
I. J. Computer Network and Information Security, 2015, 10, 70-77 
Published Online September 2015 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2015.10.08 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 70-77 

CUDA based Rabin-Karp Pattern Matching for 

Deep Packet Inspection on a Multicore GPU 
 

Jyotsna Sharma and Maninder Singh 
Computer Science & Engineering Department Thapar University Patiala, INDIA 

Email: {jyotsana.sharma,msingh}@thapar.edu 

 

 

Abstract—This paper presents a study of the 

improvement in efficiency of the Rabin-Karp pattern-

matching algorithm based Deep Packet Inspection. 

NVIDIA GPU is programmed with the NVIDIA's general 

purpose parallel computing architecture, CUDA, that 

leverages the parallel compute engine in NVIDIA GPUs 

to solve many complex computational problems in a 

more efficient way than on a CPU. The proposed CUDA 

based implementation on a multicore GPU outperforms 

the Intel quadcore processor and runs upto 14 times faster 

by executing the algorithm in parallel to search for the 

pattern from the text. The speedup may not sound 

exorbitant but nonetheless is significant, keeping in view 

that the experiments have been conducted on real data 

and not synthetic data and, optimal performance even 

with the huge increase in traffic was the main expectation, 

not just an improvement in speed with few test cases. 

 

Index Terms—CUDA, Deep Packet Inspection, Intrusion 

Detection, GPGPU, Network Forensics, Rabin Karp 

Pattern Matching 

 

I.  INTRODUCTION 

The Graphics Processing Unit (GPU) which was 

primarily associated with processing graphics is rapidly 

evolving towards a more flexible architecture which has 

encouraged research and development in several 

computationally demanding non graphic applications 

where its capability can be utilized for computations that 

can leverage parallel execution [1]. General-Purpose 

Computing on GPU (GPGPU), also known as GPU 

Computing exploits the capabilities of a GPU using APIs 

such as OpenCL and the Compute Unified Device 

Architecture (CUDA) [2]. The opportunity is that we can 

implement any algorithm, not only graphics, but the 

challenge is to obtain efficiency and high performance in 

the field where they replace or support the traditional 

CPU computing.  

A good candidate for such GPGPU is Deep Packet 

Inspection (DPI), the technology, where the appliance has 

the mechanism to look within the application payload of 

the traffic by inspecting every byte of every packet, and 

detect intrusions which are more difficult to detect as 

compared to the simple network attacks [3]. The 

computational and storage demand for such inspection 

and analysis is quite high. An NIDS spends 75% of the 

overall processing time of each packet in pattern 

matching [4]. Under high load conditions, high 

processing abilities are needed to process the captured 

traffic. A vast majority of earlier research focuses on 

specialized hardware for the the compute intensive Deep 

Packet Inspection [5]. Application Specific Integrated 

Circuits (ASICs) [6], Field Programmable Group 

Arrays(FPGAs) [7] and network processor units(NPUs) 

[8] provide for fast discrimination of content within 

packets while also allowing for data classification. 

Engaging special hardware translates to higher costs as 

the data and processing requirements for even medium 

size networks soon increase exponentially. Some 

researchers have discussed an interesting entropy based 

technique for fine-grained traffic analysis [9] [10]. 

Jeyanthi et al. presented an enhanced approach to this  

behavior-based detection mechanism, the “Enhanced 

Entropy” approach, by deploying trust credits to detect 

and outwit attackers at an early stage. The approaches 

seem good but call for methods like bi-directional 

measurements for best performance they which impose 

additional computing overhead [11]. 

The task of pattern-matching for DPI can be performed 

at a much more reasonable cost as GPUs, being a 

necessary component of most computers these days, are 

now readily and easily available  The task is split into 

parallel segments resulting in searching the string much 

faster than a CPU.  

There are several pattern-matching algorithms for DPI, 

Aho-Corasick and Boyer-Moore being the most popular 

[12][13]. In this paper the Rabin Karp algorithm [30] has 

been selected from over these and several other popular 

algorithms because it involves sequential accesses to the 

memory in order to locate all the appearances of a pattern 

and is based on a compute-intensive rolling hash 

calculations. The algorithm has delivered good 

performance and efficiency when executed on a multicore 

GPU(in this study, the Nvidia GeForce 635M). 

 

II.  CONCEPTS 

A.  GPGPU 

A GPU, capable of running thousands of lightweight 

threads in parallel, is designed for intensive, highly 

parallel computation, exactly for graphic rendering 

purposes. Current-generation GPUs, designed to act as 

high performance stream-processors derive their 

performance from parallelism at both the data and 
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instruction-level. In GPU's architecture much more 

transistors are devoted to data processing and less to data 

caching[14]. 

Traditionally, GPUs have been designed to perform 

very specific type of calculations on textures and 

primitive geometric objects, and it was very difficult to 

perform non-graphical operations on them. One of the 

first successful implementation of parallel processing on 

GPU using non-graphical data was registered in 2003 

after the appearance of shaders [15]. Latest generations of 

graphics cards incorporate new generations of GPUs, 

which are designed to perform both graphical and non-

graphical operations. One of the pioneers in this area is 

NVIDIA[16] which rules the market with its parallel 

computing platform and API model, CUDA (Compute 

Unified Device Architecture) [17], gradually taking over 

its major competitor, AMD. Others also have their own 

programmable interfaces for their technologies: the 

vendor neutral open-source, OpenCL which gives a major 

competition to CUDA, AMD ATI Stream, HMPP, 

RapidMind and PGI Accelerator [18].  

B.  NVIDIA GPUs 

NVIDIA's GPU offered the opportunity to utilize the 

GPU for GPGPU(General Purpose computing on 

Graphics Processing Unit). In 2001, NVIDIA GeForce 3 

exposed the application developer to the internal 

instruction set of the floating point vertex engine(VS & 

T/L stage). Later GPUs extended general 

programmability and floating-point capability to the pixel 

shader stages and exploited data independence. With the 

introduction of the GeForce 8 series, GPUs became a 

more generalized computing device. The unified shader 

architecture introduced in the series was advanced further 

in the Tesla microarchitecture backed GeForce 200 series 

which offered double precision support for use in 

GPGPU applications. The successor GPU 

microarchitectures viz. Fermi[19] for the GeForce 400 

and GeForce 500 series , then Kepler [20] GeForce 600 

and GeForce 700 and subsequently Maxwell [21] 

GeForce 800 and GeForce 900 series , have dramatically 

improved performance as well as energy efficiency over 

the previous ones . Very recently NVIDIA announced 

major architectural improvements such as unified 

memory so that the CPU and GPU can both access both 

main system memory and memory on the graphics card, 

in its yet to be released Pascal architecture[22]. The new 

GPU generation also boasts of a feature called NVLink 

which would allow data between the CPU and GPU to 

flow at 80 GB per second ,compared to the 16GB per 

second available presently. 

C.  CUDA  

There are a variety of GPU programming models, the 

popular ones being the the open source OpenCL[23] , the 

BSD licensed BrookGPU[24] which is free and 

CUDA[25] ,the Nvidia's proprietary framework. 

CUDA(Compute Unified Device Architecture) is 

supported well by Nvidia hence it has become the most 

popular of all. It has features like highly optimized data 

transfers to and from the GPU and efficient management 

of the GPU shared memory. The parallel throughput 

architecture of CUDA can be leveraged by the software 

developers through parallel computing extensions to 

many popular high level languages , such as ,C, C++, and 

FORTRAN, CUDA accelerated compute libraries, and 

compiler directives. Support for Java, Python, Perl, 

Haskell, .NET, Ruby and other languages is also 

available. 

The CUDA programming model is a C-like language 

where the CUDA threads execute on a the device(GPU) 

which operates as a coprocessor to the the host(CPU). 

The GPU and CPU program code exist in the same 

source file with the GPU kernel code indicated by the 

_global_ qualifier in the function declaration. The host 

program launches the sequence of kernels. A kernel is 

organized as a hierarchy of threads. Threads are grouped 

into blocks, and blocks are grouped into a grid. Each 

thread has a unique local index in its block, and each 

block has a unique index in the grid, which can 

be used by the kernel to compute array subscripts. 

Threads in a single block will be executed on a single 

multiprocessor, sharing the software data cache, and can 

synchronize and share data with threads in the same block; 

a warp will always be a subset of threads from a single 

block. Threads in different blocks may be assigned to 

different multiprocessors concurrently, to the same 

multiprocessor concurrently (using multithreading), or 

may be assigned to the same or different multiprocessors 

at different times, depending on how the blocks are 

scheduled dynamically. There is a physical limit on the 

size of a thread block for a GPU determined by its 

compute capability. In this work, for the compute 

capability 2.1 GPU, it is 1536 threads or 32 warps. 

 

 

Fig. 1. CUDA Programming Model (Source: www.nvidia.com) 

The CUDA programming model assumes that the host 

and the device maintain their own separate memory 

spaces. The CUDA program manages the device memory 

allocation and de-allocation as well as the data transfer 

between host and device memory[25]. CUDA devices 

provide access to several memory architectures, such as 

global memory, constant memory, texture memory, share 

memory and registers, with their certain performance 

characteristics and limitations. Fig.2 illustrates the memory 

architecture of CUDA device, specifically the Nvidia 

GT635M.
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Example of CUDA processing flow 

 
 Copy data from host memory to device memory 
 CPU instructs the process to GPU 
 GPU execute parallel code in each core 
 Copy the result from device memory to host 

memory 

 

The appropriate use of the read-only constant and 

texture memory can improve performance and reduce 

memory traffic when reads have certain access patterns.  
 

 

Fig. 2. Memory Architecture of NVIDIA GT635M  

 

III.  PATTERN MATCHING BASED DPI ON GPU 

A.  Signature Based DPI 

Signature-matching or Pattern-matching intrusion 

detection systems have a major I/O bound performance 

limitations caused by the overhead of reading packets 

from the network interface card. Packet reading becomes 

a bottleneck when the number of packets overwhelms the 

IDS host‟s internal packet buffers[38]. The solution to 

this problem in our approach is to capture the network 

traffic using an open source packet capturing software. 

The packet capture file is the input to the CUDA 

application, The CUDA program rabinkarpGpu.cu 

implements the rabin-karp pattern-matching algorithm on 

the GPU.  

B.  Pattern-Matching Algorithms 

The literature review of related works suggests that 

there are two types of algorithms which have been 

proposed and utilized for pattern-matching, single pattern 

matching and multiple pattern-matching. 

The most efficient algorithm for matching a single 

pattern against an input was proposed by Boyer and 

Moore[13]. The Boyer-Moore algorithm is based on 

skipping heuristics, therefore when the suffix of the 

pattern appears infrequently in the Text string, the 

execution time can be sub-linear. Naive or brute force is 

the most straightforward algorithm for string matching. It 

simply attempts to match the pattern in the target at 

successive positions from left to right by using a window 

of size m. In case of success in matching an element of 

the pattern, the next element is tested against the text 

until a mismatch or a complete match occurs. After each 

unsuccessful attempt, the window is shifted by exactly 

one position to the right, and the same procedure is 

repeated until the end of the text is reached. Knuth-

Morris-Pratt [27] is similar to the Naive since it uses a 

window of size m to search for the occurrences of the 

pattern in the text but after a mismatch occurs it uses a 

precomputed array to shift several positions to the right. 

Multiple-pattern matching scales much better than the 

single pattern matching. Aho-Corasick(AC) [12],Wu 

Manber (WM) [28] and AC-BM [29] are the classical 

multiple-pattern matching algorithms. The AC algorithm 

has good linear performance, making it suitable for 

searching a large set of signatures. The AC algorithm and 

its extensions are ideal for regular expression matching, 

but they are not optimal for fixed pattern matching like 

worm scanning because of its large number of states and 

frequent I/O operations. WM algorithm is a very efficient 

multi-pattern matching algorithm, which implements 

multi-pattern matching using bad character block transfer 

mechanism and search the pattern with the hash function. 

AC-BM combines the AC and BM algorithms. Instead of 

using the suffix of patterns as in AC, it uses the prefix. It 

uses the BM technique of bad character shift and the 

good prefix shift. We have examined another multiple-

pattern matching algorithm, the Rabin-Karp 

algorithm[30]. The algorithm is as follows : 

 

Algorithm 1: Rabin Karp Algorithm  

(Serial Implementation for CPU) 

 
matches = {} 

  pattern_hash = hash(pattern) 
substring_hash = hash(s[0 : m]) 

 
 for position from 0 to n - m - 1 do  
  update substring_hash to hash(s[position : 
 position + m]) 
  if substring_hash = pattern_hash then 

  add position to matches  
 
 return matches 

 

 

The key to Rabin-Karp is to incrementally update the 

hash as the potential match moves along the string to be 

searched. The hash function uses a prime q, whose value 

should be chosen such that 256q is no larger than a 
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computer word which makes the algorithm truly efficient. 

Exhibit 1 describes the checksum(hash) function as given 

in [30].  

 

Exhibit 1: Checksum function 

 

A binary string  

1 2... nX x x x=
 

can be regarded as a binary representation of the integer 
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For any integer q, the following is the hash function. 

mod( ) ( )q qH X H X=
                    (2) 

 

 

Karp et al. devised a theorem for parallel pattern-

matching. They suggested that the computation of the 

hashes for the substrings and their comparisons with the 

hash of the text string can be done in parallel using 

multiple processors in,constant time. This motivated us to 

experiment with the algorithm on a multicore GPU.  

 

( )

Theorem 12 [30] : 

The string-matching problem for a pattern of length and a

text of length ,  where we find all matches, can be 

solved by  processors in time 1  with probability of 

error sma le
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Given a text string s of length n, and a pattern of length 

m, the algorithm computes rolling hash(checksum) for 

both the pattern and consecutive substrings of length m of 

the searched string. Every time a substring‟s hash equals 

that of the pattern, a match is reported. Fig.3 illustrates 

the idea behind the Rabin-Karp algorithm. The rows with 

a red checkmark indicate the situations where the hash for 

the pattern and the text match. The algorithm can find 

any of a large number, say k, fixed length patterns in a 

text. 
 

 

Fig. 3. Rabin-Karp algorithm 

C.  Pattern-matching with Rabin Karp on GPU 

The CUDA framework has been used to develop and 

execute the algorithm on the GPU. The WinPcap library 

has been used for capturing the network traffic. The 

experiments that have been conducted on random as well 

as real traffic indicate that the proposed algorithm is upto 

14X times faster than the Rabin Karp algorithm being 

executed on a CPU for the pattern search.  

The host computer issues a kernel for the pattern-

match to the GPU, which is executed on the device as 

several threads organized in thread blocks. One or more 

thread blocks, organized as warps are executed by each 

multiprocessor.  

 

 

Fig. 4. Architecture of the proposed system 

The implementation is listed in a step-by-step manner 

in Exhibit 2.  

 

Exhibit 2: DPI on the GPU 

Step 1:Network Traffic Capture on the Host(CPU) 

Tool: The open source protocol analyzer 

Wireshark [31] (known as Ethereal till 2006), or 

the classic old sniffer,Tcpdump [32], whose GUI 

is not as good as Wireshark but it requires fewer 

resources and also has fewer security holes. Both 

tools rely on the packet sniffing libraries, 

WinPcap and Libpcap[32]. 

Step 2:Transfer of packets(Text) to the Device(GPU), 

through a covert channel  

Step 3: Copy patterns from the host to the shared 

memory 

 (cudaMemcpyAsync() is used as it is non-

blocking to the host,so control immediately 

returns to the host thread.) 

Step 4: Considering each thread in a block responsible for 

one test pattern, load a chunk of text into device 

memory, with each thread doing one test pattern  

Step 5: Loop through the chunk of text looking for 

matches 
Step 6: Once pattern-matching completed with the loaded 

chunk, load in the next chunk of text and 

repeat 
Step 7: When end of file, store matches in a global 

array 

 

The pseudocode for the parallel implementation of the 

Rabin-Karp Algorithm for the GPU is as follows:
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Pseudocode 1: Rabin Karp Algorithm for GPU 

(rabinkarpGpu.cu) 

 

{P is the set of all fixed-string patterns 

   (string patterns of Snort V2.8)} 

{T is the input string elements} 

{q is the prime} 

 

Phase 1: Data Loading (by the host) 

1.Host Loads the patterns from the dictionary in P 

2.Reads-in the PCAP file(s) for the Text and loads a 

packet at a time in T 

3.Set the value of the prime number for computation 

4.Host program calls the Rabin-Karp pattern-matching 

GPU Kernel with the parameters P,T and q 

 

Phase 2:Pattern-matching (in the kernel) 

1.GPU kernel calculates the hash(checksum) value of 

the pattern and the first substring of text(of length m) 

2.Slide the pattern over text one by one  

3.Checks the hash values of the substring (current 

window of text) and pattern 

4.If the hash values match then only check for 

characters one by one, 

If text and pattern match character by character then 

add position to matches 

5.Calculate hash value for next substring and repeat 

from step 4 

6. Return matches to the host 

 

 

IV.  EXPERIMENTAL EVALUATION 

A.  Experiment Results 

The proposed algorithm is executed on a commodity 

graphics card equipped with the programmable NVIDIA 

GeForce GT 635M having equipped with 144 CUDA 

cores and a Graphics Clock upto 675 MHz which means 

it has high parallel computation power to perform the 

task of multiple pattern-matching in parallel thereby 

delivering a significant speedup as compared to the 

regular scenario where the intrusion detection is 

performed on a CPU. The GPU uses a unified clock 

instead of a shader clock which leads to higher efficiency. 

Table 1. compares the execution time of the serial 

implementation on a quadcore Intel CPU with the parallel 

implementation of the Rabin-Karp pattern-matching 

algorithm on a multicore GPU with an without code 

optimization techniques. We observe that there is a good 

speedup gained with the optimized implementation on the 

GPU as compared to its serial implementation as shown 

in Fig.5. The average speedup observed for the optimized 

code GPU implementation is 12X. The best case speedup 

observed is 14X. The filesize of the .pcap file, the packet 

capture file is a significant factor. The performance 

continues to demonstrate a good speedup but for very 

large sizes, it begins to plateau, because of latency and 

memory throughput. Fig. 6 shows the GPU performance 

results for different packet capture file sizes.  

Table 1. Execution-Time Comparison(CPU and GPU)  

Filesize  

(Packet 

capture file) 

Quadcore 

CPU 

Nvidia GPU 

(UnOptimized) 

Nvidia GPU 

(Optimized) 

85MB 197.6ms 75.8ms 21.2ms 

124MB 298.4ms 98.0ms 32.4ms 

238MB 413.3ms 121.0ms 39.2ms 

434MB 563.8ms 167.5ms 43.9ms 

528MB 899.9ms 234.5ms 61.4ms 

776MB 984.9ms 266.0ms 70.3ms 

876MB 1197ms 354.6ms 84.3ms 

 

 

Fig. 5. Performance Results on CPU and GPU(NVIDIA) 

 

Fig. 6. Speed Improvement on GPU(Nvidia) 

B.  Code Optimization  

The on-chip shared memory available for each 

multiprocessor is a great feature for writing a well 

optimized CUDA code. The shared memory is a small 

high bandwidth memory which is private to the threads in 

a block. The shared memory latency is 100x lower than 

the global memory latency. Storing frequently reused 

data to the shared memory can deliver substantial 

performance improvements [33], therefore the pattern and 

the hash table are stored in the shared memory to deliver 

the maximum performance. The data transfers between 
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the CPU and GPU are done using the asynchronous 

variants for copying data (cudaMemcpyAsync()), which 

immediately return control to the host. 

 

V.  RELATED WORK 

A lot of research efforts for the efficient use of GPU 

for improving its performance for the pattern-matching, 

with a specific focus on decreasing the high processing 

time, have been studied in this work. Smith et al. 

examined the viability of SIMD-based architectures for 

signature-matching and presented a detailed architectural 

analysis [33]. Several researchers have experimented with 

various algorithms and techniques to leverage the 

abilities of the GPU in the field of intrusion detection 

[34][35]. Cascarano et al. addressed the state space issues 

of the traditional DFA based approaches and presented a 

NFA(non-deterministic automata) based regular 

expression engine for large and complex rule sets [36]. 

Vasiliadis et al. ported the open source IDS, Snort to a 

GPU, Gnort which has since been extended and 

improvised by several researchers to gain higher speed 

improvements [37]. Jacob et. al. also offloaded the 

packet-processing task of SNORT to the GPU; PixelSnort 

was programmed with the complex high level shading 

language Cg [38]. Tumeo et al. implemented the Aho-

Corasick pattern-matching algorithm on a GPU [39].  

Chung et al. proposed a GPGPU based parallel packet 

classification method to decrease the huge computing 

time to filter large number of packets[40]. Efforts in this 

research work aim to address the performance issues 

studied in the related endeavours. 

One of the most common CUDA-optimization 

strategies is Memory Coalescing [41], which maximizes 

the global memory bandwidth usage ,by reducing the 

number of bus transactions, threads with adjacent global 

indexes in a block are forced to request contiguous 

data(packets) from global memory. A perfectly coalesced 

pattern greatly improves throughput.  GPUS have 

multilevel set associative caches, which gives rise to the 

need for careful performance analysis due to the set 

associativity. Gusev and Ristov have notable 

contributions in this direction [42]. Several researchers 

including Fatahalian et al.,  Sim et al. and Ristov et al., to 

name a few, have highlighted the fact that GPU Caches 

affect application performance in a significant manner 

[43][44][45]. Mittal S. presented the classification of 

techniques for managing and leveraging the GPU cache 

[46].  

An unintended application of GPUs is by hackers for 

accelerated password cracking. Olufun et al. in their work 

for developing a security model for WLANS, 

demonstrated the use of a GPU based encryption 

breaking tool, pyrit which cracked a dictionary file much 

faster than a CPU based tool [47].  

 

VI.  CONCLUSION & FUTURE WORK 

In this paper the CUDA Toolkit is used to implement 

the parallel implementation of the Rabin-Karp pattern-

matching algorithm. Both the serial and the parallel 

implementations of the algorithm were compared in 

terms of the execution time for varying network traffic 

sizes. 

The parallel implementation on a multicore GPU of the 

pattern-matching algorithm achieved a speedup of upto 

14X. The performance begins to show a plateau effect 

when the traffic size increases beyond a limit as the GPU 

is limited with its memory, nonetheless the system 

delivers optimal performance at increasing traffic. Peak 

performance has been achieved by removing 

dependencies on the global memory and improving the 

memory coalescing. The Nvidia Profiler [48] and the 

CUDA Occupancy Calculator[49] have been greatly 

helpful in profiling the application and discovering the 

bottlenecks. The satisfactory speedup gains motivates us 

to improve the code further by even more optimization of 

the code in the area of memory management. The 

important considerations in the work have been :  

 

1. Selection of an appropriate candidate for the 

desired results on the GPU is very important. Not 

every serial code implemented on the GPU gives 

better performance. 

2. Conversion of a serial code to the parallel code 

will not result in the desired improvement. 

Implementing proper CUDA code optimization 

results in efficient use of the GPU.  

 

Most of the tools used in the research have been open-

source except for CUDA. Developing and testing the 

application in OpenCL are being considered for future 

work so the entire work becomes open-source. 

To ensure higher speedups even with highly increasing 

traffic size, future work efforts will be to utilize the 

power of grid computing and test the system on a GPU-

grid. 

The results in this paper indicate that definitely DPI 

performed on a GPU yields excellent performance 

especially when the underlying algorithm is carefully 

selected and tuned. 

ACKNOWLEDGMENT 

We would like to express our gratitude to the reviewers 

whose advice contributed to major improvements in the 

paper. Sincere acknowledgment of gratitude is for our 

young children in our respective families for being the 

source of joy and relaxation needed after hours of sitting 

with the laptop and our respective spouses for being 

highly patient and supportive. 

REFERENCES 

[1] Owens, John D., Mike Houston, David Luebke, Simon 

Green, John E. Stone, and James C. Phillips. GPU 

Computing. Proc. IEEE, 2008. vol. 96, no. 5: p. 879 -899.  

[2] “CUDA Parallel Computing Platform”. [Online].Available: 

http://www.nvidia.in/object/cuda_home_new.html. 

[Accessed 27 September 2013].  



76 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 70-77 

[3] AbuHmed, Tamer, Abedelaziz Mohaisen, and DaeHun 

Nyang. Deep packet inspection for intrusion detection 

systems: A survey. Magazine of Korea 

Telecommunication Society, November 2007. vol. 24, No. 

11: p. 25-36.  

[4] Cabrera, Joao BD, Jaykumar Gosar, Wenke Lee, and 

Raman K. Mehra. On the statistical distribution of 

processing times in network intrusion detection. In 43rd 

IEEE Conference on Decision and Control, December 

2004. vol. 1: p. 75–80.  

[5] Rafiq, ANM Ehtesham, M. Watheq El-Kharashi, and 

Fayez Gebali. A fast string search algorithm for deep 

packet classification. Computer Communications, June 

2004. 27(15): p. 1524–1538. 

[6] Tan, Lin, and Timothy Sherwood. Architectures for bit-

split string scanning in intrusion detection. IEEE Micro 1 , 

2006: p. 110-117.  

[7] Dharmapurikar, Sarang, and John W. Lockwood. Fast and 

scalable pattern matching for network intrusion detection 

systems. Selected Areas in Communications, IEEE Journal 

on, 206. 24, no. 10: p. 1781-1792.  

[8] Piyachon, Piti, and Yan Luo. Efficient memory utilization 

on network processors for deep packet inspection. 

Proceedings of the 2006 ACM/IEEE symposium on 

Architecture for networking and communications systems, 

2006: p.71-80. ACM.  

[9] Wagner, Arno, and Bernhard Plattner. Entropy based 

worm and anomaly detection in fast IP networks. In 

Enabling Technologies: Infrastructure for Collaborative 

Enterprise, 2005. 14th IEEE International Workshops on, 

2005.: p. 172-177. IEEE. 

[10] Liu, Ting, Zhiwen Wang, Haijun Wang, and Ke Lu. An 

Entropy-based Method for Attack Detection in Large Scale 

Network. International Journal of Computers 

Communications & Control, 2014. 7, no. 3: p. 509-517.  

[11] Jeyanthi, N., N. Ch SN Iyengar, PC Mogan Kumar, and A. 

Kannammal. An enhanced entropy approach to detect and 

prevent DDoS in cloud environment. International Journal 

of Communication Networks and Information Security 

(IJCNIS) , 2013. 5, no. 2: . 

[12] Aho, Alfred V., and Margaret J. Corasick. Effcient string 

matching: An aid to bibliographic search. Communications 

of the ACM, 1975. 18(6): p. 333–340. 

[13] Boyer, Robert S., and J. Strother Moore. A fast string 

searching algorithm. Communication of ACM, 1977. 

20(10): p. 762-772. 

[14] Zhang, Wu, Zhangxin Chen, Craig C. Douglas, and 

Weiqin Tong, eds. High Performance Computing and 

Applications: Second International Conference, HPCA 

2009, Shanghai, China, Revised Selected Papers. 2010. 

Vol. 5938. Springer. 

[15] "iXBT Labs - Computer Hardware In Detail", [Online]. 

Available: http://ixbtlabs.com/articles3/video/cuda-1-

p1.html. [Accessed 28 September 2013].  

[16] “NVIDIA”, http://www.nvidia.in/page/home.html 

[17] “NVIDIA CUDA Zone”, 

https://developer.nvidia.com/cuda-zone. 

[18] Ghorpade, Jayshree, Jitendra Parande, Madhura Kulkarni, 

and Amit Bawaskar. Gpgpu processing in cuda 

architecture, 2012. arXiv preprint arXiv:1202.4347. 

[19] “NVIDIA‟s Next Generation CUDA Compute 

Architecture: Fermi Architecture”, [Online]. Available: 

http://www.nvidia.in/content/PDF/fermi_white_papers/NV

IDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 

[Accessed 28 July 2013].  

[20] “Whitepaper: NVIDIA GeForce GTX 680”, [Online]. 

Available: 

http://www.geforce.com/Active/en_US/en_US/pdf/GeForc

e-GTX-680-Whitepaper-FINAL.pdf, [Accessed 29 

September 2013].  

[21] "Whitepaper:NVIDIA GeForce GTX 750 Ti", [Online]. 

Available: 

http://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce-GTX-750-Ti-

Whitepaper.pdf, [Accessed 29 September 2013].  

[22] “NVIDIA Updates GPU Roadmap;Announces Pascal”, 

http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-

pascal/ 

[23] Stone, John E., David Gohara, and Guochun Shi. 

"OpenCL: A parallel programming standard for 

heterogeneous computing systems. Computing in science 

& engineering, 2010. 12, no. 1-3: p. 66-73.  

[24] Buck, I., T. Foley, D. Horn, J. Sugerman, P. Hanrahan, M. 

Houston, and K. Fatahalian. BrookGPU, 2003. 

http://graphics.stanford.edu/projects/brookgpu/ 

[25] NVIDIA: NVIDIA CUDA compute unified device 

architecture programming guide, 2007. 

http://developer.download.nvidia.com/compute/cuda/1_0/

NVIDIA CUDA Programming Guide 1.0.pdf 

[26] Nickolls, John, Ian Buck, Michael Garland, and Kevin 

Skadron. Scalable parallel programming with CUDA. 

Queue, 2008. 6(2): p. 40-53.  

[27] D. E. Knuth, J. MoKnuth, Donald E., James H. Morris, Jr, 

and Vaughan R. Pratt. Fast pattern matching in strings. 

SIAM journal on computing, 1977. 6(2): p. 323-350.  

[28] Wu, Sun, and Udi Manber. A fast algorithm for multi-

pattern searching. Technical Report TR-94-17, 1994. 

[29] Coit, C. J., Staniford, S., & McAlerney, J. (2001). Towards 

faster string matching for intrusion detection or exceeding 

the speed of snort. In DARPA Information Survivability 

Conference &amp; Exposition II, 2001. DISCEX'01, 

Proceedings 2001. Vol. 1: p. 367-373. IEEE.  

[30] Richard M. Karp and Michael O. Rabin. Efficient 

randomized pattern-matching algorithms. IBM J.Res. Dev., 

1987. 31(2): p. 249–260. ISSN 0018-8646. 

[31] “Wireshark”. [Online]. Available: 

http://www.wireshark.org/. 

[32] “Tcpdump, Libpcap and Winpcap”. [Online]. Available: 

http://www.tcpdump.org/. 

[33] Smith, Randy, Neelam Goyal, Justin Ormont, Karthikeyan 

Sankaralingam, and Cristian Estan. Evaluating GPUs for 

network packet signature matching. InPerformance 

Analysis of Systems and Software, 2009. ISPASS 2009. 

IEEE International Symposium on, 2009: p. 175-184. 

IEEE.  

[34] Huang, Nen-Fu, Hsien-Wei Hung, Sheng-Hung Lai, Yen-

Ming Chu, and Wen-Yen Tsai. A gpu-based multiple-

pattern matching algorithm for network intrusion detection 

systems. Advanced Information Networking and 

Applications-Workshops, 2008. AINAW 2008, 22nd 

International Conference on, 2008: p. 62-67. IEEE.  

[35] Lin, Cheng-Hung, Chen-Hsiung Liu, Lung-Sheng Chien, 

and Shih-Chieh Chang. Accelerating pattern matching 

using a novel parallel algorithm on gpus. Computers, IEEE 

Transactions on, 2013. 62, no. 10: p. 1906-1916.  

[36] Cascarano, Niccolo, Pierluigi Rolando, Fulvio Risso, and 

Riccardo Sisto. iNFAnt: NFA pattern matching on 

GPGPU devices. ACM SIGCOMM Computer 

Communication Review 40, 2010. no. 5 : p. 20-26.  

[37] Vasiliadis, Giorgos, Spiros Antonatos, Michalis 

Polychronakis, Evangelos P. Markatos, and Sotiris 

Ioannidis. Gnort: High performance network intrusion 

detection using graphics processors. In Recent Advances 



 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU 77 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 70-77 

in Intrusion Detection, Springer Berlin Heidelberg, 2008: p. 

116-134.  

[38] Nigel Jacob and Carla E. Brodley, Offloading IDS 

Computation to the GPU. ACSAC, Dec. 2006: p. 371-380.  

[39] Tumeo, Antonino, Oreste Villa, and Donatella Sciuto. 

Efficient pattern matching on GPUs for intrusion detection 

systems. In Proceedings of the 7th ACM international 

conference on Computing frontiers, 2010: p. 87-88. ACM. 

[40] Hung, Che-Lun, Yaw-Ling Lin, Kuan-Ching Li, Hsiao-Hsi 

Wang, and Shih-Wei Guo. Efficient GPGPU-based 

parallel packet classification. In Trust, Security and 

Privacy in Computing and Communications (TrustCom), 

2011 IEEE 10th International Conference on, 2011: p. 

1367-1374. IEEE. 

[41] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, 

Understanding the impact of CUDA tuning techniques for 

Fermi. International Conference on High Performance 

Computing and Simulation (HPCS), IEEE, 2011: p. 631-

639. 

[42] Gusev, Marjan, and Sasko Ristov. Performance Gains and 

Drawbacks using Set Associative Cache. Journal of Next 

Generation Information Technology, 2012. 3, no. 3.  

[43] Fatahalian, Kayvon, Jeremy Sugerman, and Pat Hanrahan. 

Understanding the efficiency of GPU algorithms for 

matrix-matrix multiplication. Proceedings of the ACM 

SIGGRAPH/ EUROGRAPHICS conference on Graphics 

hardware, 2004: p. 133-137. ACM, 2004.  

[44] Sim, Jaewoong, Aniruddha Dasgupta, Hyesoon Kim, and 

Richard Vuduc. A performance analysis framework for 

identifying potential benefits in GPGPU applications. In 

ACM SIGPLAN Notices, 2012. vol. 47, no. 8: p. 11-22. 

ACM. 

[45] Ristov, Sasko, Marjan Gusev, Leonid Djinevski, and Sime 

Arsenovski. Performance impact of reconfigurable L1 

cache on GPU devices. Computer Science and Information 

Systems (FedCSIS), 2013, Federated Conference on, 2013: 

p. 507-510. IEEE.  

[46] Mittal, Sparsh. A Survey Of Techniques for Managing and 

Leveraging Caches in GPUs. Journal of Circuits, Systems, 

and Computers, 2014. 23, no. 08: p. 1430002. 

[47] Olufon, Tope, Carlene EA Campbell, Stephen Hole, 

Kapilan Radhakrishnan, and Arya Sedigh. Mitigating 

External Threats in Wireless Local Area Networks. 

International Journal of Communication Networks and 

Information Security (IJCNIS) , 2014. 6, no. 3. 

[48] “NVIDIA Profiler”, [Online]. Available: 

https://developer.nvidia.com/nvidia-visual-profiler, 

[Accessed 25 February 2014].  

[49] “CUDA Occupancy Calculator”, [Online]. Available: 

http://developer.download.nvidia.com/.compute/cuda/CU

DA_Occupancy_calculator.xls, [Accessed 23 March 2014]. 

 

Authors’ Profiles 
 

Jyotsna Sharma is a research scholar at the 

CSED,Thapar University. She has focused 

her research on DPI based Forensic 

Analysis of Network Traffic using Grid 

Infrastructure. She is an M.Phil. in 

Computer Science and also a Graduate 

Member of The Institution of 

Engineers(India). She is a Certified Ethical 

Hacker(C|EH) from the EC-Council. She has several research 

articles to her credit and has also contributed a chapter to the 

„Handbook of Research on Grid Technologies and Utility 

Computing, an IGI Global Publication, and is currently 

authoring a book on „Web Engineering‟. She received the 

Suman Sharma National Award from the Institution of 

Engineers (India) for academic distinction in the computer 

engineering discipline. She won the 2009 Google Global 

Community Scholarship for GHC2009. She has several years 

experience as an Assistant Professor and a Software Developer. 

 

 

Dr. Maninder Singh is an Associate 

Professor at the Computer Science and 

Engineering Department, Thapar University, 

Patiala and also heads the Centre of 

Information and Technology Management 

(CITM). He received his Bachelor's Degree 

from Pune University, Master's Degree, 

with honours in Software Engineering from 

Thapar Institute of Engineering & Technology, and holds his 

Doctoral Degree with specialization in Network Security from 

Thapar University. His research interest includes Network 

Security, Grid Computing, Secure coding and is a strong 

torchbearer for Open Source Community. He has many research 

publications in reputed journals and conferences. He is on the 

Roll-of-honour @ EC-Council USA, being certified as Ethical 

Hacker (C|EH), Security Analyst (ECSA) and Licensed 

Penetration Tester (LPT).  

Dr. Singh has successfully completed many consultancy 

projects (network auditing and penetration testing) for 

renowned national bank(s) and corporate and also architected 

Thapar University‟s network presence. In 2003 his vision for 

developing an Open Source Based network security toolkit was 

published by a leading national newspaper. Linux For You 

magazine from India declared him a 'Tux Hero' in 2004. He is a 

Senior Member of IEEE, Senior Member of ACM and Life 

Member of Computer Society of India. He has been 

volunteering his services for Network Security community as a 

reviewer and project judge for IEEE design contests. Recently 

Dr. Singh was aired on “Centre Stage” @ Headlines Today, 

national channel. 

 

 

 

How to cite this paper: Jyotsna Sharma, Maninder Singh,"CUDA based Rabin-Karp Pattern Matching for Deep Packet 

Inspection on a Multicore GPU", IJCNIS, vol.7, no.10, pp. 70-77, 2015.DOI: 10.5815/ijcnis.2015.10.08 


