
I. J. Computer Network and Information Security, 2015, 10, 23-34 
Published Online September 2015 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2015.10.03 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

Can universally composable cryptographic 

protocols be practical? 
 

István Vajda 
Technical University of Budapest, Department of Informatics, Budapest, Hungary 

Email: vajda@hit.bme.hu 

 

 

Abstract—The Universal Composability (UC) framework 

provides provable security guaranties for harsh 

application environment, where we want to construct 

protocols which keep security guarantees even when they 

are concurrently composed with arbitrary number of 

arbitrary (even hostile) protocols. This is a very strong 

guarantee. The UC-framework inherently supports the 

modular design, which allows secure composition of 

arbitrary number of UC-secure components with an 

arbitrary protocol. In contrast, traditional analysis and 

design is a stand alone analysis where security of a single 

instance is considered, i.e. an instance which is not in 

potential interaction with any concurrent instances. 

Furthermore, a typical traditional analysis is informal, i.e. 

without a formal proof. In spite of these facts, beyond the 

task of key-exchange this technology have not really took 

the attention of the community of applied cryptography. 

From practitioner’s point of view the UC-world may 

seem more or less an academic interest of theoretical 

cryptographers.  

Accordingly we take a pragmatic approach, where we 

concentrate on meaningful compromises between the 

assumed adversarial strength, ideality wishes and 

realization complexity while keeping provable security 

guarantees within the UC-framework. We believe that 

even modest but provable goals (especially, if tunable to 

application scenarios) are interesting if a wider 

penetration of the UC-technology is desired into the 

daily-practice of protocol applications.  

 

Index Terms—Cryptographic protocols, provable 

security, universal composability. 

 

I.  INTRODUCTION 

Modeling of the execution of crypto-protocols in the 

Universally Composable (UC) framework is far more 

realistic than in the stand alone classic setting [7], [8]. 

Familiarity with the UC-technology is at low level in the 

community of applied cryptography. To master the 

corresponding techniques (in particular simulation proofs) 

requires serious investment from a researcher. This fact is 

worsened by anticipating that the resulted provably 

secure protocols are not competitive at the practical 

―market‖ of efficient protocols. Indeed, the available UC-

secure constructions are typically built from inefficient, 

high complexity elements which typically exclude their 

practical usage. From this respect the complexity cost of 

primitives secure even in adaptive adversarial setting is 

especially painful.   

Does it mean that the UC-technology cannot provide 

tools for daily protocol designers yet? The main message 

of this paper is a strong belief that this is not the case. 

There is room for finding practically useful compromises 

between the assumed adversarial strength, the ―wished‖ 

strength of the ideal functionality, the assumptions on 

setups and application scenarios on one side and the 

computational complexity on the other side while keeping 

provable security guarantees within the UC-framework.  

Obviously, any secure composition from secure 

elements assumes that the task can be efficiently 

decomposed to smaller subtasks.  Less complex tasks are 

easier to analyze, in particular the length of a protocol 

strongly affects the tractability of the corresponding 

simulation proofs.  

At the highest level we consider decomposition along 

lower and higher layer sub-tasks. In the lower layer we 

accomplish modularization along the security of 

communication channels by transforming the protocol 

into a hybrid in ideal channel functionalities. However, 

we have to be prepared for adversarial actions even in 

case when the network adversary is neutralized. This is 

the case of a higher layer sub-task carried out between 

mutually distrustful parties: a typical case is when one of 

the parties intentionally (cautiously) delays the 

transmission of some information within the run and 

sends only commitment in advance.  

Subsequently we will consider modularization in the 

lower layer, modularization in the higher layer as well as 

modularization and abstraction along primitives.    

We will use a kind of ―macro-substitutes‖ for 

computational complexity, as it is closely related to the 

assumed adversarial strength. On this scale the strongest 

is the Byzantine adaptive corruption adversary and the 

mildest is the classic passive man-in-the middle (MIM) 

network adversary. The strength of the adversary 

determines the required simulation properties of 

components (primitives and macro primitives) used in the 

realization, which are the properties of 

indistinguishability, extractability and equivocability. 

These simulation properties provide an advantage for the 

ideal system adversary (simulator) to be able to simulate 

the view of the black box real adversary within the ideal 

system in a way indistinguishable from the one 

experienced by it in the real system. As we consider the 

general approach and not a particular construction, we 



24 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

grab the computational complexity at this high level of 

simulation requirements and not by the number of public 

key operations. Similarly we will not touch the 

communication complexity of construct, as it is typically 

less costly than high computational complexity in usual 

scenarios as well as strongly related to concrete 

implementations.      

We distinguish standard, standard secure and UC-

secure primitives. Standard primitives are the primitives 

of daily use, which are not provably secure (e.g. AES 

symmetric key encryption, RSA public key encryption, 

standard RSA digital signature), standard secure 

primitives provably satisfy standard security definitions 

(e.g. ind cpa/cca2 secure encryption, EU-CMA secure 

digital signature) while UC-secure primitives (and macro 

primitives) typically provide additional extractability 

and/or equivocability properties depending on the 

adversarial setting. Standard secure primitives support 

indistinguishability, however the other two properties, 

especially, equivocability requires enhancement of 

primitives or macro primitives, which step boosts their 

computational complexity. The hardest adversarial setting 

is Byzantine adaptive. If we can avoid adaptivity or 

circumvent its simulation implications, we can make a 

considerable step in relaxing the complexity of the design. 

There are only a few protocols, which have been found 

to be UC-secure (with standard secure primitives) and are 

actually deployed in the real world, coming almost 

exclusively from the field of key exchange protocols [4], 

[13], [14], [17], [23], [26].  Here arises the question of 

what is the practical value of such result for applications 

if in practice these protocols are used with standard (i.e. 

not provably secure) primitives.   

The computational complexity of a macro primitive 

indicates the total amount of work performed by 

participants and is often given in form of costly public-

key operations (e.g. modular exponentiations). There is a 

growing intention among the researchers in the field of 

UC-security to pay more and more attention to the 

efficiency problem of the designs of UC-secure macro-

primitives (e.g. see [19], [20] for oblivious transfer, [6] 

for zero knowledge and [27] for commitment task). Still, 

we think, it is not the best way for a traditional designer 

aiming to get a view of practical potentials of the UC-

technology to dive right away into these special, highly 

technical works written, as normal, for communication 

mainly between (top) experts of the field. Instead, we 

think that highlighting practical trade offs (tuning points) 

between the strength of formal guaranties, application 

scenarios and the complexity of realization is a better way 

for raising an interest. We follow such an approach.  

Accordingly, we tried to find a balance between 

technical aspects and wider accessibility from potential 

readers. The style of presentation is via showing plenty of 

examples for applications and proof techniques and 

summarizing our messages into guidelines accompanied 

with arguments. We are not aware of other work with a 

similar goal of making steps of building interface towards 

traditional (non-UC) designers who are uncertain (or 

concerned) about the cost of UC-constructs. By space 

constraint we could not avoid assuming the knowledge 

some of basic notions of provable security e.g. 

computational indistinguishability or definition of 

security by secure emulation of ideal functionality [7], [8].  

The structure of the paper is the following. In Section 2 

we summarize how the strength of the assumed adversary 

determines the simulation requirements against the 

primitives, which in turn affects the complexity of the 

realization. In Section 3 practical ways of modularization 

are considered along communication hybrids in the lower 

layer, macro-primitives in the higher layer as well as 

modularization and abstraction along primitives.  In 

Section 4 we consider ways to circumvent the difficulties 

caused by an adaptive adversary, which are the 

weakening of the ideal functionality and allowing 

erasures of local data. If we can step back (force back) to 

semi-honest static setting instead of the high end 

Byzantine adaptive we can use standard secure primitives 

without the need for additional extractability and 

equivocability enhancement.   

 

II.  THE ADVERSARY 

A.  Adversarial Model 

A standard assumption within the UC-framework is 

that the network adversary runs an arbitrary efficient 

algorithm and has access to all communication links as a 

man-in-the-middle (MIM) adversary.  

The adversary may also corrupt parties, where the 

adversary is allowed to choose the parties for corruption. 

The way of control over a corrupted party can be passive 

(honest-but-curious or semi-honest) or active (malicious). 

In passive mode the corrupted party continues running 

the protocol. The goal of the adversary is not to alter the 

output of parties but to have access to their inputs and 

longtime secret keys. The adversary tries to avoid 

detection of the attack for the sake of longtime presence.  

In active mode there are three things we cannot hope to 

avoid that parties refuse to participate, substitute their 

local input or abort the protocol prematurely. In addition 

to these actions the strongest malicious adversary (called 

Byzantine) can completely deviate from the rules of the 

protocol, e.g. may arbitrarily modify the function 

underlying the protocol message. Note, however that such 

stronger attack is viable only if the honest receiver is not 

able to verify such deviation from the predetermined 

rules, which is not the usual case, therefore usually a 

malicious action means ―just‖ input modification. 

However, there are protocols where it is difficult for the 

receiving honest party to detect a Byzantine deviation, e.g. 

when signatures are exchanged between distrustful 

parties portion-by-potion.      

According to the timing the corruption an adversary 

can be static (non-adaptive) and adaptive. A static 

adversary controls an arbitrary but fixed set of corrupted 

parties, fixed before the targeted instance starts running. 

An adaptive adversary is allowed to choose the parties to 

be corrupted any time during the course of the 

computation based on the information gathered so far. 



 Can universally composable cryptographic protocols be practical? 25 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

Example 2.1: Even, when corruption is carried out by 

remote hacking into the machine of one of the parties, the 

hacker will probably stay there for a longer time period 

which may span several instances consecutive in time. 

When the adversary resides there it has no reason not to 

start corruption right from the onset of the instance, even 

if at the beginning, say, it runs just in the milder passive 

mode and switches to malicious mode only later time.  

Another scenario, when adaptive mode is not realistic, is 

when the time length of the run of the protocol instance is 

much shorter then the time which elapses from the 

decision for corruption till the full establishment of the 

wanted control.  

A practical reason behind adaptive operation may be 

that breaking into a party involves risk/cost, therefore the 

adversary tries to optimize the timing of corruption and 

the set of most ‖promising‖ parties to reach the most gain 

from the action. For example, a dynamically (per instance) 

selected subset of parties accumulates/stores more 

sensitive information during the run than the rest of 

parties and the adversary gets a guess on this subset by 

processing the information available during the run.  

For a concrete example, we can consider the task of 

secure data collection from a set of sensors via a tree-like 

communication graph, where the leaves of the tree are the 

sources of data and the higher order nodes are the 

collectors. Such a communication graph may be built 

dynamically up during the run or it may be the case that 

the roles (leaves, collectors) are assigned a priori. 

Obviously the collector nodes especially if they are at 

higher level within the graph are the best targets for 

breaking into. 

The strongest adversary is Byzantine and adaptive. 

Cryptographic protection against such a powerful 

adversary requires high complexity enhanced primitives. 

One of the key issues of this paper is to highlight 

potential ways to escape or ease this computational 

burden.  

B.  Simulation Requirements Versus The Adversarial 

Strength  

First we recall the definition of UC-secure realization: 

A protocol  is UC-secure realization of ideal 

functionality   if for any adversary A there exists an 

adversary S such that, for any environment Z and on any 

input, the probability that Z outputs 1 after interacting 

with A and parties running  differs by at most a 

negligible amount from the probability that Z outputs 1 

after interacting with S and  [7], [8]. 

The strength of real adversary A affects the complexity 

of primitives and protocols via the simulation 

requirements. This means that the hardness of the task for 

the simulator boils down to simulation requirements, 

which are indistinguishability, extractability and 

equivocability. Simulator S interacts with the ideal 

functionality and the environment. A black box simulator 

invokes a copy of the real adversary and runs a simulated 

interaction of the real adversary. Indistinguishability and 

equivocability serve to make the view indistinguishable 

for the simulated real adversary.  

We show a summary of relationship between the 

simulation requirements and the adversarial models in 

Table 1 and 2, where Table 1 refers to simulation 

commitments (implicit commitment) while Table 2 

shows the case of bit commitment (explicit commitment). 

We provide no reference to these summary tables as we 

are not aware of such. It is natural in some sense, as 

research papers concentrate on concrete construction in 

given setting (e.g. Byzantine adaptive) and discuss only 

the corresponding simulation requirements.  

Table 1. Simulatability requirements 

 Non-corruption 

network adversary 

Static 

corruption 

Adaptive 

corruption 

Passive 
mode 

indistinguish- 
ability 

indistinguish-
ability 

equivocability 

Active 

mode 

extraction extraction, 

equivocability 

Table 2. Simulatability requirements in case of explicit commitment 

(e.g. bit commitment) 

 Non-corruption 

network adversary 

Static 

corruption 

Adaptive 

corruption 

Passive 

mode 

extraction 

equivocability 

equivocability extraction 

equivocability 

Active 
mode 

extraction 
equivocability 

extraction, 
equivocability 

 

Guideline 2.1: As simulation requirements directly 

affect the (computational) complexity of constructs, 

Table 1 and 2 are very instructive, they provide the first 

aid in assessing the complexity consequences of different 

practical scenarios. For instance:  

In case of explicit commitment we need equivocability 

property in all adversarial settings, while in case of 

implicit commitment it is required only for adaptive 

adversary. Extraction is always needed for an active 

corruption adversary. 

Looking at Table 2 it may seem strange that passive 

static corruption setting requires milder requirements then 

a pure, non-corruption network adversary. Note, however 

in case of passive static corruption the adversary is aware 

of the input variable (committed value) from the start of 

the instance and leaves it unchanged, therefore there is no 

need for extraction at the simulator. Further applications 

of the above tables will be shown subsequently.  

B1.  Indistinguishability 

Indistinguishability means that within the ideal system 

simulator S has to simulate a real message for simulated 

real adversary A from an (abstract) message received 

from ideal functionality F such a way that in the view of 

A the simulated message is computationally 

indistinguishable from the corresponding message of the 

real system.   

Difficulty of such simulation arises from the fact that at 

the time of the simulation of a protocol message the 

simulator is typically unaware of the value of a variable 

underlying the real message. If this value remains 

unrevealed then ―any‖ computationally indistinguishable 

simulated message is sufficient and the simulator will not 

face a simulation commitment problem. 



26 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

Looking at Table 1 in passive static adversarial setting 

this is the only simulation requirements, i.e. this is the 

mildest case. This implies that all provably secure 

cryptographic primitives must support 

indistinguishability requirement (for better transparency 

we have not included this requirement to each cell of the 

above tables). The prominent example is the semantically 

secure encryption under chosen plaintext attack 

(equivalently, ind-cpa secure encryption).  

Note, if the protocol relies on explicit commitment 

functionality (in a higher layer task), then even for the 

mildest corruption adversary (passive static) we need 

primitives (macro primitives) enhanced with 

equivocability property.  

Guideline 2.2: In passive static adversarial setting 

indistinguishability is the only simulation requirement. 

Realization with standard secure primitives which by 

definition support indistinguishability is sufficient (e.g. 

ind-cpa secure encryption).  

Indistinguishability is a generic property which we 

require in the simulation in all adversarial settings as it is 

inherently associated to the underlying paradigm of 

secure emulation.  

B2.  Extractability 

Assume a malicious (active) adversary A corrupts a 

party and falsifies a non-local variable. Extractability 

means the requirement that simulator S has to be able to 

extract the changed value of this variable from the real 

message output by (black box) adversary A as the 

simulator needs this value to form an input message for 

ideal functionality F.  

If corruption is carried out by a weaker, passive 

adversary and we consider implicit (simulation) 

commitment then there is no need for such extraction 

capability by simulator S. Indeed, by definition the 

simulator has access to the inner state of the corrupted 

party within the ideal system therefore S sees also all 

non-local variables which will not be modified by a 

passive adversary A.  

In lower layer tasks implementation of extractability is 

often straightforward when this property is inherently 

supported by standard secure primitives without 

additional enhancement (trapdoor functions). In case of 

(public key) encryption the corresponding decryption 

provides the extraction of bits of the plaintexts. In case of 

digital signature the signed content is sent also in plain, 

i.e. there is no need for extraction. Consequently, it is no 

wonder, that the UC-analysis of well known lower layer 

protocols is almost straightforward concerning the 

simulation proof. In this respect, for example, we refer to 

the analysis of TLS protocol under malicious static 

adversary [17]. In the higher layer of protocols, in 

contrast, macro primitives (e.g. commitment, zero 

knowledge) require an ―UC-upgrade‖ in order to build 

extraction capability into them.          

Guideline 2.3: Lower layer protocols built from ind-

cca2 trapdoor primitives and EU-CMA-secure 

(Existential Unforgeability under Chosen Message Attack) 

digital signatures can provide UC-security assuming non-

adaptive adversary as the extraction capability is 

inherently supported.  

B3.  Equivocability 

Equivocability property is needed when   simulator S 

has to commit to a value which is unknown for it at the 

time of (implicit or explicit) commitment, however 

becomes revealed later during the run of the instance. 

Equivocability allows the opening of the commitment 

consistently to any value which turns up later as the true 

value.  

Recall, in case of explicit commitment opening is part 

of the protocol itself, while in case of implicit (or 

simulation) commitment the true value becomes known 

later via adaptive corruption.     

Example 2.2: In case of symmetric key encryption, 

one time pad is the only known encryption scheme which 

provides equivocability: the simulated ciphertext is 

chosen randomly from the space of ciphertexts, and later 

on the simulated key can easily be adapted to any (true) 

message. Reference [13] shows a classic application of 

changing from symmetric block encryption to 

computational one time pad in order to assure 

equivocability property in symmetric key setting: secure 

PRG is used with timely erasure of the secret seed where 

the seed is obtained from a previous secure key exchange. 

In case of semantically secure public key encryption 

and static setting the simulator chooses an a priori fixed 

message. In adaptive case substantial (highly complex) 

enhancement of standard secure primitive, so called non-

committing encryption is needed to provide 

equivocability.  

Guideline 2.4: Whenever possible it is advisable to 

escape the need for the implementation of the 

equivocability property:  

 

i) There are practically interesting application 

scenarios where the adaptive model is non-realistic 

(see Example 2.1). In such scenarios we can avoid 

the equivocability requirement by assuming that 

the corresponding realization does not use bit 

commitment modules.  

ii) There exist techniques, which allow that static 

secure protocols become secure even against an 

adaptive adversary. Such techniques are 

weakening of the ideal functionality and erasure of 

certain local data (see also in Chapter 4).  

 

III.  MODULARIZATION 

The strong (universal) composition operation is in the 

heart of the UC-framework. Trivially, if we really want to 

exploit this capability, we have to be able to decompose. 

Modularization can be done along different coordinates 

as  

 

i) subtasks, the original cryptographic task itself is 

broken into;  



 Can universally composable cryptographic protocols be practical? 27 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

ii) primitives, macro primitives, modules, setups, 

trusted parties used in the realization of the ideal 

functionality; 

iii) the set of guaranties provided by the ideal 

functionality. 

 

The most straightforward example in set i) is a task 

comprising of a series of subtasks carried out one after 

another in time (e.g. initialization (setup) → party 

authentication → key exchange → secure message 

transmission → secure communication session). The 

prominent technique in this set of modularizations is the 

separation of communication security from the higher 

layer component.  

From set ii) we mention protocols where 

modularization is done in the higher layer by applying 

macro primitives (bit commitment, zero knowledge, 

oblivious transfer) or special primitives that are used to 

directly realize some secure function evaluation subtask 

(e.g. homomorphic encryption for accumulation of 

encrypted inputs into an encrypted output).  

Standard security guaranties provided by any ideal 

functionality are secrecy, correctness and robustness.  

Here standard means that it follows from the intuitive 

notion of an ideal functionality within the UC-framework. 

Indeed, correctness and secrecy are automatically 

satisfied since an input to the ideal functionality is not 

revealed in any way to the adversary and the ideal 

functionality does compute the result correctly. 

Robustness follows too; in the UC framework, we can 

corrupt parties and still have a good simulation in the 

ideal system (up to the level, tolerated by the ideal 

functionality). Beyond these standard guaranties an ideal 

functionality may provide various further guaranties, e.g. 

fairness, anonymity, deniability.  

A.  Modularization In The Lower Layer 

Separation of the security of the communication 

channels (lower layer) from the higher layer (sub-)task is 

a standard approach in the UC-framework. The main 

lower layer tasks are party and message authentication, 

secret message sending and key exchange.  

Here we demonstrate this modularization step via 

examples. We will refer to the following type of 

communication channels: raw, authenticated (auth), 

message authentication (mauth), secure (sec) and 

confidential (conf) message transmission channels. Ideal 

functionalities for authenticated (FAUTH) and secure 

message transmission (FSMT) are defined in [8]. Ideal 

functionalities for raw and confidential channels, as 

examples are given below. 

Example 3.1:Intuitively, raw transmission guaranties 

no security at all:  

Upon receiving input (sent, , m)sid from party A, do: 

if = (A, B, ')sid sid for some message m then send 

(sent, , m)sid to the adversary, then after the adversary 

replies with a message (sid", m') , output (sent, ", m') sid  

to party B, where " = (X, B, ')sid sid for arbitrary party 

X and message m’. Else ignore the input. 

Example 3.2:Recall a secret channel (secure message 

transmission) provides privacy and authenticity services, 

where authenticated transmission means integrity 

protection as well as party authentication.  By 

confidential transmission of a message m we mean a 

weakened secret channel which does not provide full 

authentication just integrity protection. For intuition, 

consider the example when a formatted message arrives 

to a party encrypted by public key encryption, i.e. sent by 

―somebody‖. The corresponding ideal functionality is the 

appropriate modification of FSMT [8], where the modified 

part is the following: 

Output (sent, , m)sid  is sent to party B, output 

(send, , (m))sid l is sent to the adversary, where (m)l is 

the leakage function, furthermore =(B, ')sid sid for some 

unique 'sid (unique for messages to B)….  

Note, party B is not informed about the identity of the 

sender (via the sid ).  

Subsequently we show examples for modularization 

and idealization along communication channels. We will 

do it on short, classic protocols as their length allows 

considering several of them and allows demonstrating 

different aspects of the approach within a few steps.  

Though the general approach of designing higher layer 

protocols over ideally secure or ideally authenticated 

channels is standard within the UC-framework, the 

method we show below is specific. The general approach 

suits the case when we design a new UC-secure protocol 

and the same type of ideal channel is assumed under each 

(higher layer) protocol message (e.g. an FAUTH-hybrid 

protocol is designed). In contrast, here our aim is to 

analyze existing protocols which originally were not 

designed within the UC-framework. We will fit the 

corresponding ideal channel to each individual message 

within the protocol, or even a message is broken into 

parts and different parts are transmitted over different 

type of channels. Here we assume that we are able to 

identify those channels. Identification means that we can 

determine the type of the channel (e.g. authentic, 

confidential, secret etc.) as well as we can parse the 

corresponding cryptographic elements, their arguments 

and parameters. Reasoning behind such assumption is 

that all potential techniques for cryptographic realization 

of these sub-tasks are known. Furthermore, parsing of 

messages should have to be made correctly by the 

description of the protocol. Separation and idealization of 

channels help to get a clearer and simpler view of the 

protocol as the channel-hybrid will only contain 

cryptographic operations which implement the upper 

layer task furthermore the UC-secure implementation of 

the channels can be analyzed independently.   

Example 3.3: 

Preprocessing 

The analysis starts with preprocessing. If a message of 

the protocol can be parsed to elements corresponding to 

different type of channels we send those elements 

separately in consecutive protocol steps. The aim is to use 

appropriate channel for each message or message part. 

There are protocols where parties are used also for 



28 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

forwarding (relaying) messages. We substitute such 

relaying by direct sending. We will use the following 

notation in the hybrid protocol: 

 

B→ C: M / channel_type (attributes) 

 

where information M is sent from party B to party C over 

a channel of type channel_type with optional channel 

attributes (e.g. session id, leakage function).   

For a concrete instance, hybridization of the modified 

Otway-Rees session key transfer protocol is shown below 

(corresponding rows of the hybrid are pointed by →): 

 

Setup: secret encryption keys KAS and KBS  

 

1. A→B: A, (B), NA      → -/raw 
1 1( = (A,B, '))sid sid    

2. B→S: A, B, NA, NB   →-/raw 
2 2( = (A,B, '))  sid sid  

3. S→B: {NB, A, B, k}KBS → k /sec 
3 3( = (A,B, '))  sid sid   

4. S→A: {NA, A, B, k}KAS →k /sec 
4 4( = (A,B, '))  sid sid     

 

The setup of channel parameters (e.g. secret keys) is 

prepared by initial setups and during steps preceding the 

use of the actual channel. Accordingly, we analyze the 

security of the realization of channels one-by-one, 

following their order within the instance. Security of a 

channel within an instance assumes the security of all 

preceding channels. The steps of the analysis are the 

following:  

 

i) idealization of channels per message base,  

ii) analysis of the UC-security of the hybrid,  

iii) analysis of the UC-secure realization of  channels.  

 

When the task is of lower layer then step ii) is typically 

trivial as there remains no further cryptographic operation 

within the channel-hybrid protocol. In step iii) the 

essential technical task is to ensure (cryptographic) 

separation of different channels inside the instance and 

within different instances. During an analysis we may 

also stumble into usual ―tricks‖ in traditional protocol 

practice such as implicit reference, overloading or state 

dependence, which naturally clear up in an UC-revision. 

For example, in the above instance encryption of 

redundant message wishes to realize both authenticity and 

privacy. 

Example protocols 

As the protocols below are well known and we refer to 

them in their original form, for the sake of space saving, 

we will not explain the notations of protocol elements in 

details.  We will assume static adversary.  

Protocol 1 (public key Needham-Schroeder key 

exchange protocol):  

 

Setup: public keys PKA and PKB 

 

1. A→ B : EPKB (NA, A) 

→ A, NA /conf 1 1 A( = (B, ' = N ))sid sid  

2. B→ A : EPKA(NA, NB, B) 

 → B, NA, NB /conf 
2 2 A B( = (A, ' = (N ,N ))sid sid  

3. A→ B : EPKB (NB) 

 → NB /conf 
3 3 B( = (B, ' = N ))sid sid   

4. A, B → Z: 
A Bk = N + N  (mod 2)  

 

Note, random nonce NA and NB serve not only as 

ingredients for the common session key k but implicitly 

they are used also as part of sid. This overload is 

formalized in the hybrid by duplicating the corresponding 

elements.  

First we consider the security of the hybrid protocol. 

We have to simulate the hybrid protocol in the ideal 

system with ideal key exchange functionality FKE [8]. 

There are no inputs just public identifiers (A, B) and 

locally generated random elements (NA, NB). First we 

consider a pure network adversary (MIM adversary), and 

next a static corruption adversary. 

Assume the goal of the network adversary is to agree 

in a common key with honest party B in the name of 

party A. The essential steps of the simulation are the 

following. The simulated (real) adversary assumes 

sending input message 
1 Am = (A, N ')  to party B via the 

first confidential channel however the message is 

intercepted by the simulator. The simulator sends 

message 
2 2 A B(send, ', (m = (B, N ', N '))) sid l  to the 

(simulated) adversary as this is the view of a network 

adversary of the second confidential channel. The 

adversary is unable to carry out its attack successfully. 

When it sends a message 3m = x the simulator drops the 

message. Note, in this case the simulator does not interact 

with the ideal functionality.   

Assume now that initiator party A is corrupted (both in 

the real and the ideal systems). The simulated (real) 

adversary assumes sending input 
1 Am = (A, N ')  to party B 

via the first confidential channel however it arrives to the 

simulator. The simulator waits until it gets key k output 

by the ideal functionality FKE. Then the simulator sends 

message 2 A Bm  = (B, N ', N ')  to the simulated adversary, 

where B AN ' = k - N ' (mod 2)  (in the syntax of the second 

confidential channel). The simulated adversary sends 

message 3 Bm = N (as an input to the third channel), which 

is dropped by the simulator. Simulation in case of 

corrupted responder (party B) is similar. 

In static setting the channels can be realized by 

semantically secure (ind-cpa) public key encryptions.   

Protocol 2 (Kerberos symmetric key exchange 

protocol) 

Setup: secret keys KAS and KBS  

 

1. A→ S: A, B, NA   → - /raw 1 1( = (A,B, '))sid sid     

2. S→ A:{k, NA, L, B}KAS  → k /sec 2 2( = (A,B, '))sid sid  

3. S→ B: {k, A, L}KBS   → k/sec 3 3( = (A,B, '))sid sid   

 

Intermediate setup: session key k 

 

4. A→ B: {A, TA}k   → A,TA /mauth 4 4( = (A,B, '))sid sid



 Can universally composable cryptographic protocols be practical? 29 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

5. B→ A: {TA}k       → TA /mauth 
5 5( = (A,B, '))sid sid      

6. A, B→ Z:  k 

 

In steps 4 and 5 the aim is to provide confirmation of 

knowledge of common key k. In both directions the same 

key (k) is used to encrypt a nonce value (TA) and its 

extension with identifier A. It is not trivial to find an 

intuitive ideal analogue to these steps of proof of 

knowledge relying just on our secure transmission 

elements (conf, auth and sec). The closest concept is 

message authentication based on symmetric key 

encryption.  Indeed, as the messages here are not private, 

we would not degrade the security by prefixing them to 

the ciphertexts and this way we would obtain messages 

with MACs (Message Authentication Code). Recall, 

within the UC-framework we can resolve the problem of 

dependence by common keys by applying the JUC (Joint 

state UC) composition operation [16]. Applying JUC for 

this concrete problem we simply have to ensure that the 

message in each dependent MAC-channel carries unique 

identifier. Time parameter TA assures such uniqueness. 

(Key k is probably used also in protocol messages which 

follow this key agreement, where we also have to resolve 

dependency via JUC.)     

 

Protocol 3 (Chain of digital signatures)   

 

A→ B: (Sign
(n)

(…Sign
(2)

( Sign
(1) 

(m1), m2)…) mn) 

 

For preprocessing, let’s decompose this message into n 

sub-messages each with a single signature: 

 

1) A→ B: Sign
(1)

 (m1) 

 

2) A→ B: Sign
(2)

(― Sign
(1)

 (m1)‖, m2)  

… 

n) A→ B: Sign
(n)

(―Sign
(n-1)

(…, mn-1)‖, mn
 
) 

 

where ―xxx‖ is just a bit-string, i.e. it is not considered as 

representation of a cryptographic operation. For instance, 

when party B processes message m2 then it verifies Sign
(2) 

on message  [―Sign
(1)

 (m1)‖, m2]. This way we derive n 

signature based authenticated channels.   

We refer to the signature-based authentication protocol 

(SBA) and the claim that this protocol UC-securely 

emulates ideal functionality FAUTH (authenticated 

message sending) in the hybrid of certification ideal 

functionality (FCERT) [9]. Accordingly, for UC-secure 

realization of chained digital signature (and the digital 

signature, in general) we require public key certificates to 

be sent along signatures, where the (realized) signature 

algorithms provide EU-CMA-security guaranties.  

An example for the chained signature is the 

implementation of an authenticated route in a 

communication graph. The authenticated route is an 

extension of the authenticated channel (authenticated 

link), which latter is a one hop route only. For an 

application we refer to secure route acquisition protocols 

in sensor network environment [33], [35], [36].   

Here we make a small detour to step ii) of the analysis, 

the analysis of channel-hybrids. Intuitively, after the 

idealization of real channels the remaining cryptographic 

operations serve exclusively the protection of honest but 

distrustful parties. Consequently, if we fully hybridize 

such a protocol (both in communication channels and 

higher layer subtasks), the resulting hybrid already 

contains no cryptographic operations. Intuitively, we 

have neutralized all adversarial attacks: as if there were 

no network adversary and as legitimate parties would 

give up dishonest behavior. One might guess that for full-

hybrid protocols UC-security simplifies to guaranteeing 

(verifying) correctness, i.e. the predetermined input-

output functionality of honest parties in the view of the 

environment. The problem is a bit more complex we 

show in the next example.  

Example 3.4: Consider the following simple 3-party 

functionality: parties A and B get inputs m1 and m2, 

respectively and party C outputs m1 + m2.  

Natural realization is secure transmission of the 

corresponding messages from A and B to C. Obviously, 

the channel-hybrid protocol corresponding to this 

realization is functionally correct (party C outputs m1 + 

m2). Assume now a realization where, additionally, one 

of the parties A and B shares its input with the other party 

(over a secure channel). Though this version remains 

functionally correct, it is not UC-secure. Indeed, in case 

of corruption the outputs of the adversaries in the real and 

ideal systems will differ. We generalize this example as 

follows: 

A functionally correct full-hybrid protocol is UC-

secure if and only if none of the parties gets to know any 

input information which is not allowed by the ideal 

functionality (of the task).  

The argument is the following. In case of corruption 

the simulator also gets access to all inputs, outputs as well 

as all messages received or generated by corrupted parties 

up to the time of corruption.  Recall, a black box 

simulator plays the role of an ―interpreter‖ between the (a 

simulated copy of the real) adversary and the ideal 

functionality. Accordingly, a simulation problem may 

happen by the following two reasons: i) the information 

the simulator gets from the ideal adversary is insufficient 

to simulate an indistinguishable real message for the 

adversary or ii) the simulator is not able to extract input 

variables from a message generated by the real adversary. 

Parties transmit and receive data elements such as public 

elements (e.g. party identifiers), locally generated random 

elements (random keys, random nonce), inputs received 

from the environment as well as some mappings of such 

elements. According to our assumption of fully 

hybridized protocol, case i) of simulation problem will 

not happen. However, case ii) may happen when in the 

real system some parties receive input elements from 

other parties during the run which are not available for 

the simulator in the ideal system (recall the above 

example).  

The practical benefit of this example is that it 

simplifies the assessment of the UC-security of the full-

hybrid protocol. After we have verified that the hybrid 



30 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

protocol is functionally correct, we check the state of 

parties at the end of the run for the presence of input 

values (in general, input information) which they are not 

allowed to possess according to the definition of the ideal 

functionality. In the above key exchange protocols we did 

not need this observation as there were not input 

messages.  

B.  Modularization In The Higher Layer 

Higher layer tasks are typically carried out between 

distrustful parties. Corresponding applications appear, for 

example, in tasks of e-voting, e-auctions, e-gaming, e-

gambling, contract signing or secured database lookup. 

Designers of these protocols apply modules, 

overwhelmingly commitment and zero knowledge 

modules. The reason is that such modules fit to intuitive 

meaning of the task or deter parties from deviation from 

the rules of the protocol. For example, commitment is the 

essence of bidding in e-auction. Another example is non-

repudiable commitment in e-gaming and e-gambling 

protocols, where such modules guarantee that players’ 

misbehavior will be detected.  

Classic results on modularization of the higher layer 

were given in [38] and [21], extended for the UC-

framework in [15]. The GMW protocol compiler assumes 

we have constructed a protocol for the semi-honest model 

(in stand alone and static setting). The compiler outputs a 

protocol which is secure even against a malicious 

adversary: we allow for such an adversary to choose the 

local input (m’) and the random-pad (r’) arbitrarily (from 

the predetermined range), however we want to force it to 

calculate the protocol message (M) according to the 

predetermined function f, i.e. M = f(m', r'). This means 

that input–output behavior of the protocol output by the 

compiler under any attack from a malicious adversary can 

be reproduced for the original protocol under some attack 

from a semi-honest adversary.  

Recall, the main steps of forcing the wanted behavior 

are the following:  

At the beginning of the run parties commit to their 

local input (which input potentially has been maliciously 

modified) and also to their local random-pad. In both 

these commitments the committing parties also prove by 

zero knowledge proof of knowledge that they know 

corresponding opening information. Intuitively, from this 

point on parties are securely bound to these inputs and 

random-pads anyhow those were chosen. Indeed, because 

of the soundness property of the proof, we know that the 

user must really act honestly in order to be able to 

provide a valid proof. Furthermore, because of zero 

knowledge property, we know that the user does not 

compromise the privacy of its secrets (input, random-pad). 

During the run a party actually sending a protocol 

message proves that the message has been calculated by 

the algorithm defined by the protocol with inputs (local 

input, local random-pad) fixed at the beginning of the run.  

Subsequent examples show application scenarios, 

where malicious behavior would harm correctness 

without efficient countermeasures.  

Example 3.5: Consider a task of secure data collection, 

where the communication network is a tree, with leaves 

as data sources. Each data element is an integer value 

from range (0,1,…N). Intermediate nodes forward data 

toward the root, which calculates some statistics (e.g. 

average). Assume neither the forwarding nodes nor the 

root is allowed to see the individual values.  A malicious 

data source could significantly distort the result by 

selecting a value well beyond N. To prevent such 

deviation each data source should provide a zero 

knowledge proof that his value is within the legitimate 

range.   

For another application scenario, we can consider e-

voting with parameter value 1N  , i.e. there are only two 

candidates [22]. Another scenario is the task of e-auction 

with Vickrey-type of auction, where each bidding party 

sends its bid encrypted to the broker and the highest 

bidder pays only the second-highest bid.  A malicious 

bidder may be able to ensure his winning by sending an 

invalid high bid while paying only a ―normal‖ price [28].   

Example 3.6: An ―exotic‖ application scenario is an 

electronic card game between with remote parties 

without common trusted functionality (e.g. poker over 

Internet). Parties have to be forced to do the steps of the 

game correctly like distributed shuffling of deck, dealing 

of cards, drawing or opening of cards. In this application 

zero knowledge proofs are used extensively [32]. □ 

Example 3.7: In the tasks of an e-contract distrusting 

parties cautiously exchange signatures portion by portion. 

Zero knowledge proof is used to prove that a portion of a 

signature is prepared correctly (note, the correctness of a 

portion cannot be verified by standard signature 

verification). We see once again the case that if the 

protocol is designed for semi-honest adversary then 

honest parties might not be able to detect that a party 

deviated from the rules of the protocol. Therefore we 

have to upgrade the protocol by adding zero knowledge 

proof to it [24].  

Recall, semi-honest corruption adversary does not alter 

the input values. In the above examples the adversary was 

allowed to change values arbitrarily though forced to do it 

within the predetermined range. It is not a contradiction. 

Note the latter values are not inputs from the environment 

(by the model) but correspond to a local variable, e.g. the 

party decides on his own vote or bid.     

Guideline 3.1: In contrast to the malicious adversarial 

setting, when the adversary can be forced back to semi-

honest behavior with appropriate algorithmic measures 

(in particular, zero knowledge proofs), in general, we 

cannot compel the adversary to choose static corruption 

instead of adaptive.  

Indeed, if the adversary is passive then we are not able 

to detect the moment when the adversary starts corrupting 

a party. Timing of adaptive corruption cannot be 

influenced by direct algorithmic measures. Instead, the 

application scenario should prevent adaptive such attacks.  

Guideline 3.2: There are two algorithmic 

countermeasures against malicious behavior. One of them 

is forcing such adversary to give up malicious behavior 

and change to be semi-honest. This technique uses 



 Can universally composable cryptographic protocols be practical? 31 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

commitment and zero knowledge macro primitives in the 

higher layer. Handling the ―weak‖ malicious behavior 

where the adversary substitutes input values but does not 

deviate from the usage of correct mappings when it 

generates messages, we rely on extraction capabilities at 

corresponding primitives. This latter technique of 

extraction appears both in the lower and the higher layer.   

Except [22] constructions referred in examples 3.7-9 

did not set the goal of providing the strong UC-secure 

guaranties. Generic transformations from Σ-protocols to 

UC-ZK protocols are known [18], unfortunately, they 

come along with a significant computational overhead, 

making the resulting protocols impracticable for real-

world usage (at least as of yet). The most efficient UC-

secure zero-knowledge proofs of knowledge have been 

proposed in [6] so far.  

C.  Modularization And Abstraction Along Primitives 

From the point of view of the efficiency of analysis 

within the UC-framework, one of the most promising 

techniques is the cryptographically sound Dolev-Yao 

style symbolic analysis [12]. Here cryptographic 

primitives are substituted by their symbolic models. If 

this way we could substitute all the primitives within the 

protocol, we could get a fully symbolic version of the 

protocol amenable even to automatic analysis by using 

standard tools. The approach in [12] generates such 

symbolic version in two steps. The first step is done 

within the UC framework where the primitives are 

substituted by the corresponding ideal functionalities. In 

the second step the resulted semi-abstract protocol is 

converted into a symbolic protocol. As of yet the 

available primitives within this approach are public key 

encryption ([12]) and digital signature [30]. The key 

theoretical point is that we can substantially simplify the 

analysis without loosing cryptographic soundness. The 

simplification of the analysis provides the potential for 

analyzing larger protocols, assuming that the protocol is 

built from the mentioned primitives only. Recall, in 

contrast, carrying out reduction proofs is tractable only 

for smaller protocols (and this is the main pressure for 

searching ways to modularization).  

Similar approach has been suggested in the works of 

Backes, Pfitzmann and Waidner (BPW) [1], [2], [3]. This 

approach falls behind [12] in several respects. It requires 

from the analyst direct reasoning about protocols within a 

full-fledged cryptographic model. Consequently, this 

approach retains much of the original complexity of the 

problem (asymptotic nature and complexity bounds). Big 

practical advantage of the approach [12] is that the 

(potentially) automated security analysis can be done to a 

single session, and it is guaranteed that the verified 

security properties will be retained for the overall system, 

even when this system consists of an unbounded number 

of sessions, and is not fully known in advance. In contrast, 

in the BPW’s approach the symbolic analysis is applied 

to the entire system as a whole, i.e. for all sessions and all 

protocols that run concurrently with the target instance. 

On the positive side the BPW’s approach provides richer 

library of primitives for symbolic substitution. For 

practical application of the BPW’s approach we refer to 

[34], [35], [36].  

 

IV.  LOWERING THE COMPLEXITY 

In the previous section we have seen tools which help 

to force malicious behavior back to semi-honest. As a 

result semi-honest designs are upgraded to stand attacks 

even from a malicious adversary. Now we are interested 

in tempering the complexity consequences of adaptive 

corruption and finding ways to upgrade designs to 

adaptive made originally for static setting.   

A.  Weakening of The Ideal Functionality 

The idea is the elimination of the need for the 

equivocation property via weakening of the ideal 

functionality. One such technique includes an appropriate 

non-information oracle in the ideal functionality. This 

technique was proposed in [13] and demonstrated for the 

2-step DH key exchange as well as for a symmetric key 

encryption based secure channel protocol. Essentially, 

such an oracle exempts the simulator from the task of 

simulation of real protocol message based on message 

received from the ideal functionality. The oracle provides 

the simulator with the real message such a way that the 

simulator gains no additional information it would not 

have in a simulation without the help of the oracle.     

The requirement of providing no information is 

inherently connected to the concept of semantic security. 

In the mentioned applications in [13] the DDH 

assumption as well as semantically secure symmetric key 

encryption was assumed, respectively.  Any semantically 

secure mapping which is involved in simulation 

commitment can be used in non-information oracle in 

order to eliminate the need for equivocability. However 

the need for extraction capability cannot be eliminated, in 

general, because in case of a malicious adversary the 

―weakest‖ action is changing the inputs of the corrupted 

party in an arbitrary way. Therefore a goal to solve 

cryptographic tasks in adaptive setting using ―just‖ 

standard secure primitives can be reached, in general, 

only if we assume a semi-honest corruption adversary 

(together with weakened ideal functionality), as in semi-

honest static setting indistinguishability is the only 

simulation requirement. Exception is when the only 

primitive involved in simulation commitment problem is 

a trapdoor permutation which can inherently provide 

extraction capability without extractability enhancement. 

B.  Erasure of Local Data 

During the run of the protocol trusted erasure of local 

data not needed any longer may boost the level of 

security by a natural way.  

A model for the erasure technique is the following. Let 

z = F(input, local) a value sent in the real protocol, 

where F is a deterministic mapping. Let 

z'= F(input', local') the corresponding value simulated in 

the ideal system without knowing value input. If value 

local is erased (in the real protocol) after z has been 



32 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

computed, the simulator is exempt from the potential 

commitment problem of producing a value local” such 

that z'= F(input, local") . This means we eliminate the 

need for equivocability.  

In general, trusted erasure may help to eliminate 

equivocability requirement or at least to reduce the 

complexity of the realization of such a requirement.  

Example 4.1: An intuitive example for the elimination 

of the commitment problem in adaptive setting is an e-

voting application, where we erasure the encrypted 

individual votes, right after they are securely accumulated 

by homomorphic encryption [22]. For an example for 

lowering the complexity of the equivocality property, we 

can refer to a classic erasure application in case of 

symmetric key encryption. Here we change from 

semantically secure block encryption to OTP encryption 

based on secure PRG with timely erasure of the secret 

seed of the PRG (where the seed is the output of a 

previous secure key exchange). Recall, by using PRG we 

get a computationally secure equivalent of OTP, where 

equivocability is straightforward [13].□ 

A proof for ―adaptive UC-security without erasure‖ for 

a design is surely of higher scientific value than ―with 

erasure‖. However, if under efficiency considerations the 

practical usage of the design has no perspective then the 

scientific value is questionable for a practitioner. The 

usual objection to erasures concerns its trust-ability, 

typically by the following two arguments: the information 

from magnetic storage media cannot be erased perfectly 

as well as when the protocol runs on general purpose 

firmware such as Windows machines hanging on the 

Internet, a party cannot be sure that all backups have also 

been eliminated. It is a trade-off that weak infrastructure 

requires heavier algorithmic security components. Our 

point here is that if we want to prevent the blow up of 

computational complexity of implementations and to 

keep the strong guaranties of UC-security at the same 

time, we must support it by stronger firmware at the 

parties. For example, this may mean the use of security-

purpose (but commercial) integrated circuits or modules 

where all crypto-related data is localized and the erasure 

is guaranteed by the design of the firmware element.    

Can we always achieve UC-security in adaptive setting 

if we undertake the complexity consequences?  It seems 

the answer is negative, as it is guessed that in general 

even with trusted erasure capabilities we cannot attain 

security in adaptive setting. Concretely, [37] presents a 

guess that we cannot step higher than static security, as 

even forward security (weak case of adaptive security 

when corruption can happen just before or after the run) 

cannot be attained for longtime authenticators even if we 

can erase local data. Here we provide a supporting 

argument to this guess:   

Because, secure identification (FID) can (trivially) be 

realized over FAUTH-hybrid, it is enough to consider the 

conjecture for FID. Consider the following protocol model 

(KeyGen, I, V) for identification: 

We take it plausible, that it is necessary for a party of 

an identification procedure to have a unique public 

identifier and a related secret element k, generated by 

algorithm KeyGen.  

Assume a two-party identification task, where party B 

authenticates party C. During this authentication, party C 

receives (in one or more steps) bit-string 

B C Bi = I(r , r , k , pub) , where algorithm I is public; rB  and 

rC  are temporary local random elements generated by 

party B and C, respectively; kB  is the unique secret 

element of party B; pub is public information (e.g. public 

identifiers, public keys etc.).   

Party C runs a public verification algorithm V with 

input (i, rC, pub). Assume, after the run of an instance, 

honest parties erase temporary local data elements, here, 

random elements rB (rC). As long-time authentication is 

considered therefore the secret elements are not erased. 

The adversary sees value i.   

Assume now that the adversary corrupts party B after 

the run of the instance of the protocol and gets access to 

kB. Forward security cannot be achieved, because, as 

soon as, the adversary becomes aware of the key, he will 

be able to distinguish a simulated transcript from a real 

one. Indeed, there should exist such a distinguishing 

algorithm, otherwise, anybody could impersonate the 

party successfully without knowing the secret 

information.    

C.  Using Standard Primitives? 

Recall, several lower layer protocols which are in 

practical use (mostly key exchange protocols) have been 

analyzed in the UC-framework and found secure in 

specific adversarial settings.  What is the implied 

message of these results for the daily usage of such 

protocols? Namely, these results on UC-security are valid 

only when the primitives in those protocols are UC-

secure (in the given adversarial setting), i.e. if we 

substitute the standard primitives by corresponding 

provably secure ones. The point is that by such 

substitution the original practical efficiency is typically 

eliminated. Accordingly, we raise the following ―strange‖ 

pragmatic question: is it possible to provide any provable 

guaranties if we keep the original fast non-UC-secure 

primitives? The composition theorem suggests that we do 

loose all guaranties. Really all guaranties are lost?  

In the subsequent intuition we use the conventional 

notations from [7], [8]. Assume a primitive  UC-

emulates ideal functionality  , furthermore protocol 

 UC-emulates hybrid  . Assume that hybrid π
φ
, UC-

emulates the ideal functionality G of the task. A protocol 

or primitive is successfully attacked if it can be 

distinguished from its ideal version with non-negligible 

probability.  By the proof of the UC-theorem ([8]) if a 

(PPT) algorithm h successfully distinguishes protocols 
 and  then h can be used to successfully (with non-

negligible probability) distinguish also  and  (at least 

one instance of them from those called by   

concurrently). Now assume we substitute primitive ρ with 

a standard primitive ' under the following empirical 

assumption: we take the risk (thought to be negligible) 

that in any practical application scenario there appears an 



 Can universally composable cryptographic protocols be practical? 33 

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

efficient algorithm able to break ' by the security 

assumption made for primitive  (e.g. an AES ciphertext 

reveals some partial information about the underlying 

plaintext, i.e. a ―practical‖ semantic security assumption 

is broken). In other words, any attacking (distinguishing) 

algorithm against ' is assumed to come only from a 

subset H of all PPT algorithms (scaled in complexity by 

security parameter). Via the mentioned proof of the UC 

theorem set H implies a set H’ of algorithms aiming to 

break (distinguish) protocols  and  .  It follows that 

protocols  and  also cannot be distinguished 

successfully (conditioned on attack set H’). As  UC-

emulates G (they are indistinguishable for any PPT 

algorithm), we might conclude that  and G are also 

indistinguishable in the restricted attack environment. We 

could say that  ―conditionally UC-emulates‖ G.  

Note, intuitively, here we would like to separate the 

provable security of the ―UC-logic‖ of the protocol (i.e. 
 UC-emulates G) from the assumption about the UC-

security of a primitive. For example, the correct ―UC-

logic‖ is responsible for secure separation of the target 

instance in the environment of concurrently running 

arbitrary protocols. As a closing word, we reiterate that 

here we raised the question of what security guarantee 

remains if any if we substitute an UC-primitive with 

conditionally secure one. 

 

V.  CONCLUSIONS 

Universal composability provides the available 

strongest guarantees for the security of cryptographic 

protocols. The price for provable guaranties is paid in 

terms of computationial complexity. One way to lessen 

this handicap in efficiency is via designing more efficient 

UC-secure primitives and macro primitives. The other 

and more pragmatic way is to look for practical trade-offs 

between the strength of formal guaranties, application 

scenarios and the complexity of realization. We followed 

and promoted the latter way in this paper. Our main focus 

was on the adaptive Byzantine corruption mode of the 

adversary because this mode forces the highest increase 

in complexity. The root of this increase is manifested in 

the simulation requirements of extractability and 

especially in equivocability.  We highlighted several 

techniques to ease the complexity burden, which are 

weakening of the ideal functionality, allowing erasures of 

local data as well as stepping back (forcing back) to semi-

honest static setting. We strongly believe that even 

modest but (formally) provable goals, especially, if 

tunable to application scenarios are important when a 

wider penetration of the UC-technology is desirable into 

the daily-practice of protocol applications.  

REFERENCES 

[1] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov and J. 

K. Tsay, Cryptographically Sound Security Proofs for 

Basic And Public-Key Kerberos.  Proc. 11th European 

Symp. on Research. in Comp. Sec., 2006. 

[2] M. Backes, B. Pfitzmann, and M. Waidner, A universally 

composable cryptographic library. IACR Cryptology 

ePrint Archive, Report 2003/015, January 2003. 

[3] M. Backes and B. Pfitzmann, A General Composition 

Theorem for Secure Reactive Systems. Theory of 

Cryptograpy Conference (TCC 2004), LNCS 2951, pp. 

336-354, 2004. 

[4] B. Barak, R. Canetti, J. Nielsen, and R. Pass, Universally 

Composable Protocols with Relaxed Set-up Assumptions. 

In Proceedings of FOCS, 2004. 

[5] B.Barak, R.Canetti, Y.Lindell, R.Pass and T.Rabin, Secure 

Computation Without Authentication. International 

Cryptology Conference, Santa Barbara, California, USA, 

August 14-18, CRYPTO 2005, 2005. 

[6] J. Camensisch, S. Krenn and V. Shoup, A Framework for 

Practical Universally Composable Zero-Knowledge 

Protocols, In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 

2011, 2011. 

[7] R. Canetti, Security and composition of multi-party 

cryptographic protocols. Journal of Cryptolology, vol. 13, 

no.1, 2000.   

[8] R. Canetti, Universally Composable Security: A New 

Paradigm for Cryptographic Protocols. Cryptology ePrint 

Archive, Report 2000/067. (received 22 Dec 2000, last 

revised 16 Jul 2013) 

[9] R.Canetti, Universally Composable Notions of Signature, 

Certification, and Authentication. 17th IEEE Computer 

Security Foundations Workshop (CSFW), 2004. 

[10] R. Canetti, Y. Dodis, R. Pass and S. Walfish, Universally 

Composable Security with Global Setup. Cryptology 

ePrint Archive, Report 2006/432. Nov 2006. 

[11] R. Canetti and M. Fischlin, Universally Composable 

Commitments. CRYTO 2001, 2001. 

[12] R. Canetti and J. Herzog, Universally Composable 

Symbolic Analysis of Mutual Authentication and Key-

Exchange Protocols. DIMACS workshop on protocol 

security analysis, June 2004. 

[13] R. Canetti and H. Krawczyk, Universally Composable 

Notions of Key Exchange and Secure Channels. 

L.R.Knudsen (Ed.): EUROCRYPT 2002, LNCS 2332, pp. 

337-351, 2002.  

[14] R. Canetti and H. Krawczyk, Security Analysis of IKE's 

Signature-Based Key-Exchange Protocol. In CRYPTO 

2002, LNCS 2442, pp. 143-161, 2002. 

[15] R. Canetti, Y. Lindell, R. Ostrovski, A. Sahai, Universally 

composable two-party and multi-party secure computation. 

34th STOC, pp. 494-503, 2002. 

[16] R. Canetti and T. Rabin, Universal Composition with Joint 

State. CRYPTO 2003, 2003. 

[17] S. Gajek, M. Manulis, O. Pereira, A-R. Sadeghi, J. 

Schwenk, Universally Composable Security Analysis of 

TLS. ProvSec 2008, pp. 313-327, 2008. 

[18] J. A. Garay, P. MacKenzie, and K. Yang, Strengthening 

zero-knowledge protocols using signatures. Journal of 

Cryptology, vol. 19, no. 22, pp. 169-209, 2006. 

[19] J. A. Garay, D. Wichs, H-S. Zhouz, Somewhat Non-

Committing Encryption and Efficient Adaptively Secure 

Oblivious Transfer. CRYPTO 2009, pp. 505-523, 2009.  

[20] J.A. Garay, Y. Ishai, R. Kumaresan and H. Wee, On the 

Complexity of UC Commitments. LNCS Vol. 8441, 2014, 

EUROCRYPT 2014, pp. 677-694, 2014. 

[21] O. Goldreich, S. Micali, and A. Wigderson, How to play 

ANY mental game. In Proceedings of the nineteenth 

annual ACM conference on Theory of computing, ACM 

Press, pp. 218-229, 1987.  

[22] J. Groth, Evaluating Security of Voting Schemes in the 

Universal Composability Framework. ACNS 2004, pp. 46- 

http://dblp.uni-trier.de/pers/hd/m/Manulis:Mark
http://dblp.uni-trier.de/pers/hd/p/Pereira:Olivier
http://dblp.uni-trier.de/pers/hd/s/Sadeghi:Ahmad=Reza
http://dblp.uni-trier.de/pers/hd/s/Schwenk:J=ouml=rg
http://dblp.uni-trier.de/pers/hd/s/Schwenk:J=ouml=rg
http://dblp.uni-trier.de/db/conf/provsec/provsec2008.html#GajekMPSS08
http://dblp.uni-trier.de/db/conf/crypto/crypto2009.html#GarayWZ09
http://dblp.uni-trier.de/db/conf/acns/acns2004.html#Groth04


34 Can universally composable cryptographic protocols be practical?  

Copyright © 2015 MECS                                              I.J. Computer Network and Information Security, 2015, 10, 23-34 

60, 2004. 

[23] F. B. Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. 

Vergnaud, Efficient UC-Secure Authenticated Key-

Exchange for Algebraic Languages. Public Key 

Cryptography 2013, pp. 272-291, 2013. 

[24] H. Jayasree and A. Damodaram, A Novel Fair Anonymous 

Contract Signing Protocol for E-Commerce Applications. 

International Journal of Network Security & Its 

Applications (IJNSA), vol.4, no.5, Sept. 2012. 

[25] D. Hofheinz and E. Kiltz, The group of signed quadratic 

residues and applications. In S. Halevi, editor, CRYPTO 

2009, LNCS 5677, pp. 637-653, 2009. 

[26] H. Krawczyk, HMQV: A High-Performance Secure 

Diffie-Hellman Protocol. CRYPTO 2005, LNCS 3621, pp. 

546-566, 2005. 

[27] Y. Lindell, Highly-Efficient Universally-Composable 

Commitments based on the DDH Assumption. 

EUROCRYPT 2011, pp. 446-466, 2011.  

[28] H.Lipmaa, N.Asokan, V.Niemi, Secure Vickrey Auctions 

without Threshold Trust. Financial Cryptography, 

Bermuda, 2002. 

[29] Y. Lindell, An Efficient Transform from Sigma Protocols 

to NIZK with a CRS and Non-programmable Random 

Oracle. TCC (1) 2015, pp. 93-109, 2015. 

[30] A. Patil, On Symbolic Analysis of Cryptographic 

Protocols. Master Thesis. MIT, May 2005. 

[31] C. Peikert, V. Vaikuntanathan, B. Waters, A Framework 

for Efficient and Composable Oblivious Transfer. 

CRYPTO 2008, pp. 554-571, 2008. 

[32] Heiko Stamer, Efficient Electronic Gambling: An 

Extended Implementation of the Toolbox for Mental Card 

Games. C. Wolf, S. Lucks, P.-W. Yau (Eds.): WEWoRC 

2005, LNI P-74, pp. 1–12, 2005. 

[33] G. Ács, L. Buttyán, and I. Vajda. Provably secure on-

demand source routing in mobile ad hoc networks. IEEE 

Transactions on Mobile Computing, vol.5, no.11, 2006. 

[34] I.Vajda, A Universal Composability Framework For 

Anonymous Communications, Journal of Computer and 

Communications Security, vol.3, no.3, pp. 33-44. Sept. 

2013. 

[35] I. Vajda, Provably Secure On-demand Routing Protocols. 

Pioneer Journal of Computer Science and Engineering 

Technology, vol.6, no.1-2, pp. 19-39, 2013. 

[36] I. Vajda, A proof technique for security assessment of on-

demand ad hoc routing protocols. International Journal of 

Security and Networks, vol. 9, no.1, pp. 12-19, 2014.    

[37] S.Walfish, Enhanced Security Models for Network 

Protocols. PhD Dissertation. New York University. 

January 2008.  

[38] A. C. Yao, Protocols for Secure Computations (Extended 

Abstract) FOCS 1982, pp. 160-164, 1982. 

 

 

 

Author’s profile 

 
István Vajda graduated from the 

Telecommunication Department at the 

Technical University of Budapest. He 

received the PhD and DSc degrees in 1985 

and 1997, respectively. Since 1998, he has 

been a Professor at the Department of 

Informatics. He is the co-founder of the 

Laboratory of Cryptography and Systems 

Security (CrySyS). During 1990’s his research interest was in 

algebraic code designs for secure multiple access channels. 

Recently, his research interests are in design and analysis of 

secure systems, with a special emphasis on provably secure 

cryptographic primitives and protocols. His application 

expertise covers secure wireless communication, secure routing 

and sensor networks. 

 

 

 

How to cite this paper: István Vajda,"Can universally composable cryptographic protocols be practical?", IJCNIS, 

vol.7, no.10, pp.23-34, 2015.DOI: 10.5815/ijcnis.2015.10.03 

http://dblp.uni-trier.de/pers/hd/h/Hamouda:Fabrice_Ben
http://dblp.uni-trier.de/pers/hd/c/Chevalier:C=eacute=line
http://dblp.uni-trier.de/pers/hd/p/Pointcheval:David
http://dblp.uni-trier.de/pers/hd/v/Vergnaud:Damien
http://dblp.uni-trier.de/pers/hd/v/Vergnaud:Damien
http://dblp.uni-trier.de/db/conf/pkc/pkc2013.html#HamoudaBCPV13
http://dblp.uni-trier.de/db/conf/pkc/pkc2013.html#HamoudaBCPV13
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2011.html#Lindell11
http://dblp.uni-trier.de/db/conf/tcc/tcc2015-1.html#Lindell15
http://dblp.uni-trier.de/pers/hd/v/Vaikuntanathan:Vinod
http://dblp.uni-trier.de/pers/hd/w/Waters:Brent
http://dblp.uni-trier.de/db/conf/crypto/crypto2008.html#PeikertVW08

