingerprint storage table and

the other contents of duplicated chunk will be removed.

Then one unit will be added to the reference number of

chunks on the fingerprint storage table. By completion of

de-duplication, the entire of block included unique

chunks will be shared by Share Module. In addition the

block will be dedicated to the COW mechanism also will

be added to the DHT table as a new entry (Fig.1).

Fig.1. Share Module performance (after an update request)

 Garbage Collector Module: the entire of unused

physical addresses keep in a queue called free line

COW. Finally the GC module accesses them. This

module also calculates approved content of any

physical block for any input table DHT, and then the

value of relevant reference field is considered which

actually represents the number of shared virtual

addresses. Provided the value of this field is zero,

then the physical block can be added to the queue of

free blocks because it can be used with any other

virtual address. But if the value of the field is higher

than zero, then the physical block cannot be added

to the queue of free blocks and it shows the physical

block is being used by another virtual address or

addresses at the moment (Fig.2).

Fig.2. Performance of GC Module (first stage)

In the proposed approach, there is only one GC module

works simultaneously for the entire of VMs. GC module

in parallel and equally with Share Module accesses to

DHT table (Fig.3). The general process of proposed

algorithm has been shown on Fig.4.

F

Fig.3. Performance of GC Module (second stage)

34 An Extended Approach for Efficient Data Storage in Cloud Computing Environment

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

Fig.4.Diagram of proposed approach

IV. PERFORMANCE EVALUATION

The evaluation of the proposed approach has been

carried out using three different measures then the results

of simple approach [11] and the proposed one will be

compared. Specifications of a test context for the

implementation of the proposed approach are presented in

Table 2. Also there has been used a 500 GB partition

manufactured by HP storage works company of virtual

designs (EVA 4400) accompanying RAID 0 for tests.

Furthermore, we have used data sets of San Diego [26]

in simulation tests which show the amount of server used

by different users. So simulation tests are developed by

applying 3 benchmarks which actually present practical

tests for de-duplication in a virtual scenario (table 3).

Practice will be done by measuring the power of VMs I/O

requests and used CPU and RAM in DOM 0 also the

amount of shared data.

Start

Writing Request

I/O Module Registers the Virtual Address Existed in L2P Table in Dirty Address Table

Share Modual Considers Dirty Address Table

Transferring Address on the Old Young Sets

Is the Content

Similar

Considering DHT

Table

Dedicating Block To The COW Mechanism

Adding The Block As a New Entry To The DHT Table

Is the Shared

Physical Block

Updated?

Unused Shared

Physical Block in

a Long Run

Sharing a Copy of Duplicate Block

and Eliminating the Other

One Unit Added To the Reference

Field of Virtual Address Points to the

Physical Address

Releasing Equivalent of the

Physical Block

Updating L2P Table

Delivering Released Block to

GC Module

New Writing

Request and

Need to Free

Block Queue

for GC

Chunking Phase

Is There Visible

Block Boundary

Go To Fingerprinting Phase

Matching Phase

Sharing a Copy of Duplicate Chunks on the

Fingerprinting Storage Table

End

Yes

No

Yes

No

No

No

Yes

No

Yes
Storage

Table

Fingerprint

Yes

 An Extended Approach for Efficient Data Storage in Cloud Computing Environment 35

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

Table 2. Specification of test context for implementation of proposed
approach

Value Parameters

COREi7-720QM 2.8 GHz Utilized processor in server

6GB RAM in server utilized

 3 the number of VMs in server

Ubuntu 9-Xen Type of kernel used

256MB RAM in VMs used

10GB Volume of relevant disks for any

VMs

Linux 2.6.32 used operational system for DOM 0

Xen 3.3.0 The type of Hypervisor

3 number of used measures to

evaluate proposed approach
performance

C++ The programming language used for

testing and implementing measures

30 min Duration of each VM

Table 3. benchmarks used in simulation of proposed approach

Objective Description Metric

Measuring the

overhead of I/O

reading and writing

requests , rate of
sharing and the amount

of used CPU and RAM

Measuring throughput of I/O

reading and writing requests

by different sets of tests

Bonnie++

Evaluating the amount of

overhead in I/O writing

requests in a VM

Writing

Evaluating the amount of

overhead in I/O reading
requests in a VM

Reading

Continued the optimality of the proposed approach

against simple approach will be evaluated in three

scenarios and then we interpret the results.

A. First Scenario

This scenario evaluates result of simulation of the

proposed approach using standard Bonnie ++. It should

be noted that a type of bonnie ++ is executed for each of

3 applied VM in proposed approach. Table 4 shows the

generated overhead for both simple and proposed

approaches. Results of the table represent that there are 4

tests which are generating more overhead. Also

comparing diagrams related to before (Fig.5) and after

(Fig.6) applying proposed approach, it shows clearly that

there is 23 percent increase in de-duplication rate in

suggested approach.

Table 4. Result of I/O throughput by Bonnie ++

Overload Proposed
Approach

Simple
Approach

7 % 60,500 KB / sec 73,285 KB / sec Put-c Test

22 % 125,500 KB / sec 162,483 KB /

sec

Write Block

Test

16 % 32,000KB / sec 39,064 KB / sec Rewrite Test

20 % 26,000KB / sec 35,549 KB / sec Get-c Test

20 % 83,000 KB / sec 106,119 KB /

sec

Read Block

Test

4 % 280 KB / sec 304 KB / sec Random Seeks
Test

Fig.5. redundancy results of San Diego data sets for blocks included
duplications less than 25. (Before applying proposed approach)

Fig.6. redundancy interpretation for blocks included duplications less
than 25. (After applying proposed approach)

Fig.7 compares throughput of our proposed and simple

approaches.

Fig.7. throughput comparison between proposed and simple approaches

Table 5 shows the amount of shared data. Our

proposed algorithm shares 41 percent of data according to

Bonnie++ benchmark.

Table 5. Redundancy results with Bonnie ++ benchmark

Proposed Approach
4.00 GB Storage space

10 GB Writing Space

41 % Percent space savings

36 An Extended Approach for Efficient Data Storage in Cloud Computing Environment

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

Table 6 shows average values for usage of CPU and

RAM. It is possible to explain differences between RAM

using data structures required for sharing process. Fig.8

represents it explicitly.

Table 6. Result of RAM and CPU by Bonnie++ benchmark

Proposed Approach Simple Approach
39.10 % 16.00 % CPU Usage Average

276.7 MB 24.60 MB RAM Usage Average

Fig.8. Comparison average used PU and RAM in our proposed
approach and the simple one.

B. Second Scenario

The explaining Scenario evaluates results of simulation

of our proposed approach using the writing benchmark.

We run writing benchmark 30 minutes for any VMs.

Table 7 shows the amount of computing power, delay of

writing requests, RAM and CPU usage in simple

approach and our proposed one. The results show that the

average amount of CPU usage, in our explaining Scenario

evaluates results of simulation of our proposed approach

using the writing metric. We run writing benchmark 30

minutes for each VMs. Table 7 shows the amount of

computing power, delay of writing requests, RAM and

CPU usage in simple approach and our proposed one that.

The results show that the average amount of CPU usage,

in our approach is very small. As it is possible the

proposed approach consists of series of batch requests to

buffer released blocks.

Table 7. Results of writing benchmark

Proposed approach has been optimized completely and

the average amount of CPU usage is acceptable compared

to the simple approach result. Higher usage of RAM is

due to special data structure and de-duplication process

on chunks which have been inserted after updating a

shared block. The introduced overhead for our proposed

approach reported less than 4 percent according to the last

study.

Table 8 shows the amount of shared data by both

simple and our proposed approaches. Our proposed

approach shares 30 percent of written data.

Table 8. Redundancy results for writing benchmark

Proposed Approach Simple Approach
1,300,748 1,128,817 Amount Shared Block

5.00 GB 4.31 GB Storage Space

20.00 GB 15.23 GB Writing Space

30% 28 % Percent Space Savings

C. Third Scenario

This scenario evaluates the obtained results of

proposed approach simulation using reading benchmark.

Again we run reading benchmark for 3 VMs. 4 processes

have been produced in any of VMs and data is read on a

2GB file or is written on it. The written result obtains

from 10 minutes operation. This benchmark is applied for

both of approaches. Table 9 shows throughput of reading

and usage of CPU and RAM. The value of RAM is

related to the entire of benchmark operation but the value

of CPU is only related to the reading process. Our

proposed approach does not produce a substantial

overhead for I/O reading requests in a VM and it

increases usage of CPU by 2 percent. Table 10 represents

that our approach shares 68 percent of data. Value

resulted by this metric is higher than the other 2

benchmarks, because this benchmark writes less content

than other 2 benchmarks.

Table 9. Results Of Reading benchmark

Proposed Approach Simple Approach
860 882 Write Throughput

13ms 13.5 ms Write Delay

218 MB 2 MB RAM Usage Average

11 % 9 % CPU Usage Average

Table 10. Redundancy Results For Reading benchmark

V. CONCLUSION AND FUTURE WORK

As mentioned above, the aim of all de-duplication

techniques is detection and elimination of redundant data

to save required storage space. It also does not cause to

produce a lot of overhead in the I/O requests. So the best

method among de-duplication approaches will be the

dynamic one. It means considering and tracking VM’s

I/O reading and writing requests on every moment also it

will be able to consider optimally all of updating

requests for shared data and increase the rate of de-

duplication with low cost for storage. In this paper we

tried to offer a new dynamic approach to optimize

performance of Share Module in simple approach which

Proposed Approach

2 GB Storage Space

3 GB Writing Space

68 % Percent space savings

Proposed

Approach

Simple Approach

2437 2529 Write Throughput

4.0ms 3.8ms Write Delay

242.15 MB 2.67 MB RAM Usage Average

30.00 % 20.00 % CPU Usage Average

 An Extended Approach for Efficient Data Storage in Cloud Computing Environment 37

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

will be able to detect and eliminate the sharing duplicated

data after being updated. Our proposed approach

promoted rate of De-duplication to 78 percent, according

to the results of tests. By assessing proposed approach

according to offered benchmarks, were presented that our

approach will save storage space dramatically by

decreasing usage of CPU and RAM. We recommend

researching more to find an approach for better

management of data structures lead to optimize usage of

RAM.

REFERENCES

[1] Monireh Fallah, Mostafa Ghobaei Arani and Mehrdad

Maeen. "NASLA: Novel Auto Scaling Approach based on

Learning Automata for Web Application in Cloud

Computing Environment." International Journal of

Computer Applications 113(2):18-23, March 2015.

[2] Monireh Fallah, Mostafa Ghobaei Arani "ASTAW: Auto-

Scaling Threshold-based Approach for Web Application

in Cloud Computing Environment." International Journal

of u- and e- Service, Science and Technology

(IJUNESST),Vol.8, No.3, pp.221-230, 2015.

[3] Chengzhang Peng, Zejun Jiangb. "Building a Cloud

Storage Service System". Science Direct, 2011, pp.691-

696.

[4] Afife Fereydooni, Mostafa Ghobaei Arani and

Mahboubeh Shamsi "EDLT: An Extended DLT to

Enhance Load Balancing in Cloud Computing."

International Journal of Computer Applications 108(7):6-

11, December 2014.

[5] Md. Imran Alam, Manjusha Pandey, Siddharth S

Rautaray,"A Comprehensive Survey on Cloud

Computing", IJITCS, vol.7, no.2, pp.68-79, 2015. DOI:

10.5815/ijitcs.2015.02.09.

[6] R. P. Goldberg. Survey of virtual machine research.

Computer, 7(6): 1974, pp. 34_45.

[7] J. E. Smith and R. Nair, "The architecture of virtual

machines", Computer, 38(5): 2005, pp.32-38.

[8] Carolan, Jason, Steve Gaede, James Baty, Glenn Brunette,

Art Licht, Jim Remmell, Lew Tucker, and Joel Weise.

"Introduction to cloud computing architecture." White

Paper, 1st edn. Sun Micro Systems Inc (2009).

[9] T. E.Denehy and W. W. Hsu, "Duplicate management for

reference data", Technical report, IBM Research, 2003.

[10] Hovav Shacham, Brent Waters: Compact Proofs of

Retrievability. ASIACRYPT 2008, pp. 90-107.

[11] B. Zhu, K. Li, and H. Patterson, ―Avoiding the Disk

Bottleneck in the Data Domain De-duplication File

System,‖ Proc. FAST ’08: Sixth USENIX Conf. File and

Storage Technologies, 2008, pp. 1-14.

[12] Indu Arora, Dr. Anu Gupta. "Opportunities, Concerns and

Challenges in the Adoption of Cloud Storage", (IJCSIT)

International Journal of Computer Science and

Information Technologies, vol 3(3), 2012, pp. 4543-4548.

[13] Deepak Mishra , Dr.Sanjeev Sharma ,"Comprehensive

Study Of Data de-duplication" ,International Conference

On Cloud, Big Data and Trust , Nov 13-15, RGPV,2013.

[14] Jin-Yong Ha, Young-Sik Lee, and Jin-Soo Kim , "De-

duplication with Block-Level Content-Aware Chunking

for Solid State Drives (SSDs)", IEEE International

Conference on High Performance Computing and

Communications & IEEE International Conference on

Embedded and Ubiquitous Computing, 2013 ,pp.2.

[15] Meyer, Dutch T., and William J. Bolosky. "A study of

practical de-duplication." ACM Transactions on Storage

(TOS) 7, no. 4 (2012): 14.

[16] A. Gupta, R. Pisolkar, B. Urgaonkar, and A.

Sivasubramaniam, ―Leveraging value locality in

optimizing NAND flash-based ssds,‖ in Proc. USENIX

Conference on File and Storage Technologies, 2011, pp.

7–7.

[17] Uz, Tamer, George Bebis, Ali Erol, and Salil Prabhakar.

"Minutiae-based template synthesis and matching for

fingerprint authentication." Computer Vision and Image

Understanding 113, no. 9 (2009): 979-992.

[18] Joao Tiago, Medeiros Paulo , Escola De Engenharia ,

Mestrado Em Engenharia ,"Efficient Storage Of Data In

Cloud Computing" , Journal Of ACM Computing

Surveys(CSUR), July 2009 , pp.3-7.

[19] Youjip Won, Jongmyeong Ban, Jaehong Min , Jungpil

Hur, Sangkyu Oh, Jangsun Lee, " Efficient index lookup

for De-duplication backup system" , National

ResearchLab at Hanyang University, 2008, pp2-3.

[20] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey,"

Redundancy elimination within large collections of files",

In ATEC '04: Proceedings of the annual conference on

USENIX Annual Technical Conference, USENIX

Association, 2004, pp.5-5.

[21] Policroniades, Calicrates, and Ian Pratt. "Alternatives for

Detecting Redundancy in Storage Systems Data." In

USENIX Annual Technical Conference, General Track, pp.

73-86. 2004.

[22] M. Szeredi, "File system in user space.

http://fuse.sourceforge.net/", accessed 5th October, 2014.

[23] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, John

M. Tracey, "Redundancy Elimination Within Large

Collections of Files", In Proceedings of the 2004 USENIX

Annual Technical Conference, Boston, MA, June 2004,

pp.7-10.

[24] Fred Douglis and Arun Iyengar. Application-specific

delta-encoding via resemblance detection. In

Proceedingsof 2003 USENIX Technical Conference, June

2003.

[25] Philip Shilane, Grant Wallace, Mark Huang, Windsor

Hsu," Delta Compressed and De-duplicated Storage Using

Stream-Informed Locality", Journal of Backup Recovery

Systems Division EMC Corporation, 2012, pp.3.

[26] http://ucsdnews.ucsd.edu/archive/newsrel/supercomputer/

2011_09cloud.asp.

Authors’ Profiles

Fatemeh Shieh received the B.S.C

degree in Software Engineering from

University Bandarabbas, Iran in 2009,

and M.S.C degree from Azad

University of mahallat, Iran in 2014,

respectively. Her research interests

include Cloud Computing, Distributed

Systems and Vehicular Cloud

Computing.

http://fuse.sourceforge.net/
http://ucsdnews.ucsd.edu/archive/newsrel/supercomputer/2011_09cloud.asp
http://ucsdnews.ucsd.edu/archive/newsrel/supercomputer/2011_09cloud.asp

38 An Extended Approach for Efficient Data Storage in Cloud Computing Environment

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 8, 30-38

Mostafa Ghobaei Arani received the

B.S.C degree in Software Engineering

from IAU Kashan, Iran in 2009, and

M.S.C degree from Azad University of

Tehran, Iran in 2011, respectively. He is

a PhD Candidate in Islamic Azad

University, Science and Research

Branch, Tehran, Iran. His research

interests include Grid Computing,

Cloud Computing, Pervasive Computing, Distributed Systems

and Software Development.

Mahboubeh Shamsi is Associate Prof.

Qom University of Technology. She's

received the B.S.C degree in Mathematics

from Isfahan University, Iran in 2003, and

received the M.S.C degree from Azad

University of Isfahan, Iran in 2006, and

also received the PhD degree in Software

Engineering from UTM in 2011. Her

research interests include Image

Processing, Design and Implementation of Persian/Arabic OCR,

Design and Implementation of Biometric Authentication System,

Design and Test of Reliable Software, Databases, Software

Engineering, UML, ERD, DFD, ERP.

How to cite this paper: Fatemeh shieh, Mostafa Ghobaei Arani, Mahboubeh Shamsi,"An Extended Approach for

Efficient Data Storage in Cloud Computing Environment", IJCNIS, vol.7, no.8, pp.30-38, 2015.DOI:

10.5815/ijcnis.2015.08.04

