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Abstract—Developing mathematical models for reliable 

approximation of epidemic spread on a network is a 

challenging task, which becomes even more difficult 

when a wireless network is considered, because there are 

a number of inherent physical properties and processes 

which are apparently invisible. The aim of this paper is to 

explore the impact of several abstract features including 

trust, selfishness and collaborative behavior on the course 

of a network epidemic, especially when considered in the 

context of a wireless network. A five-component 

differential epidemic model has been proposed in this 

work. The model also includes a latency period, with a 

possibility of switching epidemic behavior. Bilinear 

incidence has been considered for the epidemic contacts. 

An analysis of the long term behavior of the system 

reveals the possibility of an endemic equilibrium point, in 

addition to an infection-free equilibrium. The paper 

characterizes the endemic equilibrium in terms of its 

existence conditions. The system is also seen to have an 

epidemic threshold which marks a well-defined boundary 

between the two long-term epidemic states. An 

expression for this threshold is derived and stability 

conditions for the equilibrium points are also established 

in terms of this threshold. Numerical simulations have 

further been used to show the behavior of the system 

using four different experimental set-ups. The paper 

concludes with some interesting results which can help in 

establishing an interface between epidemic spread and 

collaborative behavior in wireless networks.   

 

Index Terms—Trust, ad hoc network, Malicious 

behavior, Selfishness, Epidemic model, Basic 

reproduction number, Endemic equilibrium. 

 

I.  INTRODUCTION 

The basic properties of wireless networks, and in 

particular the emerging networks like ad hoc and sensor 

networks, are often found to provide the leeway needed 

by the perpetrators, who carry out malicious attacks on 

such networks. Ad hoc networks are basically collections 

of several wireless mobile nodes which temporarily form 

a network which does not need to use any pre-existing 

network infrastructure and also there is no requirement 

for any centralized administration mechanism [1]. This 

enables wireless mobile users to communicate by forming 

an ad hoc network even in areas with no existing 

communication infrastructure or where the infrastructure 

is expensive or not convenient for use. Because of the 

lack of infrastructure, each node needs to operate both as 

a host as well as a router. This allows the forwarding of 

packets between such nodes which may not be inside 

direct wireless transmission range of each other. The 

nodes thus participate in an ad hoc routing protocol which 

allows any node to discover multi-hop paths to any other 

node through one or more intermediate nodes in the 

network. The positive essence of such networks is 

therefore the concept of co-operation and collaboration to 

collectively fulfill the broad requirements of a networking 

infrastructure. However, the constituent nodes comprising 

an ad hoc network also have to compromise with a 

number of limitations. They are basically characterized 

by severe constraint of resources including energy in the 

form of battery life, computing power, memory size and 

bandwidth. Also the dynamicity in such networks is 

another primary characteristic feature which complicates 

several aspects of communication. It arises because of 

different reasons including node mobility, topology 

changes, failure of nodes and also due to conditions 

arising out of the propagation channel. In particular the 

security aspect is made complex by features like 

openness to eavesdropping, unreliable communication, 

lack of specific ingress as well as exit points, and also 

topology changes because of node mobility and node 

failure [2].  

An abstract consideration of the cooperative and 

collaborative behavior of ad hoc networks leads us to two 

important concepts, viz. trust and reputation. The notion 

of trust can be traced to its applications in social and 

societal studies, based on which it may broadly be 

defined as the degree of subjective belief that a given 

entity (may be a person, an organization or a node, in our 

case) behaves in accordance with a set of well-established 
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rules and meets the expectations of other entities [3,4]. In 

civilized society the concept of trust assumes a 

fundamental position as far as human behavior is 

concerned and in majority of cases it is considered to be a 

major offence when a trusted entity performs a breach of 

trust. The concept of trust management finds an 

important place in computer security and is identified as a 

distinct component of network security services [5]. 

Analyzing, quantifying or proposing theory about trust 

and its management for societal behavior has been a 

tough proposition and it remains so even for computer 

networks. In ad hoc networks trust management becomes 

a crucial issue when, without any previous interactions, 

the nodes need to communicate ensuring a desired level 

of trust between them. It finds several applications in 

diverse decision making situations like authentication of 

certificates, access control, intrusion detection, key 

management as well as isolating misbehaving nodes to 

enable effective routing [6]. The concept of reputation is 

related to that of trust but has a slight difference in 

meaning and application. Trust emphasizes risk and 

associated incentives but reputation is concerned with a 

perception that gets associated with a node based on its 

past actions in the perspective of the existing or agreed 

upon norms [7]. Two other important notions that arise 

from an abstraction of the security scenario are malicious 

behavior and selfish behavior of the nodes [4]. An 

attacker in an ad hoc network primarily aims to disrupt 

the normal functioning of the network. In particular, most 

active attacks can be characterized as a method of 

subduing the basic tenet of collaboration that is so unique 

in such networks. The aim is to use as many nodes as 

possible to behave in a malicious manner. Selfishness 

may be characterized as the lack of cooperation by the 

concerned node. This may be seen as a direct implication 

of the resource limitations but it may be an indirect result 

of a malicious attack. 

In this paper these fundamental ideas are explored and 

their role is analyzed in the perspective of ad hoc network 

epidemics. An epidemic model is proposed that considers 

the dynamics of an attack when the nodes try to cooperate 

and maintain an acceptable level of trust for 

communication. Section 2 establishes the basic 

assumptions and a mathematical formulation of the model. 

In section 3, equilibrium points of the system are 

obtained and also a basic threshold value called the basic 

reproduction number is found. A condition for the 

behavior of the system based on this condition is also 

established. In section 4, a stronger condition for the 

global stability of the equilibrium points is established. 

Section 5 analyzes several aspects of the behavior of the 

system using numerical simulations. The conditions 

obtained in the previous sections have also been validated 

using specific examples. Section 6 finally concludes the 

paper.  

 

II.  MATHEMATICAL MODEL 

The consideration of a difference between the 

malicious and selfish behavior of non-trusted nodes leads 

us to use two different sub-classes in the epidemic 

framework. The attacker primarily aims to increase the 

number of malicious nodes. On the contrary, the 

requirement for an efficient functioning of the network is 

that the number of trusted nodes remains above a 

minimum threshold. The number of both malicious as 

well as selfish nodes needs to be controlled as their 

behavior determines the efficiency of the network, even 

though they behave differently as far as spreading the 

infection process is concerned. It needs to be emphasized 

that there may be infection in both malicious and selfish 

nodes. The participation of selfish nodes in spreading the 

infection may be less, and may even be negligible. This is 

because of the decrease in co-operative behavior from 

these nodes due to selfishness. The population in our 

model is partitioned into five compartments, viz. trusted, 

exposed-malicious, exposed-selfish, infectious-malicious 

and infectious-selfish. The difference between the 

exposed and infectious stages is only to model the fact 

that the nodes may spend some time in the process of 

becoming fully infectious. This will be context-dependent 

and may not be seen in many practical scenarios, where 

such a time gap may be negligible or even totally absent. 

Also between the process of being exposed and becoming 

infectious, a possible switch in behavior between 

malicious and selfish behaviors has been maintained as a 

consideration. This is only based on the fact that the 

identified behavior of the exposed nodes may have an 

error. In particular, the aim is to avoid proceeding with a 

scenario where a significant number of malicious nodes 

are identified as merely selfish. Also any node, 

irrespective of being trusted or non-trusted, may fail to 

function at any stage of the process. In the long run this 

fact can be modeled by a simple constant rate of removal 

for the nodes. The infectious-malicious nodes and the 

infectious-selfish nodes, however, have a higher rate of 

losing their functionality when compared to the other 

nodes. This assumption models the fact that infected 

nodes will ultimately stop functioning after some stage if 

not attended to, while selfish nodes will also tend to 

becoming isolated as they stop forwarding data. All new 

nodes added to the network are assumed to be initially 

trusted. This assumption models a behavior-based trust 

management framework, which is a reactive approach 

where the trustworthiness of a node is ensured by pre-

loaded authentication mechanisms [8]. In such a case the 

behavior of each node is continuously monitored by the 

neighboring nodes to evaluate its trustworthiness. A node 

that behaves in an unauthorized manner, for example in 

its use of network resources, loses its trust as the neighbor 

nodes identify this behavior.  Another assumption is that 

the nodes become exposed-malicious or exposed-selfish 

according to a certain probability which has a constant 

value in the long-run. The sum of the probabilities 

essentially has to be one. On the basis of these 

assumptions, the dynamics of the nodes between the 

trusted and non-trusted compartments is shown in Fig. 1. 

The rate of addition of new trusted nodes into the 

network as well as that of the removal of non-functioning 

nodes from the network are both assumed to be a small 
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positive constant, say  . A bilinear incidence is assumed 

in both the cases of malicious as well as selfish 

populations which accounts for the fact that the spread of 

infection depends on the strengths of both the interacting 

populations. 

 

 

Fig. 1. Schematic diagram for flow of worms in mobile network. 

The parameters m and s represent the infectivity 

contact rates for the malicious and selfish infectious 

nodes, respectively. The long-term probabilities with 

which the trusted nodes become exposed-malicious and 

exposed-selfish are taken as mp and sp  respectively 

where 
 

1pp sm                                  (1) 

 

The rates at which the exposed-malicious and exposed-

selfish nodes become infectious-malicious and infectious-

selfish are represented by the respective parameters 

mm and ss .  

The rates at which they change behavior and become 

infectious - selfish and infectious-malicious are 

respectively represented by ms  and sm . Further the 

additional rates at which the infectious-malicious and 

infectious-selfish nodes become non-functional are 

represented by parameters m  and s respectively. 

Finally the recovery rates are taken as m  and s  for the 

infectious-malicious and infectious-selfish populations 

respectively. 

The following systems of equations can be derived 

based on the transfer diagram in Fig. 1:  
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For notational convenience, we take 1 for malicious (m) 

and 2 for selfish (s) nodes in the subsequent discussion. 

This makes system in (2) to appear as follows 
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where the total population size is where 
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III.  BASIC REPRODUCTION NUMBER AND LOCAL 

STABILITY FOR INFECTION-FREE EQUILIBRIUM 

In this section the model is analyzed from a basic 

epidemic perspective. Firstly, the equilibrium points for 

the system are identified. Then an important threshold 

quantity called the basic reproduction number is defined 

and the variations in the behavior of the system based on 

this threshold are established. points after.  

Theorem 3.1. 

System (3) has a trivial infection free equilibrium at (T 

= T0, E1 = 0, E2 = 0, I1 = 0, I2 = 0). Moreover it also has a 

unique endemic equilibrium (T*, E1*, E2*, I1*, I2*) where 

the infectious components are both positive while the 

remaining components may be non-negative. The 

endemic equilibrium exists when the quantities T0 – 1 and 

G – H are of the same sign, where  
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Proof. To find the equilibrium points of the system, we 

need to solve the following set of equations: 
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    0  E     - TI  TIp 2222111222           (7) 

 

  0  I     - E  E 111212111                 (8) 

 

  0  I     - E  E 222222121                (9) 

 

If we consider I1 to be zero then from equation (8), 

both 1E  and 2E  need to be zero as the coefficients are 

both positive constants. Substitution of these values in (9) 

gives 0  I2  and consequently (5) gives 0T  T  . So, at 

this equilibrium both the infectious populations as well as 

the two exposed populations vanish, and hence it is called 

the infection-free equilibrium.  

Next we consider the case when 1I and 2I are both non-

zero. From (6) and (7) we have *
1
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simplification yields *
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Putting these values in (6) and simplifying, we get  
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Further from (5) we get  
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The other values have already been expressed as 

constant positive multiples of *
1E . So, these components 

together represent the endemic equilibrium 
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Here *T  and *
1E  are given by (13) and (14). Now, this 

equilibrium point will exist only for non-negative values 

of *
1E . The condition for this is as follows  
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If these quantities are denoted by G and H, then (16) 

holds when 1T0   and G – H are either both positive or 

both negative.  

A.  Basic Reproduction Number 

The basic reproduction number is defined as the 

number of secondary infectious nodes caused by an 

individual infected node during its infectious period in a 

population which is totally susceptible [9]. It is 

commonly denoted by R0.The most important property of 

R0 is that it acts as a threshold, such that if 1R0  then 

the infection dies out, and if 1R0  , the infection 

persists. For epidemic models with multiple infectious 

classes, the basic reproduction number is defined by the 

spectral radius of the next-generation operator [10-13]. 

For epidemic models with heterogeneous population 

structure, the basic reproduction number can be 

efficiently determined by the local stability of the 

infection free equilibrium, that is, the dominant eigen 

value of the Jacobian matrix at the infection free 

equilibrium for models in finite dimensional space 

[14,15]. The infection free equilibrium for system of 

equation (3) is given as (T = T0, E1 = 0, E2 = 0, I1 = 0, I2 = 

0). In this section, we drive the expression for R0 by 

investigating the local stability condition of the infection 

– free equilibrium as follows:  

The Jacobian for system (2) at the infection free 

equilibrium is given by  
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Where the following sub-matrices have been 

considered for the sake of notational convenience 
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If F  represents the rate of appearance of new 

infectious nodes and V represents the difference of 

outward to inward flow of nodes into any compartment, 

then 
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Differentiating partially w. r. to the infectious variables, 

we have  
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If we write the general form of above matrices, we 

have 
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Taking the inverse we have 
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As  1
0 FVR  , on solving, we get as in 
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On the basis of the above discussion and the definition 

of the basic reproduction number, the following result 

follows. It may be mentioned here that the result may be 

proved explicitly using linearization but we state the 

intuitive result directly in the following theorem. 

Theorem 3.2.  

The infection free equilibrium is locally asymptotically 

stable if 1R0   and unstable if 1R0  . 

Table 1 shows the corresponding behaviour of the 

system for different values of the basic reproduction 

number. The table values also point to the fact that the 

infection-free equilibrium is stable when the values of the 

basic reproduction number do not exceed the threshold 

value of one. 

Table 1. Asymptotic Behaviour of System for Different R0 Values 

R0 T Em Es Im Is Equilibrium 

type 

0.0760 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.2281 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.4561 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.6842 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.7602 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.8363 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

0.9883 1.0000 0.0000 0.0000 0.0000 0.0000 IFE 

1.1404 0.7863 0.1756 0.1054 0.0302 0.0413 Endemic 

1.2164 0.7371 0.2160 0.1296 0.0371 0.0508 Endemic 

1.2924 0.6937 0.2517 0.1510 0.0433 0.0592 Endemic 

1.3684 0.6552 0.2834 0.1700 0.0487 0.0666 Endemic 

1.4444 0.6207 0.3118 0.1871 0.0536 0.0733 Endemic 

 

In the next section a proof is provided for a more 

stronger condition about the stability of the infection free 

equilibrium when 1R0  . copy.  

 

IV.  GLOBAL STABILITY CONDITION FOR INFECTION FREE 

EQUILIBRIUM 

In the previous section we had obtained an expression 

for the basic reproduction number and had used its 

definition to obtain an intuitive result about the behavior 

of the infection-free equilibrium. In this section the 

behavior of this equilibrium point is characterized in 

theorem 4.1. In subsequent discussion, the behavior of the 

other equilibrium point is also explored, which allows us 

to analyze the nature of the system when the value of the 

basic reproduction number exceeds the critical value.
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Theorem 4.1.  

The infection free equilibrium is globally 

asymptotically stable provided 1R0  . 

Proof. Total population satisfies the equation  

 

  




2

1j

jj0 INT
dt

dN
                (19) 

 

where  0T 0, N . Here we take the domain as 
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We use the Lyapunov’s second method of stability in 

this section to show the global stability of the infection 

free equilibrium. Let L be a Lyapunov function which is a 

real valued function defined on G as follows  
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Putting the values of 
dt
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dE ji from (3) in the 

above equation and on solving we get,  
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which on simplification using (18) gives 
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From (22) it is clear that  1R if 0
dt

dL
0  and 

 0
dt

dL


if and only if .0I j   Clearly, function L is 

positive definite over G and its time derivative is negative 

definite. So the infection free equilibrium is globally 

asymptotically stable. Further if 1R0  then  0
dt

dL
 if 

,0I j  i.e. the equilibrium is unstable if .1R0   

In the next section different aspects of the behavior of 

the system are analyzed using numerical simulations.  

 

V.  NUMERICAL SOLUTION AND SIMULATION 

In this section numerical simulations are used to 

highlight some aspects of the behavior of the system. 

These numerical experiments are aimed at both validating 

the analytical results that were obtained in the previous 

sections, as well as to bring forth the trust based aspects 

of the model which might have remained non-apparent 

during the epidemic analysis. The results are highlighted 

using the following four examples.  

 

Example 1. In this example we highlight a scenario 

where the infection dies out in the system and all the 

nodes together provide a trusted environment to each 

other. Such a situation is conducive to an efficient 

functioning of the ad hoc network. The value of the basic 

reproduction number in this case is found to be Ro = 

0.1404 < 1. It can be observed from Fig. 2 that the 

infection free equilibrium is asymptotically stable in this 

situation. This means all nodes become infection free in 

the long run thereby guaranteeing efficient 

communication. 

Example 2. In this example (Fig. 3) the stability results 

proved analytically in earlier sections is shown 

graphically.  
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Fig. 2. Trusted environment in network when Ro<1. 

(Parameter values: 1 = 0.05, 2 = 0.05, 11 = 0.05, 1 = 0.04, 12 = 

0.08, 12 = 0.09, 1 = 0.5, 2 = 0.5,  = 0.03, 1 = 0.04, 2 = 0.04.) 
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Fig. 3. Dynamic behaviour of  non-trusted classes with respect to the 

trusted class when Ro<1. 

(Parameter values: 1 = 0.05, 2 = 0.05, 11 = 0.05, 1 = 0.04, 12 = 

0.08, 
22 = 0.09, 

1 = 0.5, 
2 = 0.5,  = 0.03, 

1 = 0.04, 
2 = 

0.04.) 

 

In this specific scenario all the four phase-planes that 

can be formed by the four non-trusted groups have been 

considered in the perspective of the trusted group of 

nodes. Here the value of Ro is 0.1404 which is less than 1, 

and hence all types of infection vanish and nodes form a 

trusted network, as shown in Fig. 3. 

 

Example 3. In this example the opposite scenario is 

considered where the proportion of trusted nodes 

drastically decreases and makes it highly infeasible for 

the network to survive against any malicious attack. Here 

R0  = 8.6039 > 1 which satisfies the condition for 

asymptotically stability of the endemic equilibrium. This 

fact is highlighted in Fig. 4. 

Example 4. Again for the same situation considered in 

the previous example, the stability aspect is shown in Fig. 

5.  
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Fig. 4. Non-Trusted environment in network when RO > 1. 

(Parameter values 1  = 0.9; 2 = 0.8; 11 = 0.05; 1 = 0.04; 12 = 

0.08; 12 = 0.09; 1 = 0.05; 2 = 0.05;  = 0.05; 1 = 0.04; 2 = 

0.04) 
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Fig. 5. Dynamic behaviour of non-trusted classes with with respect to 
trusted class when Ro>1. 

In Fig. 5 the phase planes of all the four non-trusted 

nodes have again been considered vis-a-vis the trusted 

nodes. The stability of the endemic equilibrium for the 

four non-trusted groups is shown in the perspective of the 

phase plane formed by them with the trusted group of 

nodes.  

 

VI.  CONCLUSION 

Appropriate estimation and approximation of epidemic 

spread in a network is important for preventing high-

impact attacks. Lack of inclusion of important network 

properties in available epidemic models is still an issue 

that can be distinctly looked into for an improved model 

performance. Hence, inclusion of fundamental network 

and communication characteristics into the epidemic 

framework might be helpful. In this paper, a five-

compartment differential epidemic model has been 

developed. It has been applied to analyze the impact of 

different abstract communication characteristics like trust, 

selfish behavior and collaborative communication on 

network epidemics in a wireless network. Long term 

behavior of the system was predicted in terms of two 

equilibrium points. A well-defined epidemic threshold for 

the system was obtained, and its significance in guiding 

the overall behavior of the system was established. 

Simulations were performed to test and verify the 

theoretical results under different sets of conditions. In 

future, the model can be extended to include the impact 

of different topologies of the network, or the impact of 

mobility of the wireless nodes.  
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