
I. J. Computer Network and Information Security, 2015, 4, 21-28
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.04.03

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

DNS Pharming through PHP Injection: Attack

Scenario and Investigation

Divya Rishi Sahu, Deepak Singh Tomar
CSE Department, MANIT, Bhopal, 462003, India

Email: divyarishi.sahu@manit.ac.in, deepaktomar@manit.ac.in

Abstract—With the increase in technology, Internet has

provided set of tools and technologies which has enabled

web programmers to develop effective websites. PHP is

most widely used server side scripting language and more

than twenty million of web sites are designed through

PHP. It has used as a core script in Web Content

Management System (WCMS), such as Joomla,

WordPress, Drupal, SilverStripe etc. PHP has also

security flaws due to the certain vulnerabilities such as

PHP injection, remote file inclusion and unauthorized file

creation. PHP injection is a variant of code injection

attacks in which PHP script may be exploited to execute

remote commands. The contribution of this paper is

twofold: First, it presents a unifying view of PHP

injection vulnerability, which causes alteration in the

„hosts file‟; Second, It introduces an investigation process

against alteration in „hosts file‟ through PHP injection.

This attack has been introduced as a type of DNS

pharming. In this investigation process a chain of

evidence has been created and an algebraic signature has

been developed to detect explained attack.

Index Terms—PHP Code Injection, Command Injection,

DNS Pharming, Attack Scenario, Cyber Forensics, Script

Kiddie.

I. INTRODUCTION

The PHP Hypertext Preprocessor (PHP) is a scripting

language designed to build dynamic web sites. It is a

widely accepted scripting language by the web

developers and is used for writing popular web

applications like Wikipedia. As per the survey of

W3Techs, 82.2 % from all the web sites using server side

scripting language are developed through PHP [1].

Dynamic functionality of PHP script allows programmer

to execute instant remote code, to use dynamic variables,

and to build new function creation on the fly. This

dynamic functionality may sometime become application

vulnerability due to the poorly written code and improper

configuration. These vulnerabilities may be exploited by

the script kiddies. Script kiddies is an unskilled person

who seeks out the victim that possesses the vulnerability

and injects the script (developed by others) in order to

gain root access.

PHP Code injection (PHPCI) is a serious threat of web

applications in which the attacker may inject malicious

code through entry points of a web application. These

entry points may be a query string of URL, text fields of

web form or HTTP header fields. In web environment

threats such as DNS Cache Poisoning [2-4], ID Spoofing

[2-3] and DNS pharming [5] may be exploited by

unauthorized user to tamper DNS entry. In DNS

Pharming, attacker manipulates the DNS resolution

process through tampering the hosts file or exploiting the

vulnerabilities in DNS server [6]. Attacker may also

launch PHPCI to exploit Domain Name Server.

In this paper DNS pharming and PHPCI attacks have

been understood through experimental setup and

developing the attack scenario of PHPCI to tamper the

windows hosts file. According to practical investigation

of attack, evidences have been extracted and correlated to

forensically investigate the DNS pharming exploitation

through PHP code injection attack. Finally an algebraic

signature has been developed and results have been

discussed to analyze appropriateness of the developed

signature. The experimented results show that proposed

approach successfully build chain of evidences subjected

to DNS Pharming and provide analyzable and

comprehensible information for law enforcement

agencies.

II. BACKGROUND

PHPCI is an application level vulnerability which

occurs when user-supplied input is not properly sanitized

before being passed to the PHP function. Open Web

Application Security Project have rated injection

vulnerability at first rank continuously from 2010 to 2013

in top 10 application security risk [7]. In the last few

years researchers are trying and suggesting counter

measures to handle this vulnerability. Detection and

prevention of PHPCI is still a challenge for web security

experts.

A. Injection Attacks

Dr. E. Benoist [8] describes the code injection attacks

such as PHP injection, XML injection and Shell injection.

Finally conclude that sanitization of input strings and

reduces the privileges; are the two main mitigation

techniques to mitigate the code injection vulnerability.

Sanitization of input may be done through creating white

list or black list. Arthur Gerkis [9] focus attention on

prevention through white list of allowed functions, tags

and whatever wishes to allow for input. However this is

not also a guarantee of security.

22 DNS Pharming through PHP Injection: Attack Scenario and Investigation

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

Another researcher Avi Kak [10] identified certain

issues of PHP to exploit the SQL injection attack and

presents another approach to detect the attack. This is

offline approach and based on the analysis of log files.

Ioannis Papagiannis [11] suggests that taint tracking

implementation in C may also be useful to prevent

injection vulnerabilities by modifying the core of the PHP

in runtime.

B. DNS Attack Investigtion

Yu Xi et al. [3] summarize the domain name resolution

process and provide the concept of restoration, source

port randomization and setting time-to-live (TTL) to

prevent DNS poisoning. Another researcher Bruce J.

Nikkel [12] presents the systematic approach for the

forensic analysis of domain names and IP networks.

However both works did not touch the area of hosts file

which is responsible for assigning the domain to IP

address in particular computer.

Lan Green [13] describes the process of DNS cache

poisoning among both networks, operated through proxy

or without proxy server. These techniques provide

security to DNS database and records from outsiders but

they have limited scope in web forensic investigation.

Research categorizes the forensic analysis into five

categories in which one is time-line analysis. In 1998,

Hosmer proposed time-line analysis approach [14]. This

analysis is based on logs, scheduling information and

memory to develop a timeline of the events that led to the

incident. Ali Reza Arasteh et al. [15] proposed log

analysis based on computational logic for SYN attack.

III. ATTACK SCENARIOS BY EXPLOITING PHP

VULNERABILITY

Attack scenario is the combination of steps that

attacker uses in attack [16]. It performs a significant role

to acquire directive into the development of attack

detection and prevention techniques. PHPCI may be

launched by creating an unauthorized file on web server.

Attacker may create unauthorized file into vulnerable

web server through injecting the commands. Intention of

the command exploits two vulnerabilities, first that

enables attacker to execute commands remotely and

second enables input content to become part of operating

system. PHP script to map IP address with domain name

and vulnerable to command injection is as follows-

The functioning of this script is as follows-

Step 1. Script first concatenates the entered domain

name with ping command and passes that

concatenated string to system() function as a

parameter.

Step 2. System() executes this string through

command line interface of the OS and returns

result into buffer.

Step 3. Retrieves the required IP address from buffer

and reply to end user.

This vulnerable PHP script has vulnerability to execute

commands from remote host. Second vulnerability due to

the Command Line Interface (CLI) provides multiple

executions of commands within a single line. Windows

operating system uses „&‟ operator to execute multiple

commands. Through „&‟ operator attacker could enter

domain name with malicious command into input field to

execute the command. The following vulnerable string

creates the unauthorized file say „hacker.bat‟ on the

server-

A. Attack Scenario

The following attack scenario has been developed to

demonstrate the DNS pharming attack through exploiting

the PHP vulnerabilities.

 Name of Attack: DNS pharming through PHP code

injection attack.

 Possible Attacker: having knowledge of DNS

resolution, OS file system and PHP scripting.

 Possible Vulnerability: Poor privilege enforcement,

improper permission in web server and able to run

script on web site.

 Resources Affected: DNS cache of server machine,

unauthorized redirection of end user to malicious

URL, Disclosure of Operating System.

1. Attacker find the PHP vulnerability to execute

commands through web server and inject

following string into input field to creates new

unauthorized web page say „hacker.php‟.

2. Check the presence of unauthorized web page by

clicking the link-

3. Attacker creates new os.php page as in previous

step and writes code to obtain the running OS on

server machine through injecting the following

PHP script.

www.server_domain.com/hacker.php

„input_value‟ & echo. > hacker.php

http://www. domain-name.com & echo. > hacker.bat

<?php

 ob_start();

 system('ping ' . $_GET['user']);

 $contents = ob_get_contents();

 ob_clean();

 $pos = strpos($contents, "IP");

 $ip=substr($contents,($pos+36),17);

 echo $ip;

 ……….

?>

 DNS Pharming through PHP Injection: Attack Scenario and Investigation 23

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

4. Inject subsequent PHP script to write into

hacker.php page.

Variable string „hosts-path‟ represents the path of the

hosts file according to the OS detected.

5. Executes the embedded PHP script through

accessing the link-

6. This „hacker.php‟ executes the PHP script and

concatenates the false DNS resolution entry of

attackers IP address into host file.

7. Victim access web server it automatically

redirected to attackers web.

To present the investigation process and severity of

PHPCI, an intra-net has been established in the web

security lab of MANIT, Bhopal, India. This system is

installed on two local servers; one for web forensic server

& another for attacker‟s web; and three client machines

for normal user. Web forensic server has setup with

192.168.5.13 IP and its domain name assigned with

www.server domain.com. Attacker‟s web is setup with

192.168.5.55 IP. Snapshot of the unauthorized hacker.php

along with the altered hosts file is shown in Fig.1.

IV. EVIDENCES FOR INVESTIGATION OF DNS

EXPLOITATION

Digital investigation is the process of extraction and

correlation of digital evidences suitable for inclusion into

criminal investigation. [17] Evidence have been extracted

from the attacked system and observed that relevant

evidence to investigate the developed attack scenario

have exist on Windows registry, log files, file time-stamp

and running processes on server.

A. Hosts file

Host file is responsible to carry out DNS resolution by

binding the IP address to the domain name. Normally it is

created at the time of OS installation. It may be altered by

running applications in the administrative privilege mode.

Web administrator may check the alteration through

manual analysis. Modification time stamp of hosts file is

the digital evidence to detect alteration in the hosts file.

B. Registry Entry

Registry-entry of windows operating system plays a

vital role as evidence for forensic investigation.

Operating system maintains the registry entry for each

file modification [18]. For instance; every time that the

user chooses a filename in a standard open/save dialog-

box of Windows, a new registry entry is added under the

following key on Windows 7 or Windows-8:

C. File Modification Time Stamp

Modification date and time would be vital parameters

to detect alteration in the host file. The following DOS

command has been executed to detect the modification

time of windows files and saved it into text file.

Where /T - Controls which time field displayed or used

for sorting; time field C used for Creation Time.

D. OS Installation Time Stamp

OS also maintains the installation date and time. DOS

command to find the installation date and time of the

operating system is as follows-

Difference in installation date/time of OS installation

and modification date/time of hosts file describes that

„hosts file‟ has been modified after the installation.

E. Process Activity

Semantic correlation in process activity and its

parameters provides the significant forensic evidence to

detect an attack. „Process Monitor‟ captures all the

running processes of operating system and the registry

entry modified through these processes. It records all the

parameters related to process events. This work required

seven parameters of process which are Date & Time of

process execution, Name of the processes, PID,

Operation Performed, Path, Result and Details.

V. CORRELATION OF EVIDENCES

Further to enhance the investigation process relevant

evidences have been correlated and signature has been

systeminfo | find /i “install date” >> "d:\sys_info.txt"

dir "C:\Windows\System32\drivers\etc" /T:C >>

"d:\mod_tim.txt"

HKEY_CURRENT_USER\Software\Microsoft\Windows\

CurrentVersion\Explorer\ComDlg32\OpenSavePidlMRU

www.server_domain.com/hacker.php

„input_value‟ & echo “<?php

 $handle = fopen($_SESSION['hosts-path'], "a");

 fwrite($handle, "\r\n 192.168.5.55");

 fwrite($handle, "\t www.server_domain.com");

 fclose($handle);

?>” >> hacker.php

„input_value‟ & echo “<?php

 $agent = $_SERVER['HTTP_USER_AGENT'];

 if(preg_match('/Linux/',$agent)) $os = 'Linux';

 elseif(preg_match('/Mac/',$agent)) $os = 'Mac';

 elseif(preg_match('/Win/',$agent))$os = 'Windows';

 ?>” >> os.php

24 DNS Pharming through PHP Injection: Attack Scenario and Investigation

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

developed. Each type of activity has been modeled

through algebraic operations and applied the gathered

evidences.

A. Modeling of OS Process

Basic structure of process event is carefully chosen to

convey the relevant information for investigation. It

defines all variable names in a manner that is suitable to

their behavior. Algebraic operation of the basic structure

for the process is modeled as-

Process Event: Pname × PID × Pv × Tstamp ⟼ Bval

Where-

Pname = Name of application which initiate the event

PID = Identification number of the called process

Pv = Privileges of the user to conduct the event

TSTAMP = Server date and time when event occurred

Bval = Ɍ ⟼ {0, 1};

Fig. 1. Snapshots of DNS Pharming through PHPCI

Bval ={

Events related to reading and writing the operating

system files have modeled as:

Process Read: Pname × Fpath × PNm × Tstamp ⟼ Bval

Process Write: Pname × Fpath × PAd × Tstamp ⟼ Bval

Where-

Fpath = Path of the file has been written

PNm = Normal privileges (Only Read)

PAd = Administrative privileges (Read, Write)

OS records time-stamp into registry entry for each file

altered through read and write events. Event to temper the

registry entry has modeled as-

Process RegEntry: Pname × Rpath × Tstamp ⟼ Bval

Here- Rpath = Path of the tempered registry file

B. Modeling of Web Server Log

This section considers the log entries that monitored by

the web server. Log file at the server provide lots of

information in which source IP, Time Stamp and the link

entered by the end user are considered for forensic

analysis. These links contained the path of file accessed

by the client.

GET: IPs × Url × Tstamp ⟼ Bval

POST: IPs × Url × Tstamp ⟼ Bval

Where-

IPs = IP address of client request the server

Url = Path of the page accessed

C. Signatures Based on Semantic Relation and Time

Synchronization

Semantics is the analysis of behavior and meaning of

activity. It concentrates on the relation among signifier

like events, their occurrence, result of action and their

denotation. Correlation into process event is the best

parameter to detect the anomalous behavior in running

process. Five processes have been correlated and

developed a signature to detect DNS Exploitation through

PHPCI attack.

Attacker first creates the unauthorized web page into

Server through injecting malicious string into input field.

It initiates the web server to execute CLI which is

elucidate as-

Ḙj.create(httpd.exe, PIDc, Pws, dj, tj) ⟼ True (1)

To understand the equation following definition of

notations are required-

Ḙj = Sequence of j
th

 event

PIDc = Process ID of the CLI

Pws = Privileges of web server

dj = Date of j
th

 event occurrence and

tj = Time of j
th

 event occurrence

j = 1, 2, 3....

 DNS Pharming through PHP Injection: Attack Scenario and Investigation 25

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

Here httpd.exe process is associated with apache server

which called to PIDc process with the privileged of server.

In operating system every process event occurred with

the same privileges of application which initiated that

event.

CLI starts the process event to write a new

unauthorized file into web server at the path of vulnerable

web page which is elucidated in (2).

Ḙj.write(cmd.exe, Fpathw, Pws, dj, tj) ⟼ True (2)

Here Pname is cmd.exe defines that event is occurred by

the CLI. Fpathw is the path of vulnerable web page.

Attacker access the unauthorized web page which is

recorded by the web access log and its algebraic equation

is modeled as-

Ḙj.GET(IPsj, Lup, dj, ti,) ⟼ True (3)

Unauthorized web page starts the process event to

write into „hosts file‟ with administrative privileges.

Ḙj.write(httpd.exe, Fpathh, PAd, dj, tj) ⟼ True (4)

Here- Fpathh = Path of hosts file

Operating system also edits the registry value for the

registry entry of „hosts file‟.

Ḙj.RegEntry(Pname, RPh, dj, tj) ⟼ True (5)

Table 1. Time stamp of used machines

Sr. No. Host Machine Installed Operating System OS Installation Time Stamp ‘hosts file’ Time Stamp

1. DIVINE-HP Microsoft Server-2003 27/07/2013, 17:32:02 PM 19/11/2013, 01:03:07 PM

2. GH-PC Microsoft Windows 7 Professional 06/04/2013, 07:06:44 PM 06/11/2009, 03:09:00 AM

3. FAHIM Microsoft Windows XP

Professional
01/01/2002, 01:12:45 AM 04/06/2011, 03:24:00 AM

4. PC-HP Microsoft Windows 7 Professional 28/12/2012, 11:36:26 PM 06/02/2013, 12:18:00 PM

5. MANISH Microsoft Windows 8 Enterprise 11/06/2013, 03:08:17 PM 06/09/2013, 10:06:00 AM

To understand the signatures following definition of

notations are required-

IPsi = IP Address of end user

Lup = Link of unauthorized web page created

PAd = Administrative privileges

RPh = Registry path for the „hosts file‟

This signature is based on the hypothesis that if web

server initiates the process to temper the hosts file, it will

be treated as the attack.

[Ḙ1.create(httpd.exe, PIDc, Pws, d1, t1) . Ḙ2.write(cmd.exe,

Fpathw, Pws, d1, t2). Ḙ3.GET(IPs1, Lup, di, ti,).

Ḙ4.write(httpd.exe, PID2, PAd, di+1, ti+1) .

Ḙ5.RegEntry(Pname, RPh, di+2, ti+2)] ⟼ True (6)

VI. RESULT DISCUSSION

In this work, evidences subjected to PHPCI attack such

as content of windows registry, process behavior and time

stamp of files are identified and extracted successfully.

Firstly, two evidences have been extracted to notify the

alteration in ‟hosts file‟. First evidence is the registry

entry for hosts file. PHPCI alters the content of windows

host file. It is clearly visible from the captured evidences

that before alteration registry contains only four entries

and after altering the hosts file, entry has increased by

one which is pointing and shown in Fig. 2 and Fig. 3

respectively.

Second evidence to notify the alteration is the

difference between current time stamp of hosts file and

time stamp of hosts file at the time of OS installation. The

gathered temporal evidences for five different machines

are represented in table 1. These two evidences represent

the alteration in host file but did not clarify the intention

of alteration that it had been altered malevolently or

benevolently. The registry entry and file temporal

evidences may not be relevant in some cases such as the

host file has been modified to redirect the load on second

server.

Further semantic correlation of evidences has been

done to detect the intention of hosts file alteration. To

make the investigation more effective, the processes

running on the server during attack have been captured

and their behavior has observed for suspicious activity.

Going further this file has prepossessed and relevant

entries such as processes associated with web server and

CLI have retrieved. From the preprocessed processes,

investigator yields evidences which are pointed with A, B,

C & D in Fig. 4. Here, httpd.exe and cmd.exe have

associated with apache http server and CLI respectively.

PID is a unique process identification number assigned

instantaneously to each running process.

Fig. 2. Windows registry entries before editing hosts file

26 DNS Pharming through PHP Injection: Attack Scenario and Investigation

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

Fig. 3. Windows registry entry after editing hosts file

For this instance OS assigns 3072 PID to httpd.exe and

2460 PID to CLI as pointed with A and B respectively.

Integrate these evidences in (1) returns true result.

Ḙ1.create(httpd.exe, 2460, Pws, 19/11/13, 01:02:44 PM)

⟼ True

Entry pointed as B depicts that command-line writes a

new unauthorized web page say „hacker.php‟ at the

location „\Command Injection\‟. It illustrate that (2)

become true.

Ḙ2.write(cmd.exe, C:\wamp\www\CommandInjection\

hacker.php, Pws, 19/11/13, 01:02:44 PM) ⟼ True

Whenever attacker access hacker.php to tempers the

hosts file, this activity has been logged into access server

log file, which is depicted in Fig. 6. Put values into (3)-

Ḙ3.GET(192.168.5.55, /Command

Injection/hacker.php, 19/11/13, 01:03:07 PM) ⟼ True

Process of web server writes into hosts file also be

captured and pointed as C in Fig. 4. According to these

values, (4) becomes true.

Ḙ4.write(httpd.exe, C:\Windows\System32\drivers\etc\

hosts, Pws,19/11/13, 01:03:07 PM) ⟼ True

Fig. 4. Relevant Process Activities

Fig. 5. Evidence into server‟s access log file

System generates a process to edit the registry entry

value related to hosts file. This process is captured and

pointed as D in Fig. 4. Developed signature detects this

process through (5) and generates true result.

Ḙ5.RegEntry(system,HKEY_CURRENT_USER\Softw

are\Microsoft\Windows\CurrentVersion\Explorer\Com

Dlg32\ OpenSavePidlMRU, Pws, 19/11/13, 01:03:07 PM)

⟼ True

 DNS Pharming through PHP Injection: Attack Scenario and Investigation 27

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

According to these evidences result of all five

equations are true which generates true result for attack

signature represented into (6).

Ḙ1.create(httpd.exe, 2460, Pws, 19/11/13, 01:02:44

PM) . Ḙ2.write (cmd.exe, C:\wamp\www\Command

Injection \hacker.php, Pws, 19/11/13, 01:02:44 PM) .

Ḙ3.GET(192.168.5.55, /Command Injection/hacker.php,

19/11/13, 01:03:07 PM). Ḙ4.write (httpd.exe,

C:\Windows\System32\drivers\etc\hosts, Pws, 19/11/13,

01:03:07 PM). Ḙ5.RegEntry (system,

HKEY_CURRENT_USER\Software\Microsoft\Window

s\CurrentVersion\Explorer\ComDlg32\OpenSavePidlM

RU, Pws, 19/11/13, 01:03:07 PM) ⟼ True

Proposition P1 be a initiation of CLI through web

server, P2 be a command execution to write a new

unauthorized file into web server, P3 be a calling of

unauthorized web page, P4 be a process to write into host

file which is initiated by web server with administrative

privileges and P5 be change in registry entry of hosts file;

as discussed in (1), (2), (3), (4) and (5). These events

occurred sequentially. Than the attack would be detected

by the validity of argument-

(P1 ˄ P2 ˄ P3 ˄ P4 ˄ P5) ⟷ Q, q ├ q

P1; P2; P3; P4 and P5 produce the total 64 combinations

for q is false and true. In which (P1^P2^P3^P4^P5) ⟷ q is

true in 32 conditions. Therefore both (P1 ^ P2 ^ P3 ^ P4 ^

P5) ⟷ q and q are true in only one condition when P1; P2;

P3; P4 and P5 all are also true. This shows that the given

argument is valid and attack is detected. The pseudo code

of developed signature to detect DNS pharming is-

Figure 6 depicts the Control Flow Graph (CFG)

corresponding to the flow control of detection process.

Fig. 6. CFG for developed signature

According to captured evidences in this work all values

of preposition P1; P2; P3; P4 and P5 are true and attack is

detected successfully. These signatures also may be

effective in honey pot, cyber forensic tools, IDS systems,

antivirus program and firewall to detect this attack.

VII. CONCLUSION AND FUTURE SCOPE

The field of cyber forensics has developed (and still in

development) as one of the most dynamic and powerful

investigative techniques in use on the cutting edge of

research. Script kiddies and investigators have been

running an endless battle.

In this work, an investigation has been carried out to

detect DNS pharming attack through „hosts file‟

securitization. Firstly an attack scenario of DNS

Pharming through PHP code injection attack has been

developed. Secondly, common source of evidences

subjected to developed attack scenario have been

identified successfully. These evidences have been

correlated to build the chain of evidences which provide

ease of tracking down cause of incident and depict a

complete scene. Moreover, for fast incidence matching,

an algebraic signature has been developed from

identifying chain of evidences.

Finally developed algebraic signature has been verified

through successfully applying the gathered evidences.

Deduced that developed algebraic signature helps to

improve attack investigation process of Intrusion

Detection System, Honey Pots or Anti-virus Programs.

One of the benefits of developed algebraic signature is

that it provides smooth evidence tracking from chain of

evidence and also pointed out cause of vulnerability

One of the limitations of signature based detection is

that it cannot detect unknown vulnerabilities. As code

injection vulnerability is growing exponentially, the

number of signatures for code injection also increases

alarmingly. To handle this problem in future, the focus

will be to develop the detection strategy for more

signatures.

 Start

P1. GET: httpd.exe

 Ifexist(hacker.php)

 Goto P4

P2. System(cmd.exe)

P2.1 If(„string1‟)

 System(ping.exe)

 Execute „string 1‟

 Display

P3. if(„string2‟)

 Execute „string 2‟

 write(cmd.exe, hacker.php, Pws, dj, tj);

 Goto P1

 Else END

P4. Write (cmd.exe, hosts, Pws, dj, tj);

P5. RegEntry(Pname, RPh, dj, tj);

Finish

28 DNS Pharming through PHP Injection: Attack Scenario and Investigation

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 4, 21-28

REFERENCES

[1] W3Techs, “Usage of server-side programming languages

for websites”, [Online]. Available:

http://w3techs.com/technologies/overview/programming

language/all [Accessed: 10 August 2014].

[2] R. Bassil, R. Hobeica, W. Itani, C. Ghali, A. Kayssi, A.

Chehab, “Security analysis and solution for thwarting

cache poisoning attack in the domain name system”, in

19th Int. Conf. on Telicommunication (ICT), pp. 1-6, IEEE,

Jounieh (2012), DOI:10.1109/ICTEL.2012.6221233

[3] Yu Xi, Chen Xiaochen, Xu Fangqin, “Recovering and

protecting against DNS cache poisoning attacks”, in Intl.

Conf. of Information Technology (ICIT), Computer

Engineering and Management Sciences, IEEE Computer

Society, pp. 120-123. Nanjing, Jiangsu(Sept., 2011),

DOI:10.1109/ICM.2011.266.

[4] T. Mantoro, S. A. Norhanipah, A. F. Bidin, “An

Implementation on Domain Name System Security

Extensions Framework for the Support of IPv6

Environment”, in Int. Conf. on Multimedia Computing

and Systems (ICMCS), pp. 1-6. IEEE, Ouarzazate (April,

2011) DOI: 10.1109/ICMCS.2011.5945627.

[5] M. Janbeglou, M. Zamani and S. Ibrahim, “Redirecting

outgoing requests toward a fake DNS server in a LAN”, in

IEEE Int. Conf. on Software Engineering and Service

Sciences (ICSESS), pp. 29-32. Beijing (July-2010) DOI:

10.1109/ICSESS.2010.5552339.

[6] Dr. Wenliang, “DNS Pharming Attack Lab”, [Online].

Available: http://www.cis.syr.edu/

wedu/seed/Labs/Attacks DNS/DNS.pdf [Accessed: 19

September 2013].

[7] OWASP: “OWASP top 10-2013 the ten most critical web

application security risks June 2013” [Online]. Available:

https://www.owasp.org/index.php/Top 10 2013-Top 10

[Accessed: 1 July 2013].

[8] Dr. E. Benoist, “Injection Flows (part 2) Shell Injection,

PHP Injection, XML Injection, 2013 [Online] Available:

www.benoist.ch/SoftSec/slides/injectionFlows/slidesInject

ionFlows2.pdf [Accessed: 17 August 2013].

[9] Arthur Gerkis, “Obvious and not so obvious PHP code

injection and evaluation” 20th May-2010, [Online].

Available: http://phpsecurity.org/2010/05/20/mops-

submission-07-our-dynamic-php/ [Accessed: 11th August

2013].

[10] Avi Kak, “Lecture 27: Web Security: PHP Exploits and

the SQL Injection Attack”, April-2013, [Online].

Available:https://engineering.purdue.edu/kak/compsec/Ne

wLectures/Lecture27.pdf [Accessed: 17 August 2013].

[11] Ioannis Papagiannis, Matteo Migliavacca, Peter Pietzuch,

“PHP Aspis: Using partial taint tracking to protect against

injection attacks” in Proc. of 2nd USENIX Conf. on web

application development, pp. 13-24. USA (June, 2011).

[12] Bruce J. Nikkel, “Domain name forensics: a systematic

approach to investigating an internet presence”‟ in Int. J.

of Digital Forensics & Incident Response-Elsevier, vol: 1,

pp. 247-255 (2004).

[13] Lan Green, “DNS spoofing by the man in the middle

SANS Institute”, January-2005 [Online]. Available:

http://www.sans.org/readingroom/whitepapers/dns/dns-

spoofing-man-middle-1567 [Accessed: 28 July 2013].

[14] Chet Hosmer, “Time lining computer evidence”, [Online].

Available: http://www.wetstonetech.com/f/timelining.pdf

[Accessed: May 25, 2013].

[15] Ali Reza Arasteh, Mourad Debbabi, Assaad Sakha,

Mohamed Saleh, “Analyzing multiple logs for forensic

evidence” in Int. J. of Digital Forensics & Incident

Response- Elsevier, Vol: 4, pp. 82-91, (September-2007)

DOI:10.1016/j.diin.2007.06.013.

[16] Dr. Eric Cole, “Constructing Attack Scenarios for

Attacker Profiling and Identification”, [Online].

Available:http://www.securityhaven.com/docs/Constructi

ngAttackScenariosforAttackerProfilingandIdentificationv

6.pdf [Accessed: 30 June 2013].

[17] K. K. Sindhu and Dr. B. B. Meshram, “Digital Forensic

Investigation Tools and Procedures”, in inter. J. Computer

Network and Information Security, Vol: 4, Issue: 4, pp.

39-48 (2012).

[18] Brendan Dolan-Gavitt, “Forensic analysis of the Windows

registry in memory”, in Int. J. of Digital Forensics &

Incident Response- Elsevier, vol: 5, pp. S26-S32 (2008).

Authors’ Profiles

Divya Rishi Sahu is currently pursuing

his Ph. D. in CSE department from

Maulana Azad National Institute of

Technology (MANIT), Bhopal, India.

He obtained B. E. (Information

Technology) from IGEC, Sagar and M

Tech (Information Security) from

MANIT, Bhopal. He has published more

than 10 research papers.

Dr. Deepak Singh Tomar obtained his

B. E., M. Tech. and Ph. D. degrees in

CSE department. He is currently

Assistant Professor of CSE department at

NIT-Bhopal, India. He is co-investigator

of Information Security Education

Awareness (ISEA) project under Govt.

of India. He has more than 19 years of

teaching experience. He has guided 24 M

Tech and 2 PhD Thesis. Besides this he guided 70 B Tech and

15 MCA projects. He has published more than 44 papers in

national & international journals and conferences. He is holding

positions in many world renowned professional bodies. His

present research interests include web mining and cyber security.

How to cite this paper: Divya Rishi Sahu, Deepak Singh Tomar,"DNS Pharming through PHP Injection: Attack

Scenario and Investigation", IJCNIS, vol.7, no.4, pp.21-28, 2015.DOI: 10.5815/ijcnis.2015.04.03

