
I. J. Computer Network and Information Security, 2015, 10, 70-77
Published Online September 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.10.08

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

CUDA based Rabin-Karp Pattern Matching for

Deep Packet Inspection on a Multicore GPU

Jyotsna Sharma and Maninder Singh
Computer Science & Engineering Department Thapar University Patiala, INDIA

Email: {jyotsana.sharma,msingh}@thapar.edu

Abstract—This paper presents a study of the

improvement in efficiency of the Rabin-Karp pattern-

matching algorithm based Deep Packet Inspection.

NVIDIA GPU is programmed with the NVIDIA's general

purpose parallel computing architecture, CUDA, that

leverages the parallel compute engine in NVIDIA GPUs

to solve many complex computational problems in a

more efficient way than on a CPU. The proposed CUDA

based implementation on a multicore GPU outperforms

the Intel quadcore processor and runs upto 14 times faster

by executing the algorithm in parallel to search for the

pattern from the text. The speedup may not sound

exorbitant but nonetheless is significant, keeping in view

that the experiments have been conducted on real data

and not synthetic data and, optimal performance even

with the huge increase in traffic was the main expectation,

not just an improvement in speed with few test cases.

Index Terms—CUDA, Deep Packet Inspection, Intrusion

Detection, GPGPU, Network Forensics, Rabin Karp

Pattern Matching

I. INTRODUCTION

The Graphics Processing Unit (GPU) which was

primarily associated with processing graphics is rapidly

evolving towards a more flexible architecture which has

encouraged research and development in several

computationally demanding non graphic applications

where its capability can be utilized for computations that

can leverage parallel execution [1]. General-Purpose

Computing on GPU (GPGPU), also known as GPU

Computing exploits the capabilities of a GPU using APIs

such as OpenCL and the Compute Unified Device

Architecture (CUDA) [2]. The opportunity is that we can

implement any algorithm, not only graphics, but the

challenge is to obtain efficiency and high performance in

the field where they replace or support the traditional

CPU computing.

A good candidate for such GPGPU is Deep Packet

Inspection (DPI), the technology, where the appliance has

the mechanism to look within the application payload of

the traffic by inspecting every byte of every packet, and

detect intrusions which are more difficult to detect as

compared to the simple network attacks [3]. The

computational and storage demand for such inspection

and analysis is quite high. An NIDS spends 75% of the

overall processing time of each packet in pattern

matching [4]. Under high load conditions, high

processing abilities are needed to process the captured

traffic. A vast majority of earlier research focuses on

specialized hardware for the the compute intensive Deep

Packet Inspection [5]. Application Specific Integrated

Circuits (ASICs) [6], Field Programmable Group

Arrays(FPGAs) [7] and network processor units(NPUs)

[8] provide for fast discrimination of content within

packets while also allowing for data classification.

Engaging special hardware translates to higher costs as

the data and processing requirements for even medium

size networks soon increase exponentially. Some

researchers have discussed an interesting entropy based

technique for fine-grained traffic analysis [9] [10].

Jeyanthi et al. presented an enhanced approach to this

behavior-based detection mechanism, the “Enhanced

Entropy” approach, by deploying trust credits to detect

and outwit attackers at an early stage. The approaches

seem good but call for methods like bi-directional

measurements for best performance they which impose

additional computing overhead [11].

The task of pattern-matching for DPI can be performed

at a much more reasonable cost as GPUs, being a

necessary component of most computers these days, are

now readily and easily available The task is split into

parallel segments resulting in searching the string much

faster than a CPU.

There are several pattern-matching algorithms for DPI,

Aho-Corasick and Boyer-Moore being the most popular

[12][13]. In this paper the Rabin Karp algorithm [30] has

been selected from over these and several other popular

algorithms because it involves sequential accesses to the

memory in order to locate all the appearances of a pattern

and is based on a compute-intensive rolling hash

calculations. The algorithm has delivered good

performance and efficiency when executed on a multicore

GPU(in this study, the Nvidia GeForce 635M).

II. CONCEPTS

A. GPGPU

A GPU, capable of running thousands of lightweight

threads in parallel, is designed for intensive, highly

parallel computation, exactly for graphic rendering

purposes. Current-generation GPUs, designed to act as

high performance stream-processors derive their

performance from parallelism at both the data and

 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU 71

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

instruction-level. In GPU's architecture much more

transistors are devoted to data processing and less to data

caching[14].

Traditionally, GPUs have been designed to perform

very specific type of calculations on textures and

primitive geometric objects, and it was very difficult to

perform non-graphical operations on them. One of the

first successful implementation of parallel processing on

GPU using non-graphical data was registered in 2003

after the appearance of shaders [15]. Latest generations of

graphics cards incorporate new generations of GPUs,

which are designed to perform both graphical and non-

graphical operations. One of the pioneers in this area is

NVIDIA[16] which rules the market with its parallel

computing platform and API model, CUDA (Compute

Unified Device Architecture) [17], gradually taking over

its major competitor, AMD. Others also have their own

programmable interfaces for their technologies: the

vendor neutral open-source, OpenCL which gives a major

competition to CUDA, AMD ATI Stream, HMPP,

RapidMind and PGI Accelerator [18].

B. NVIDIA GPUs

NVIDIA's GPU offered the opportunity to utilize the

GPU for GPGPU(General Purpose computing on

Graphics Processing Unit). In 2001, NVIDIA GeForce 3

exposed the application developer to the internal

instruction set of the floating point vertex engine(VS &

T/L stage). Later GPUs extended general

programmability and floating-point capability to the pixel

shader stages and exploited data independence. With the

introduction of the GeForce 8 series, GPUs became a

more generalized computing device. The unified shader

architecture introduced in the series was advanced further

in the Tesla microarchitecture backed GeForce 200 series

which offered double precision support for use in

GPGPU applications. The successor GPU

microarchitectures viz. Fermi[19] for the GeForce 400

and GeForce 500 series , then Kepler [20] GeForce 600

and GeForce 700 and subsequently Maxwell [21]

GeForce 800 and GeForce 900 series , have dramatically

improved performance as well as energy efficiency over

the previous ones . Very recently NVIDIA announced

major architectural improvements such as unified

memory so that the CPU and GPU can both access both

main system memory and memory on the graphics card,

in its yet to be released Pascal architecture[22]. The new

GPU generation also boasts of a feature called NVLink

which would allow data between the CPU and GPU to

flow at 80 GB per second ,compared to the 16GB per

second available presently.

C. CUDA

There are a variety of GPU programming models, the

popular ones being the the open source OpenCL[23] , the

BSD licensed BrookGPU[24] which is free and

CUDA[25] ,the Nvidia's proprietary framework.

CUDA(Compute Unified Device Architecture) is

supported well by Nvidia hence it has become the most

popular of all. It has features like highly optimized data

transfers to and from the GPU and efficient management

of the GPU shared memory. The parallel throughput

architecture of CUDA can be leveraged by the software

developers through parallel computing extensions to

many popular high level languages , such as ,C, C++, and

FORTRAN, CUDA accelerated compute libraries, and

compiler directives. Support for Java, Python, Perl,

Haskell, .NET, Ruby and other languages is also

available.

The CUDA programming model is a C-like language

where the CUDA threads execute on a the device(GPU)

which operates as a coprocessor to the the host(CPU).

The GPU and CPU program code exist in the same

source file with the GPU kernel code indicated by the

global qualifier in the function declaration. The host

program launches the sequence of kernels. A kernel is

organized as a hierarchy of threads. Threads are grouped

into blocks, and blocks are grouped into a grid. Each

thread has a unique local index in its block, and each

block has a unique index in the grid, which can

be used by the kernel to compute array subscripts.

Threads in a single block will be executed on a single

multiprocessor, sharing the software data cache, and can

synchronize and share data with threads in the same block;

a warp will always be a subset of threads from a single

block. Threads in different blocks may be assigned to

different multiprocessors concurrently, to the same

multiprocessor concurrently (using multithreading), or

may be assigned to the same or different multiprocessors

at different times, depending on how the blocks are

scheduled dynamically. There is a physical limit on the

size of a thread block for a GPU determined by its

compute capability. In this work, for the compute

capability 2.1 GPU, it is 1536 threads or 32 warps.

Fig. 1. CUDA Programming Model (Source: www.nvidia.com)

The CUDA programming model assumes that the host

and the device maintain their own separate memory

spaces. The CUDA program manages the device memory

allocation and de-allocation as well as the data transfer

between host and device memory[25]. CUDA devices

provide access to several memory architectures, such as

global memory, constant memory, texture memory, share

memory and registers, with their certain performance

characteristics and limitations. Fig.2 illustrates the memory

architecture of CUDA device, specifically the Nvidia

GT635M.

72 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

Example of CUDA processing flow

 Copy data from host memory to device memory
 CPU instructs the process to GPU
 GPU execute parallel code in each core
 Copy the result from device memory to host

memory

The appropriate use of the read-only constant and

texture memory can improve performance and reduce

memory traffic when reads have certain access patterns.

Fig. 2. Memory Architecture of NVIDIA GT635M

III. PATTERN MATCHING BASED DPI ON GPU

A. Signature Based DPI

Signature-matching or Pattern-matching intrusion

detection systems have a major I/O bound performance

limitations caused by the overhead of reading packets

from the network interface card. Packet reading becomes

a bottleneck when the number of packets overwhelms the

IDS host‟s internal packet buffers[38]. The solution to

this problem in our approach is to capture the network

traffic using an open source packet capturing software.

The packet capture file is the input to the CUDA

application, The CUDA program rabinkarpGpu.cu

implements the rabin-karp pattern-matching algorithm on

the GPU.

B. Pattern-Matching Algorithms

The literature review of related works suggests that

there are two types of algorithms which have been

proposed and utilized for pattern-matching, single pattern

matching and multiple pattern-matching.

The most efficient algorithm for matching a single

pattern against an input was proposed by Boyer and

Moore[13]. The Boyer-Moore algorithm is based on

skipping heuristics, therefore when the suffix of the

pattern appears infrequently in the Text string, the

execution time can be sub-linear. Naive or brute force is

the most straightforward algorithm for string matching. It

simply attempts to match the pattern in the target at

successive positions from left to right by using a window

of size m. In case of success in matching an element of

the pattern, the next element is tested against the text

until a mismatch or a complete match occurs. After each

unsuccessful attempt, the window is shifted by exactly

one position to the right, and the same procedure is

repeated until the end of the text is reached. Knuth-

Morris-Pratt [27] is similar to the Naive since it uses a

window of size m to search for the occurrences of the

pattern in the text but after a mismatch occurs it uses a

precomputed array to shift several positions to the right.

Multiple-pattern matching scales much better than the

single pattern matching. Aho-Corasick(AC) [12],Wu

Manber (WM) [28] and AC-BM [29] are the classical

multiple-pattern matching algorithms. The AC algorithm

has good linear performance, making it suitable for

searching a large set of signatures. The AC algorithm and

its extensions are ideal for regular expression matching,

but they are not optimal for fixed pattern matching like

worm scanning because of its large number of states and

frequent I/O operations. WM algorithm is a very efficient

multi-pattern matching algorithm, which implements

multi-pattern matching using bad character block transfer

mechanism and search the pattern with the hash function.

AC-BM combines the AC and BM algorithms. Instead of

using the suffix of patterns as in AC, it uses the prefix. It

uses the BM technique of bad character shift and the

good prefix shift. We have examined another multiple-

pattern matching algorithm, the Rabin-Karp

algorithm[30]. The algorithm is as follows :

Algorithm 1: Rabin Karp Algorithm

(Serial Implementation for CPU)

matches = {}

 pattern_hash = hash(pattern)
substring_hash = hash(s[0 : m])

 for position from 0 to n - m - 1 do
 update substring_hash to hash(s[position :
 position + m])
 if substring_hash = pattern_hash then

 add position to matches

 return matches

The key to Rabin-Karp is to incrementally update the

hash as the potential match moves along the string to be

searched. The hash function uses a prime q, whose value

should be chosen such that 256q is no larger than a

 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU 73

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

computer word which makes the algorithm truly efficient.

Exhibit 1 describes the checksum(hash) function as given

in [30].

Exhibit 1: Checksum function

A binary string

1 2... nX x x x=

can be regarded as a binary representation of the integer

 
1

1 2
nN

ii
H X x




 (1)

For any integer q, the following is the hash function.

mod() ()q qH X H X=
 (2)

Karp et al. devised a theorem for parallel pattern-

matching. They suggested that the computation of the

hashes for the substrings and their comparisons with the

hash of the text string can be done in parallel using

multiple processors in,constant time. This motivated us to

experiment with the algorithm on a multicore GPU.

()

Theorem 12 [30] :

The string-matching problem for a pattern of length and a

text of length , where we find all matches, can be

solved by processors in time 1 with probability of

error sma le

(

l r

)

n

m n m

m O og m

£

 than 0.697 / .
k

m

Given a text string s of length n, and a pattern of length

m, the algorithm computes rolling hash(checksum) for

both the pattern and consecutive substrings of length m of

the searched string. Every time a substring‟s hash equals

that of the pattern, a match is reported. Fig.3 illustrates

the idea behind the Rabin-Karp algorithm. The rows with

a red checkmark indicate the situations where the hash for

the pattern and the text match. The algorithm can find

any of a large number, say k, fixed length patterns in a

text.

Fig. 3. Rabin-Karp algorithm

C. Pattern-matching with Rabin Karp on GPU

The CUDA framework has been used to develop and

execute the algorithm on the GPU. The WinPcap library

has been used for capturing the network traffic. The

experiments that have been conducted on random as well

as real traffic indicate that the proposed algorithm is upto

14X times faster than the Rabin Karp algorithm being

executed on a CPU for the pattern search.

The host computer issues a kernel for the pattern-

match to the GPU, which is executed on the device as

several threads organized in thread blocks. One or more

thread blocks, organized as warps are executed by each

multiprocessor.

Fig. 4. Architecture of the proposed system

The implementation is listed in a step-by-step manner

in Exhibit 2.

Exhibit 2: DPI on the GPU

Step 1:Network Traffic Capture on the Host(CPU)

Tool: The open source protocol analyzer

Wireshark [31] (known as Ethereal till 2006), or

the classic old sniffer,Tcpdump [32], whose GUI

is not as good as Wireshark but it requires fewer

resources and also has fewer security holes. Both

tools rely on the packet sniffing libraries,

WinPcap and Libpcap[32].

Step 2:Transfer of packets(Text) to the Device(GPU),

through a covert channel

Step 3: Copy patterns from the host to the shared

memory

 (cudaMemcpyAsync() is used as it is non-

blocking to the host,so control immediately

returns to the host thread.)

Step 4: Considering each thread in a block responsible for

one test pattern, load a chunk of text into device

memory, with each thread doing one test pattern

Step 5: Loop through the chunk of text looking for

matches
Step 6: Once pattern-matching completed with the loaded

chunk, load in the next chunk of text and

repeat
Step 7: When end of file, store matches in a global

array

The pseudocode for the parallel implementation of the

Rabin-Karp Algorithm for the GPU is as follows:

74 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

Pseudocode 1: Rabin Karp Algorithm for GPU

(rabinkarpGpu.cu)

{P is the set of all fixed-string patterns

 (string patterns of Snort V2.8)}

{T is the input string elements}

{q is the prime}

Phase 1: Data Loading (by the host)

1.Host Loads the patterns from the dictionary in P

2.Reads-in the PCAP file(s) for the Text and loads a

packet at a time in T

3.Set the value of the prime number for computation

4.Host program calls the Rabin-Karp pattern-matching

GPU Kernel with the parameters P,T and q

Phase 2:Pattern-matching (in the kernel)

1.GPU kernel calculates the hash(checksum) value of

the pattern and the first substring of text(of length m)

2.Slide the pattern over text one by one

3.Checks the hash values of the substring (current

window of text) and pattern

4.If the hash values match then only check for

characters one by one,

If text and pattern match character by character then

add position to matches

5.Calculate hash value for next substring and repeat

from step 4

6. Return matches to the host

IV. EXPERIMENTAL EVALUATION

A. Experiment Results

The proposed algorithm is executed on a commodity

graphics card equipped with the programmable NVIDIA

GeForce GT 635M having equipped with 144 CUDA

cores and a Graphics Clock upto 675 MHz which means

it has high parallel computation power to perform the

task of multiple pattern-matching in parallel thereby

delivering a significant speedup as compared to the

regular scenario where the intrusion detection is

performed on a CPU. The GPU uses a unified clock

instead of a shader clock which leads to higher efficiency.

Table 1. compares the execution time of the serial

implementation on a quadcore Intel CPU with the parallel

implementation of the Rabin-Karp pattern-matching

algorithm on a multicore GPU with an without code

optimization techniques. We observe that there is a good

speedup gained with the optimized implementation on the

GPU as compared to its serial implementation as shown

in Fig.5. The average speedup observed for the optimized

code GPU implementation is 12X. The best case speedup

observed is 14X. The filesize of the .pcap file, the packet

capture file is a significant factor. The performance

continues to demonstrate a good speedup but for very

large sizes, it begins to plateau, because of latency and

memory throughput. Fig. 6 shows the GPU performance

results for different packet capture file sizes.

Table 1. Execution-Time Comparison(CPU and GPU)

Filesize

(Packet

capture file)

Quadcore

CPU

Nvidia GPU

(UnOptimized)

Nvidia GPU

(Optimized)

85MB 197.6ms 75.8ms 21.2ms

124MB 298.4ms 98.0ms 32.4ms

238MB 413.3ms 121.0ms 39.2ms

434MB 563.8ms 167.5ms 43.9ms

528MB 899.9ms 234.5ms 61.4ms

776MB 984.9ms 266.0ms 70.3ms

876MB 1197ms 354.6ms 84.3ms

Fig. 5. Performance Results on CPU and GPU(NVIDIA)

Fig. 6. Speed Improvement on GPU(Nvidia)

B. Code Optimization

The on-chip shared memory available for each

multiprocessor is a great feature for writing a well

optimized CUDA code. The shared memory is a small

high bandwidth memory which is private to the threads in

a block. The shared memory latency is 100x lower than

the global memory latency. Storing frequently reused

data to the shared memory can deliver substantial

performance improvements [33], therefore the pattern and

the hash table are stored in the shared memory to deliver

the maximum performance. The data transfers between

 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU 75

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

the CPU and GPU are done using the asynchronous

variants for copying data (cudaMemcpyAsync()), which

immediately return control to the host.

V. RELATED WORK

A lot of research efforts for the efficient use of GPU

for improving its performance for the pattern-matching,

with a specific focus on decreasing the high processing

time, have been studied in this work. Smith et al.

examined the viability of SIMD-based architectures for

signature-matching and presented a detailed architectural

analysis [33]. Several researchers have experimented with

various algorithms and techniques to leverage the

abilities of the GPU in the field of intrusion detection

[34][35]. Cascarano et al. addressed the state space issues

of the traditional DFA based approaches and presented a

NFA(non-deterministic automata) based regular

expression engine for large and complex rule sets [36].

Vasiliadis et al. ported the open source IDS, Snort to a

GPU, Gnort which has since been extended and

improvised by several researchers to gain higher speed

improvements [37]. Jacob et. al. also offloaded the

packet-processing task of SNORT to the GPU; PixelSnort

was programmed with the complex high level shading

language Cg [38]. Tumeo et al. implemented the Aho-

Corasick pattern-matching algorithm on a GPU [39].

Chung et al. proposed a GPGPU based parallel packet

classification method to decrease the huge computing

time to filter large number of packets[40]. Efforts in this

research work aim to address the performance issues

studied in the related endeavours.

One of the most common CUDA-optimization

strategies is Memory Coalescing [41], which maximizes

the global memory bandwidth usage ,by reducing the

number of bus transactions, threads with adjacent global

indexes in a block are forced to request contiguous

data(packets) from global memory. A perfectly coalesced

pattern greatly improves throughput. GPUS have

multilevel set associative caches, which gives rise to the

need for careful performance analysis due to the set

associativity. Gusev and Ristov have notable

contributions in this direction [42]. Several researchers

including Fatahalian et al., Sim et al. and Ristov et al., to

name a few, have highlighted the fact that GPU Caches

affect application performance in a significant manner

[43][44][45]. Mittal S. presented the classification of

techniques for managing and leveraging the GPU cache

[46].

An unintended application of GPUs is by hackers for

accelerated password cracking. Olufun et al. in their work

for developing a security model for WLANS,

demonstrated the use of a GPU based encryption

breaking tool, pyrit which cracked a dictionary file much

faster than a CPU based tool [47].

VI. CONCLUSION & FUTURE WORK

In this paper the CUDA Toolkit is used to implement

the parallel implementation of the Rabin-Karp pattern-

matching algorithm. Both the serial and the parallel

implementations of the algorithm were compared in

terms of the execution time for varying network traffic

sizes.

The parallel implementation on a multicore GPU of the

pattern-matching algorithm achieved a speedup of upto

14X. The performance begins to show a plateau effect

when the traffic size increases beyond a limit as the GPU

is limited with its memory, nonetheless the system

delivers optimal performance at increasing traffic. Peak

performance has been achieved by removing

dependencies on the global memory and improving the

memory coalescing. The Nvidia Profiler [48] and the

CUDA Occupancy Calculator[49] have been greatly

helpful in profiling the application and discovering the

bottlenecks. The satisfactory speedup gains motivates us

to improve the code further by even more optimization of

the code in the area of memory management. The

important considerations in the work have been :

1. Selection of an appropriate candidate for the

desired results on the GPU is very important. Not

every serial code implemented on the GPU gives

better performance.

2. Conversion of a serial code to the parallel code

will not result in the desired improvement.

Implementing proper CUDA code optimization

results in efficient use of the GPU.

Most of the tools used in the research have been open-

source except for CUDA. Developing and testing the

application in OpenCL are being considered for future

work so the entire work becomes open-source.

To ensure higher speedups even with highly increasing

traffic size, future work efforts will be to utilize the

power of grid computing and test the system on a GPU-

grid.

The results in this paper indicate that definitely DPI

performed on a GPU yields excellent performance

especially when the underlying algorithm is carefully

selected and tuned.

ACKNOWLEDGMENT

We would like to express our gratitude to the reviewers

whose advice contributed to major improvements in the

paper. Sincere acknowledgment of gratitude is for our

young children in our respective families for being the

source of joy and relaxation needed after hours of sitting

with the laptop and our respective spouses for being

highly patient and supportive.

REFERENCES

[1] Owens, John D., Mike Houston, David Luebke, Simon

Green, John E. Stone, and James C. Phillips. GPU

Computing. Proc. IEEE, 2008. vol. 96, no. 5: p. 879 -899.

[2] “CUDA Parallel Computing Platform”. [Online].Available:

http://www.nvidia.in/object/cuda_home_new.html.

[Accessed 27 September 2013].

76 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

[3] AbuHmed, Tamer, Abedelaziz Mohaisen, and DaeHun

Nyang. Deep packet inspection for intrusion detection

systems: A survey. Magazine of Korea

Telecommunication Society, November 2007. vol. 24, No.

11: p. 25-36.

[4] Cabrera, Joao BD, Jaykumar Gosar, Wenke Lee, and

Raman K. Mehra. On the statistical distribution of

processing times in network intrusion detection. In 43rd

IEEE Conference on Decision and Control, December

2004. vol. 1: p. 75–80.

[5] Rafiq, ANM Ehtesham, M. Watheq El-Kharashi, and

Fayez Gebali. A fast string search algorithm for deep

packet classification. Computer Communications, June

2004. 27(15): p. 1524–1538.

[6] Tan, Lin, and Timothy Sherwood. Architectures for bit-

split string scanning in intrusion detection. IEEE Micro 1 ,

2006: p. 110-117.

[7] Dharmapurikar, Sarang, and John W. Lockwood. Fast and

scalable pattern matching for network intrusion detection

systems. Selected Areas in Communications, IEEE Journal

on, 206. 24, no. 10: p. 1781-1792.

[8] Piyachon, Piti, and Yan Luo. Efficient memory utilization

on network processors for deep packet inspection.

Proceedings of the 2006 ACM/IEEE symposium on

Architecture for networking and communications systems,

2006: p.71-80. ACM.

[9] Wagner, Arno, and Bernhard Plattner. Entropy based

worm and anomaly detection in fast IP networks. In

Enabling Technologies: Infrastructure for Collaborative

Enterprise, 2005. 14th IEEE International Workshops on,

2005.: p. 172-177. IEEE.

[10] Liu, Ting, Zhiwen Wang, Haijun Wang, and Ke Lu. An

Entropy-based Method for Attack Detection in Large Scale

Network. International Journal of Computers

Communications & Control, 2014. 7, no. 3: p. 509-517.

[11] Jeyanthi, N., N. Ch SN Iyengar, PC Mogan Kumar, and A.

Kannammal. An enhanced entropy approach to detect and

prevent DDoS in cloud environment. International Journal

of Communication Networks and Information Security

(IJCNIS) , 2013. 5, no. 2: .

[12] Aho, Alfred V., and Margaret J. Corasick. Effcient string

matching: An aid to bibliographic search. Communications

of the ACM, 1975. 18(6): p. 333–340.

[13] Boyer, Robert S., and J. Strother Moore. A fast string

searching algorithm. Communication of ACM, 1977.

20(10): p. 762-772.

[14] Zhang, Wu, Zhangxin Chen, Craig C. Douglas, and

Weiqin Tong, eds. High Performance Computing and

Applications: Second International Conference, HPCA

2009, Shanghai, China, Revised Selected Papers. 2010.

Vol. 5938. Springer.

[15] "iXBT Labs - Computer Hardware In Detail", [Online].

Available: http://ixbtlabs.com/articles3/video/cuda-1-

p1.html. [Accessed 28 September 2013].

[16] “NVIDIA”, http://www.nvidia.in/page/home.html

[17] “NVIDIA CUDA Zone”,

https://developer.nvidia.com/cuda-zone.

[18] Ghorpade, Jayshree, Jitendra Parande, Madhura Kulkarni,

and Amit Bawaskar. Gpgpu processing in cuda

architecture, 2012. arXiv preprint arXiv:1202.4347.

[19] “NVIDIA‟s Next Generation CUDA Compute

Architecture: Fermi Architecture”, [Online]. Available:

http://www.nvidia.in/content/PDF/fermi_white_papers/NV

IDIA_Fermi_Compute_Architecture_Whitepaper.pdf,

[Accessed 28 July 2013].

[20] “Whitepaper: NVIDIA GeForce GTX 680”, [Online].

Available:

http://www.geforce.com/Active/en_US/en_US/pdf/GeForc

e-GTX-680-Whitepaper-FINAL.pdf, [Accessed 29

September 2013].

[21] "Whitepaper:NVIDIA GeForce GTX 750 Ti", [Online].

Available:

http://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce-GTX-750-Ti-

Whitepaper.pdf, [Accessed 29 September 2013].

[22] “NVIDIA Updates GPU Roadmap;Announces Pascal”,

http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-

pascal/

[23] Stone, John E., David Gohara, and Guochun Shi.

"OpenCL: A parallel programming standard for

heterogeneous computing systems. Computing in science

& engineering, 2010. 12, no. 1-3: p. 66-73.

[24] Buck, I., T. Foley, D. Horn, J. Sugerman, P. Hanrahan, M.

Houston, and K. Fatahalian. BrookGPU, 2003.

http://graphics.stanford.edu/projects/brookgpu/

[25] NVIDIA: NVIDIA CUDA compute unified device

architecture programming guide, 2007.

http://developer.download.nvidia.com/compute/cuda/1_0/

NVIDIA CUDA Programming Guide 1.0.pdf

[26] Nickolls, John, Ian Buck, Michael Garland, and Kevin

Skadron. Scalable parallel programming with CUDA.

Queue, 2008. 6(2): p. 40-53.

[27] D. E. Knuth, J. MoKnuth, Donald E., James H. Morris, Jr,

and Vaughan R. Pratt. Fast pattern matching in strings.

SIAM journal on computing, 1977. 6(2): p. 323-350.

[28] Wu, Sun, and Udi Manber. A fast algorithm for multi-

pattern searching. Technical Report TR-94-17, 1994.

[29] Coit, C. J., Staniford, S., & McAlerney, J. (2001). Towards

faster string matching for intrusion detection or exceeding

the speed of snort. In DARPA Information Survivability

Conference & Exposition II, 2001. DISCEX'01,

Proceedings 2001. Vol. 1: p. 367-373. IEEE.

[30] Richard M. Karp and Michael O. Rabin. Efficient

randomized pattern-matching algorithms. IBM J.Res. Dev.,

1987. 31(2): p. 249–260. ISSN 0018-8646.

[31] “Wireshark”. [Online]. Available:

http://www.wireshark.org/.

[32] “Tcpdump, Libpcap and Winpcap”. [Online]. Available:

http://www.tcpdump.org/.

[33] Smith, Randy, Neelam Goyal, Justin Ormont, Karthikeyan

Sankaralingam, and Cristian Estan. Evaluating GPUs for

network packet signature matching. InPerformance

Analysis of Systems and Software, 2009. ISPASS 2009.

IEEE International Symposium on, 2009: p. 175-184.

IEEE.

[34] Huang, Nen-Fu, Hsien-Wei Hung, Sheng-Hung Lai, Yen-

Ming Chu, and Wen-Yen Tsai. A gpu-based multiple-

pattern matching algorithm for network intrusion detection

systems. Advanced Information Networking and

Applications-Workshops, 2008. AINAW 2008, 22nd

International Conference on, 2008: p. 62-67. IEEE.

[35] Lin, Cheng-Hung, Chen-Hsiung Liu, Lung-Sheng Chien,

and Shih-Chieh Chang. Accelerating pattern matching

using a novel parallel algorithm on gpus. Computers, IEEE

Transactions on, 2013. 62, no. 10: p. 1906-1916.

[36] Cascarano, Niccolo, Pierluigi Rolando, Fulvio Risso, and

Riccardo Sisto. iNFAnt: NFA pattern matching on

GPGPU devices. ACM SIGCOMM Computer

Communication Review 40, 2010. no. 5 : p. 20-26.

[37] Vasiliadis, Giorgos, Spiros Antonatos, Michalis

Polychronakis, Evangelos P. Markatos, and Sotiris

Ioannidis. Gnort: High performance network intrusion

detection using graphics processors. In Recent Advances

 CUDA based Rabin-Karp Pattern Matching for Deep Packet Inspection on a Multicore GPU 77

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 70-77

in Intrusion Detection, Springer Berlin Heidelberg, 2008: p.

116-134.

[38] Nigel Jacob and Carla E. Brodley, Offloading IDS

Computation to the GPU. ACSAC, Dec. 2006: p. 371-380.

[39] Tumeo, Antonino, Oreste Villa, and Donatella Sciuto.

Efficient pattern matching on GPUs for intrusion detection

systems. In Proceedings of the 7th ACM international

conference on Computing frontiers, 2010: p. 87-88. ACM.

[40] Hung, Che-Lun, Yaw-Ling Lin, Kuan-Ching Li, Hsiao-Hsi

Wang, and Shih-Wei Guo. Efficient GPGPU-based

parallel packet classification. In Trust, Security and

Privacy in Computing and Communications (TrustCom),

2011 IEEE 10th International Conference on, 2011: p.

1367-1374. IEEE.

[41] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos,

Understanding the impact of CUDA tuning techniques for

Fermi. International Conference on High Performance

Computing and Simulation (HPCS), IEEE, 2011: p. 631-

639.

[42] Gusev, Marjan, and Sasko Ristov. Performance Gains and

Drawbacks using Set Associative Cache. Journal of Next

Generation Information Technology, 2012. 3, no. 3.

[43] Fatahalian, Kayvon, Jeremy Sugerman, and Pat Hanrahan.

Understanding the efficiency of GPU algorithms for

matrix-matrix multiplication. Proceedings of the ACM

SIGGRAPH/ EUROGRAPHICS conference on Graphics

hardware, 2004: p. 133-137. ACM, 2004.

[44] Sim, Jaewoong, Aniruddha Dasgupta, Hyesoon Kim, and

Richard Vuduc. A performance analysis framework for

identifying potential benefits in GPGPU applications. In

ACM SIGPLAN Notices, 2012. vol. 47, no. 8: p. 11-22.

ACM.

[45] Ristov, Sasko, Marjan Gusev, Leonid Djinevski, and Sime

Arsenovski. Performance impact of reconfigurable L1

cache on GPU devices. Computer Science and Information

Systems (FedCSIS), 2013, Federated Conference on, 2013:

p. 507-510. IEEE.

[46] Mittal, Sparsh. A Survey Of Techniques for Managing and

Leveraging Caches in GPUs. Journal of Circuits, Systems,

and Computers, 2014. 23, no. 08: p. 1430002.

[47] Olufon, Tope, Carlene EA Campbell, Stephen Hole,

Kapilan Radhakrishnan, and Arya Sedigh. Mitigating

External Threats in Wireless Local Area Networks.

International Journal of Communication Networks and

Information Security (IJCNIS) , 2014. 6, no. 3.

[48] “NVIDIA Profiler”, [Online]. Available:

https://developer.nvidia.com/nvidia-visual-profiler,

[Accessed 25 February 2014].

[49] “CUDA Occupancy Calculator”, [Online]. Available:

http://developer.download.nvidia.com/.compute/cuda/CU

DA_Occupancy_calculator.xls, [Accessed 23 March 2014].

Authors’ Profiles

Jyotsna Sharma is a research scholar at the

CSED,Thapar University. She has focused

her research on DPI based Forensic

Analysis of Network Traffic using Grid

Infrastructure. She is an M.Phil. in

Computer Science and also a Graduate

Member of The Institution of

Engineers(India). She is a Certified Ethical

Hacker(C|EH) from the EC-Council. She has several research

articles to her credit and has also contributed a chapter to the

„Handbook of Research on Grid Technologies and Utility

Computing, an IGI Global Publication, and is currently

authoring a book on „Web Engineering‟. She received the

Suman Sharma National Award from the Institution of

Engineers (India) for academic distinction in the computer

engineering discipline. She won the 2009 Google Global

Community Scholarship for GHC2009. She has several years

experience as an Assistant Professor and a Software Developer.

Dr. Maninder Singh is an Associate

Professor at the Computer Science and

Engineering Department, Thapar University,

Patiala and also heads the Centre of

Information and Technology Management

(CITM). He received his Bachelor's Degree

from Pune University, Master's Degree,

with honours in Software Engineering from

Thapar Institute of Engineering & Technology, and holds his

Doctoral Degree with specialization in Network Security from

Thapar University. His research interest includes Network

Security, Grid Computing, Secure coding and is a strong

torchbearer for Open Source Community. He has many research

publications in reputed journals and conferences. He is on the

Roll-of-honour @ EC-Council USA, being certified as Ethical

Hacker (C|EH), Security Analyst (ECSA) and Licensed

Penetration Tester (LPT).

Dr. Singh has successfully completed many consultancy

projects (network auditing and penetration testing) for

renowned national bank(s) and corporate and also architected

Thapar University‟s network presence. In 2003 his vision for

developing an Open Source Based network security toolkit was

published by a leading national newspaper. Linux For You

magazine from India declared him a 'Tux Hero' in 2004. He is a

Senior Member of IEEE, Senior Member of ACM and Life

Member of Computer Society of India. He has been

volunteering his services for Network Security community as a

reviewer and project judge for IEEE design contests. Recently

Dr. Singh was aired on “Centre Stage” @ Headlines Today,

national channel.

How to cite this paper: Jyotsna Sharma, Maninder Singh,"CUDA based Rabin-Karp Pattern Matching for Deep Packet

Inspection on a Multicore GPU", IJCNIS, vol.7, no.10, pp. 70-77, 2015.DOI: 10.5815/ijcnis.2015.10.08

