
I. J. Computer Network and Information Security, 2015, 10, 1-14
Published Online September 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2015.10.01

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Artificially Augmented Training for Anomaly-

based Network Intrusion Detection Systems

Chockalingam Karuppanchetty
+
, William Edmonds

+
, Sun-il Kim

+
 and Nnamdi Nwanze

*

+
Department of Computer Science, University of Alabama in Huntsville, USA

*
iDEA Hub, Nigeria

Email: {ck0020,william.edmonds, sunil.kim}@uah.edu, nnamdi.nwanze@idea-nigeria.org

Abstract—Attacks on web servers are becoming

increasingly prevalent; the resulting social and economic

impact of successful attacks is also exacerbated by our

dependency on web-based applications. There are many

existing attack detection and prevention schemes, which

must be carefully configured to ensure their efficacy. In

this paper, we present a study challenges that arise in

training network payload anomaly detection schemes that

utilize collected network traffic for tuning and

configuration. The advantage of anomaly-based intrusion

detection is in its potential for detecting zero day attacks.

These types of schemes, however, require extensive

training to properly model the normal characteristics of

the system being protected. Usually, training is done

through the use of real data collected by monitoring the

activity of the system. In practice, network operators or

administrators may run into cases where they have

limited availability of such data. This issue can arise due

to the system being newly deployed (or heavily modified)

or due to the content or behavior that leads to normal

characterization having been changed. We show that

artificially generated packet payloads can be used to

effectively augment the training and tuning. We evaluate

the method using real network traffic collected at a server

site; We illustrate the problem at first (use of highly

variable and unsuitable training data resulting in high

false positives of 3.6∼10%), then show improvements

using the augmented training method (false positives as

low as 0.2%). We also measure the impact on network

performance, and present a lookup based optimization

that can be used to improve latency and throughput.

Index Terms—Network security, Anomaly detection,

Intrusion detection, Web server security, Training.

I. INTRODUCTION

Cybersecurity is an increasing concern for both

individuals and large organizations alike. The frequency

and impact of cyberattacks are also growing. This trend is

especially disconcerting given that most of what we do

today rely on networked applications. The scale and

importance of the problem can be seen in the world wide

spending for information security solutions, which was

$71.1 billion (US dollars) in 2014 [1]. There are many

different types of security solutions in existence in both

research and commercial domains today, aimed at

protecting different parts of the networked applications.

However, to guarantee the level of security desired for

future applications, improvements must be made in all

facets of these security approaches.

The modern Internet is formed around the use of web

sites, powered by web servers that host the various

content. These servers are often targeted by cyberattacks

for obvious reasons. A number of solutions are typically

utilized ranging from firewalls to intrusion detection

systems (IDS). In order to provide the most secure

environment possible, these solutions need to be

implemented at various entry points into the network as

well as at individual servers. The continuous increase in

the complexity and sophistication of the attacks make it

difficult for any single security technology to meet the

comprehensive security demands. Hence, various

solutions must be utilized together (not necessarily in a

cooperative manner, however, but more so as orthogonal,

compounded layers). Further discussion of different

technologies are presented in the next section with a

focus on network-oriented, anomaly based intrusion

detection, which has the potential to detect zero-day

attacks (new, never-before-seen attacks).

These systems quantitatively model normal network

activity, and flag anomalies that deviate from the model.

Compared to signature-based detection, there are two

disadvantages that are often cited including higher false

positives and difficulty in training the system. One

interesting issue that is often left out of discussion is the

insight needed for training such systems for actual

deployment. In this paper, we present a study of training

IDSs for web server traffic considering the situations

where the operating entity lacks historical data to form

the basis for modeling normal activity. The approach also

applies to the challenges that arise when changes are

introduced to the website over time or via updates which

inherently leads to changes in what is considered normal

for the site(s) in question (concept-drift). These situations

can lead to ineffective tuning of IDSs, resulting in high

false positive rates or low detection rates, or both.

We first walk through the implementation steps

starting with testing of the data collected for IDS training

purposes. We experiment with the same data set by using

it for both training and simulated detection. One should

expect this self-test to pass with flying colors, but we

show that IDSs can perform poorly due to variability and

skewed nature of the collected data. Intuitively, the

cookie field in the Hypertext Transfer Protocol (HTTP)

inherently adds to the variability in the shape of the

payloads. As such, ignoring this field for IDS processing

2 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

yields better results. However, we also show that this

change alone does not mitigate the problem. To augment

this problem, we generate artificial payloads based on

HTTP templates derived using some digital forensics

information from web use factors. We call this the

platform fingerprint, which includes the different fields

inserted by popular operating systems and browsers, and

how such information is embedded in HTTP requests sent

to web servers.

We begin our experiment by capturing network packets

that arrive at a web server. This traffic data is used to

both train and test intrusion detection after a sanitization

process, where precursory inspection is performed for

known anomalies. Initial tests show that the variability in

the training data (which was collected over a month) was

not suitable for efficient training of the IDSs (high false

positive rates ranging from 8∼10%). Artificial payloads

are then used to retrain the IDS while cookies were both

used and ignored. The results show that artificial

payloads can be used to augment training with results

showing high per-packet detection rates (>99%) and low

false positive rates (<0.2%) for the tested system. Hence,

this approach to using artificial traffic can help with the

training stage both when an extensive volume of real

traffic collected from a live site is not available (that is

representative of the normal activity), and when the

content hosted on the web server changes (thus leading to

the same scenario of lacking pre-collected data). Finally,

ignoring cookies (for the purpose of IDS) requires extra

processing overhead. It should be noted that the cookies

are not actually stripped and discarded. We measure the

latency and throughput of the IDSs evaluated with and

without cookie processing. We also present a lookup

based optimization for the IDSs to allow faster

computation of anomaly scores of incoming packets. We

believe the insight gained from this study will be helpful

in both IDS deployment for practitioners as well as in

reasoning about potential modifications and changes to

IDS configuration and continuous retraining algorithms.

The rest of this paper is divided into following sections.

Section II covers some background information on IDS,

as well as a brief discussion of related works and a high-

level description of two payload-based anomaly detection

methods used to evaluate the problem in question. We

then illustrate the training problem in Section III,

followed by discussions of our approach in Section IV. A

summary of results are presented in Section V.

Performance measurement and optimization are then

discussed in Section VI. Finally, we conclude the paper

with a summary and future works discussion in Section

VII.

II. BACKGROUND

In this section we present a brief overview of IDSs,

discuss some related works, and provide a high level

description of the particular flavor of payload anomaly

detection from the research literature that was utilized in

this paper.

A. Intrusion Detection Systems

IDSs are classified into signature and anomaly-based.

1) Signature based Intrusion:

Signature-based IDSs utilize a database of attack

signatures to identify any incoming attacks, much like

anti-virus software. Implementation/setup is easier than

anomaly-based counterparts and yields low false positive

rates. If the signature of the attack is not yet in the

database, attacks remain undetected. These undetected

cases may be in the form of obfuscated, previously

detected attacks, novel attacks, or zero-day attacks. Upon

every encounter of novel or new form of previous attacks,

signatures are created for future use. Signature databases

may also be kept up-to-date by syncing with trusted

sources.

2) Anomaly based Intrusion:

Anomalies are detected by monitoring system activity

and classifying the activity as either normal or anomalies.

This approach requires a training phase to allow the IDS

to learn what normal activity is. Determining the size of

the training data set and its content is a research topic in

and of itself, but reducing training time may be achieved

by utilizing GPU processing [2]. Upon learning what

normal traffic is, the detection phase flags activity that

lies beyond the acceptable threshold of normal activity

for further investigation. If the anomalous activity is

benign, this turns out to be a false positive, which is the

most prominent limitation for anomaly-based detection.

False positives occur due to various reasons, such as a

change in design of the monitored system (i.e. new web

server features are added) or limitations of the feature

extraction in the detection algorithm. Another design

concern for anomalous-based IDS is the possibility of

compromised training data.

3) Placement of IDS:

Depending on the level and scope of the data being

inspected for attacks, the IDS can be placed in a number

of different places along the path of information flow. Fig.

1 shows a high-level overview of the path through which

a network packet, generated by an end-user’s web

browser, traverses through the Internet to get to the web-

server. The type of detection that we are concerned with

can occur by the first hop router (the web-server’s

gateway to the Internet, typically conjoined with their

Internet Service Provider) or at the local router or the host

server system itself.

Browser

Internet

Web Server

Browser

Browser

Local

Router

First Hop

Router

Firewall

Fig. 1. Overview of network packet traversal from the browser to the
web server.

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 3

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

B. Related Works

The trade-off between accuracy, complexity, and

detection delay between header-based and payload-based

anomaly detectors is discussed in a comparative study in

[3]. Header-based inspection may be found in [4], [5].

Hidden Markov Models, artificial neural networks,

Bayesian networks, fuzzy sets, and genetic algorithms are

also being used to identify anomalies in [6], [7], [8].

Service-specific IDSs have been proposed where the

anomaly score of a request is calculated using three

properties: type of the request, length of the request and

payload distribution [9]. Also, many apparoaches

regarding web logging and parameter inspection can be

found in the literature [10], [11], [12], [13]. Investigation

of anomalous activity in HTTP GET requests and the

parameters used to pass values to server-side programs

were performed in [14]. The GET requests are recorded

in the web server’s access logs and were used to extract

features such as the presence or absence of attributes

(parameters), length of attributes, character distribution in

the attributes, the order of attributes, access frequency,

inter-request time delay, and a few others.

Variables that may affect the performance of anomaly-

based system include content changing on the server,

such as web pages, and possibly the use of data sets that

are not pertinent to traffic in the wild. This concept drift

can also occur when web pages are frequently modified

according to the needs of the user (e.g. links, icons, etc.),

which can influence the traffic patterns [15]. An

evaluation of the anomaly-based IDS using public data

sets was conducted reviewing their accuracy and ability

to reflect real life conditions [16].

C. Training and Detection Based on Payload Anomaly

Research on network packet-based intrusion detection

can be found in the literature, which can be categorized as

header-based, payload-based, or a mix of the two

paradigms. Further classification and their components

can be found in [17]. Headers provide information such

as source, destination, protocol, size, etc., while the

payload contains the actual data. Intrusion detection

schemes can further be divided based on the analysis

approach taken in the algorithm, which include statistical,

occurrence, semantic, or a hybrid analysis. Stat-based

analysis uses statistical methods to determine the norm of

the traffic, while occurrence-based analysis flags features

of the traffic that has not been seen before. Semantic-

based analysis looks at what the packets do and

determines their validity with respect to how the packets

will actually be utilized by the system, and a hybrid-

based approach may take any combination of the

aforementioned paradigms to take advantage of the

different features each paradigm brings to the table. In

this paper, statistical analysis was performed on the

packet payloads via byte-value frequency distributions.

We utilize the schemes described in [18], [19], to take

advantage of their efficacy with low latency, and the

potential robustness against having contaminated training

data (for [19]). We provide a brief overview, and further

details can be found in the referenced works.

For both of the above mentioned schemes, the same

basic frequency based measurements are conducted at

first using the training data set. Training data should be a

good representation of the monitored system’s normal

traffic, thus real traffic packets destined for the system is

normally utilized. The local traffic selected for training

may be sanitized by removing known attacks or misuse

packets via signature-based tools to reduce and help

prevent false negatives. Depending on the network, traffic

volume and content may vary due to various factors, and

updating the training data and retraining the system

allows the IDS to remain current with the patterns of

normal traffic in the system. As previously mentioned,

choosing the size and content of the training data is a

research topic in and of itself, and requires careful

consideration. Given the mean and the standard

deviations for each byte value, the two methods differ as

follows. Once the training data set is formed, byte

frequency (bin) norms are calculated by determining the

mean and variance/standard deviations for each byte

value appearing inside each payload. Note that the max

possible frequency of any single bin value is 1460,

limited to the payload size in a TCP/IP packet over Ether

Frame.

1) PAYL [18]:

The degree to which each packet payload deviates

from the norm (anomaly score) is found by computing

Xi−Xi /(σi + α) for all byte values and adding them

together for i = 0 to 255. Xi is the mean for byte value i,

and σi is the standard deviation for the byte value as

obtained from the training data set. A threshold is set that

provides an acceptable range of detection and false

positive rates based on the training data set (both for

normal traffic and some attack data set).

2) PBD [19]:

Given Xi and σi for each bin i, the normal range of

each bin is determined by using a tuning parameter α

such that the range is within Xi ± ασi . The anomaly score

is computed by determining whether each of the 256 bins

are normal or not. Each bin receives a score of 0 (normal)

or 1 (otherwise), and the scores are summed across all

bins. Therefore, the overall anomaly score for a packet

can range from 0 to 256. Similar to PAYL, a threshold

score is utilized, subject to tuning by the network or

systems administrator(s).

3) Size normalization:

For both algorithms, we also test size-normalization

method. For each value used in computing the mean and

variance of each bin in the training set, normalization is

done with respect to the size of the packet. Therefore, the

values that are used for computing the anomaly score are

fractional figures that represent what percentage of the

payload is made up of each bin. Our results are consistent

with what is found in the literature, where the results are

4 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

improved in general when normalization is used,

especially for PAYL.

III. VARIABILITY IN TRAINING DATA SET

In this section, we discuss one of the most important

steps in deploying an anomaly-based IDS, and some of

the challenges that one may run into. Training (and

tuning) of the IDS is critical for optimal efficacy, and the

overall results depend on two parts working in concert.

First, the IDS scheme must provide an effective training

and tuning strategy. Second, in order to characterize the

normal traffic or activity, there must be an adequate

training data for the specific system being protected. This

second part can be a challenge and requires careful

selection by the system administrator(s). When put to

practice, one common problem that many run into is the

variability in the collected traffic that is used for training.

For example, if the same exact set of traffic data is used

for both training, and then later to test detection

capability, it should ideally result in a high detection, low

false positive setup. However, it may not perform as

expected due to some variability in traffic (due to either

fluctuation that may be normal for the site or concept

drift caused by some form of content changes). We next

discuss performing some initial tests to check the

suitability of the training traffic, which help in revealing

these potential problems. We also show that cookies in

HTTP traffic add to the variability.

A. Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (KS) test is

widely used to compare two samples and report the

variations in between the two samples. The KS test is a

general nonparametric test for comparing two samples.

The KS statistic calculates distance between the empirical

distributions of the two samples under consideration. The

KS statistic can be calculated using the supremum

function computing Ds,s
l

= supx |F1,s (x) − F2,sl (x)|, where

F1,s (x) represents the empirical function of 1
st
 sample and

F2,sl (x) represents the empirical function of 2
nd

 sample.

Because the KS test reveals some aspect of the

statistical relationship between the two samples, we

applied the technique for the network traffic collected at

one of the university web servers. The test requires two

samples as input. The training data is split into a different

number of sets for comparison. One of our collected

traffic sets (discussed later), which consists of 25222

packets, was split into sets of about 1000 packets. Each

consecutive set was compared to using the KS test. Each

comparison actually consists of 256 independent KS tests,

since the comparison is performed for each bin (byte

value). In Fig. 2, the X-axis shows the byte value, Y-axis

shows the packet sets and Z-axis shows the KS statistic

value. Our modification to the KS test (since we need to

summarize 256 tests into one result) was to look at the

fraction of the total bins that suggest that the sets are not

from the same distribution. The collected traffic fails the

test for many set pairs for the byte value ranges 0 to 128.

Beyond 128 (not shown), most packets do not contain

much data (typical for non-encrypted HTTP), and thus

have low KS statistic value (which would suggest that

they are from the same distribution: all are near zeros

anyway). When the data was split into two sets of

approximately 12.5k packets each, the result was slightly

more consistent, but both tests revealed inconsistency in

the traffic. As a reference, other representative traffic sets

such as the DARPA dataset are more artificial in nature,

and thus found to be more consistent. The threshold at

which one may consider the test sets equivalent is not

clear however. Therefore, we derived a another modified

KS test to see if anomaly detection may be actually

performed given a KS test consisting of a sample

distribution (the data set) vs. a single sample (a single

packet from the data set). In this method, the resulting KS

statistic value average across the bins was used to find a

threshold for detection. When tested, it resulted in over

8.7% false positives, which is unacceptable.

Fig. 2. KS test with sets of 1000 packets each.

(a) With Cookie (7.6% above threshold)

(b) Without Cookie (3.1% above threshold)

Fig. 3. Self-Assessment test for WEB Traffic with threshold line shown.

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 5

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

B. IDS-based Self Assessment

Prior to deployment, the potential performance of the

IDS is typically tested. A set of collected traffic can be

used for both training and testing of the setup. For

illustration purposes, we again utilize the same exact data

set for both training and testing for PAYL. This scheme

utilizes the Mahalanobis distance for each packet, which

shows how much each packet is varying from the mean

value obtained from the training data. There is a

possibility of having the standard deviation of zero,

which leads to a divide by zero error. To avoid this

problem a (non-zero) smoothing factor is added to the

standard deviation. We utilized a varying number of

smoothing factors, and the differences were insignificant.

The specific results we discuss are from having used a

smoothing factor of 0.5. Using PAYL, the best tuned

performance was not satisfactory, yielding over 10%

false positives, which in turn suggests that the traffic

collected is not representative of a general normal activity

and that there are variations unaccounted for. Fig. 3a

illustrates the anomaly scores along with the threshold

line shown.

C. Impact of Cookies

In Fig. 3b, we show what happens when the IDS

ignores the cookie portion. A significant change is

actually seen in the false positive rates. Table 1 shows the

summary for both test methods discussed while

comparing the results that depend on the presence of

cookies. The variability attributed by the cookies is due to

the fact that they contain hash values that are random,

especially compared to other parts of the HTTP payload.

Table 1. Test Results

A significant improvement can be seen as a result of

realizing that the cookie portion (1) cause increased

variability and (2) does not contain attacks that anomaly-

based IDSs care about. Therefore, the cookie portion can

be ignored in computing the bin histograms for use by the

IDS. There are cookie-based attacks, but they are

orthogonal problems. Typically, these attacks basically

attempt cookie tampering or identity spoofing, which are

outside the scope of this paper (this issue is further

discussed in Section IV.c.). Despite the improvements,

however, the resulting false positive figures are still not

low enough for practical considerations. Therefore, we

next discuss another mitigation technique, which together

with cookie bypassing can improve training and tuning.

IV. AUGMENTED TRAINING METHODOLOGY

In this section, we describe an approach that can be

used to augment the training and tuning step if there is

too much variability in the traffic (as demonstrated in the

previous section) or if the site lacks relevant historical

data. Essentially, the problem is the lack of traffic data

that can be used to model what the system will perceive

as normal activity. To this end, we ask the following

question. Is it possible for the system to artificially

generate traffic that can be used for training such that it

allows for sufficiently high detection and low false

positive rates? Such technique can allow the system to

tune itself from the time at which the site first goes public.

Then, as real traffic is obtained, further tuning can take

place in real time. More importantly, it also allows for

changes in the site content to be reflected as soon as those

changes go live. It is not meant as a replacement for

having real data nor should one expect the artificial traffic

to be better a real data set that is representative of the site

activity; Rather, it fills the gap when the captured traffic

has unforeseen variability or when there is not enough

volume of traffic sufficient for IDS training. To address

the problem described above, we investigate the use of

some information forensics to create artificial packet

payloads for incoming HTTP requests. First, we illustrate

what the request payload looks like for the protocol in

question. Next we discuss the pertinent parts that vary

based on current use trends of web technologies (external

factors) as well as parts that are related to the site content

(internal factors). We then discuss how to artificially

generate those parts to create the artificial packet

payloads.

A. Underlying Protocol: HTTP over TCP/IP

Fig. 4 illustrates the internal structure of an Ethernet

frame (IEEE 802.3, also with 802.1Q Tagging). The

actual payload that we are interested in is the TCP/IP

payload. This portion is found inside the Ethernet payload,

minus the TCP/IP headers (40bytes). Therefore, the

maximum size per-packet is 1460 bytes. The HTTP

protocol, found within this payload, contains many

different fields. A simple example is shown in Fig. 14.

This example contains fields such as connection, cache-

control, Accept and User-agent. There may be up to 47 of

such fields as of HTTP/1.1. In practice, they vary

depending on which platform combination was used to

generate the request. User settings can also change the

fields (such as the use of DO NOT TRACK setting).

Finally, cookies are also an important part of the anatomy,

and discussed separately below.

Fig. 4. Ethernet frame format with maximum 1500byte payload for
HTTP/TCP/IP (bottom is with 802.1Q Tagging).

Algorithm Cookie TP FP

KS-based Present 0.9926 0.0874

KS-based Stripped 0.9926 0.0368
PAYL Present 0.9928 0.1002

PAYL Stripped 0.9924 0.0358

6 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

B. Artificial Packet Construction

Using the typical anatomy of the network packets that

are sent to web servers, we show that it is possible to

construct packets that resemble real traffic (well enough

to be used for training an IDS). This process requires two

types of information described below. First, the make-up

of the various parts of the HTTP protocol is what defines

the characteristic of the web traffic. This portion largely.

consists of information generated by the different end-

users’ web-browser, based on the different hardware and

software configurations on top of which the packets are

generated. Second, the access to resources on the web

server requires that the request message contain the string

that identifies the resource. This string also constitutes a

part of the protocol that plays an important role in traffic

characterization.

1) External Factor: Platform Fingerprint:

When a user accesses the web server, he or she does so

under a particular combination of devices and software

(as well as different versions of the software). Each

different type of device or software leaves different

fingerprints inside the payload (the HTTP message). It is

difficult (if not impossible) to collect the signature of

every possible device and software combination.

However, we found that a general sketch can be drawn

using a combination of different sets of most popular

devices, web browsers and operating systems. These

combinations generate different strings that become part

of the message sent to the server. We term this the

platform fingerprint.

Fig. 5 shows the breakdown of the browser popularity

for the past five plus years (January 2010 to April 2015)

as reported by W3Counter [20]. The first thing to note is

that, though the market share by each browser has

changed over time, the overall percentage of the top five

most utilized browsers has stayed relatively constant at

around 99%. This shows that investigating the top five

browsers allows significant coverage of the actual user

statistics, and further shows that many other browsers

may effectively be ignored (until such market share

breakdown changes, of course). These figures are

consistent across other sources such as StatCounter,

Wikimedia and NetApplication [21], [22]. The use of the

Fig. 5. Popularity of browsers in the last 5 years.

top web browser's signatures, therefore, can provide a

representative set that covers a large fraction of the

activity targeted towards the web server.

In total we put together 28 platform fingerprint

templates generated by taking the different browser and

operating system combinations. Investigating the

composition of these templates revealed similarities

across many. Thus, we eliminated the templates that were

similar and selected 10 unique templates. The platform

combinations for these 10 templates are shown in Table 2.

There are four combinations including the Chrome

browser as the payloads it generates has more variations.

Table 2. List of HTTP request templates used for training

Device Operating System Browser Version

PC Ubuntu Chrome 37

PC Windows 7 Chrome 38

Smartphone Android 4.1 Chrome 18

Smartphone IOS 7 Chrome Crios 36

PC Windows 8 Internet Explorer 11

PC Ubuntu Firefox 33

Smartphone IOS 8 Safari 8

Tablet IOS 8 Safari 8

PC Windows 8 Opera 25

Smartphone Android 4.4 Android Browser 4

It is interesting to note that some browsers generate

and send cookies along with their initial HTTP request. In

other words, even though the site that is being requested

has never been browsed before, and therefore no cookies

were left by the web server in question, the user’s

browser can insert a cookie. The appearance of cookies

plays an important role for what we are trying to convey

in this paper, and is discussed more in a later section. (As

examples, two templates are shown in Fig. 13 and Fig. 14

in the Appendix, with and without cookie respectively.)

2) Internal Factor: Resource URL Extraction:

The access to resources residing on web servers occurs

through a sequence of user and automated HTTP requests.

Users clicking on links generate the request for that

particular resource, whereas loading of the page

requested by the user leads to the generation of

subsequent request messages to fetch all resources

contained within the page. The string that identifies these

resources is part of the URL that is included in the packet

payload sent to the server. These URL strings play a

significant factor in characterizing the normal traffic for a

server.

The possibilities for a valid resource URL are limited

by the actual resources stored on (and advertised by) the

server. Therefore, our normal traffic estimation scheme

includes the extraction of all available resource URLs

from the server, including CSS scripts, Java scripts,

images, etc. To perform the extraction, a script was

written which searches through the web server collecting

all of the resource strings present in the server. The script

first requests for the index.html or the home page of the

web server. When the request for the page is sent to the

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 7

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

server, the server sends a response which contains a

status code, a list of header fields, a blank line and then

the requested document. The requested document

contains the links to the various other resources used in

that page, as well as the URLs of other pages to which

you can navigate to. There are some spider tools that are

available, such as [23] and [24], but they are not suitable

for this task as they have issues dealing with relative

URL matching, page redirection, and HTML entities.

(a) Real traffic with cookies, without cookies, and cookies alone.

(b) Artificial traffic with cookies, without cookies, and cookies alone.

Fig. 6. Byte value counts for values 0 to 127. Difference can be seen visually.

C. Ignoring Cookies for IDS

When a URL is typed into a web browser, the browser

checks to see if any cookies related to that web server are

already present. If such a cookie is found, the cookie is

sent to the server along with the request for the URL in

question via the HTTP request message. If the cookie for

the server is not found, no cookie data is sent. On the

server side, if the request message does not contain any

cookie name-value pairs, the server assumes that the user

is visiting the site for the first time (or its history has been

deleted). A cookie is then generated and sent to the user's

device with some namevalue pairs along with other

attributes such as expires and max-age. Google Chrome is

an exception in that it will itself inject cookies to request

messages going towards never-visited sites for tracking

and statistics collection.

Often, hash values can be found within the cookie, and

similar to encrypted text, they are randomly distributed,

which may pose some problems to the IDS. That is, these

values may affect the normal characterization process.

Therefore, we investigate the impact of removing the

cookie (for both training and testing stages).

Note that we must understand that attacks cannot be

contained with the cookie portion if the IDS is to consider

ignoring cookies from incoming packets. Most common

attacks involving cookies are used to impersonate another

user/machine in what is known as session hijacking. In

such scenarios, valid cookies from another user/machine

are stolen, which may allow the attack to gain access

using another person’s credentials. These types of attacks

are outside the scope of our work because packet level

inspection schemes cannot detect these instances as they

would look completely normal to the system. As such

these attacks are assumed to be addressed at a different

layer, and it is an orthogonal issue that is outside the

scope of this paper.

V. RESULTS

In this section, we provide a description of the

experiments and discuss the results. The tests were

performed on network data we collected (32 days of

traffic going towards a web server hosted at the university)

as well as a set of known web attacks consisting of 2485

attack packets (from DARPA data set as well as newer

attacks including Code Red ii and Nimda). The captured

packets are processed with WireShark for analysis, and

Snort was utilized to attempt to sanitize against known

attacks being included in the training (non-attack) set. In

our data, no known attacks were found. We also sanitized

the traffic by removing some anomalous packets with

payload sizes larger than that of the standard MTU. These

large packets were segmented before transmission and

reconstructed before being dumped by the collection

method we used via the pcap library. We performed an

analysis of these packets and found that, interestingly,

they contained what appear to be attempts to look for

victims for future attacks. There were five instances of

this type of anomaly (three in the training set, two in the

8 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

testing set). They were removed from the training set to

avoid skewing the results, which is consistent with

standard procedure for preparing training data. Of the

traffic collected over 25k packets were used for training

(which we refer to as the real training data), and over 13k

packets were used for testing. About 25% of the packets

contained cookies for both sets. There are 7160

artificially generated packets in the artificial training set.

This set is composed of 716 unique resource strings

(mined from the web server being protected) in

combination with the 10 templates based on platform

fingerprint generation. This data set, based on the web

server at the university is referred to as WEB. In addition

to the attack packets, we also utilize the normal packets

from the DARPA 2000 data set (both Week 1 and Week

3) to show that the base IDS performance that we report

is in line with other existing works.

The three figures in Fig. 6(a) show the byte value

frequency distributions for the collected traffic, both with

cookies and after having the cookies stripped from the

payload. The right most figure shows just the cookies

from this set. We refer to the traffic collected by

capturing actual incoming network packets as the real

traffic. The same information is illustrated in Fig. 6(b) for

the artificial packets. The frequency distributions are

quite different between the cookies and the rest of the

payload as expected, where the values found in the

cookies are more uniform across the readable ASCII text

range due to hash values contained in the cookies (but

they are not completely uniform because they are not

entirely hashes). The cookies we captured and used in the

artificial packets have high variance because there were

only five unique default cookies used for the platform

fingerprints tested.

Tables 3∼6 show the summary of results for the

various settings based on the use of real or artificial

packet payloads for training. The normalized version of

each algorithm is denoted by the star (*), and the

respective true positive rate (TP), false positive rate (FP)

and the area under the curve (AUC) are shown. Only real

traffic is used for actual testing for detection and false

positive rates. They are differentiated by the WC (with

cookie) and WoC (without cookie) designations. The

results show two main points of interest. First, they

indicate that the use of artificial packets may be effective

in helping with the training of the IDS. The DARPA

results are shown for comparison. As DARPA data is

easier to work with, the IDS performs quite well.

Relatively, the IDS schemes perform worse using our real

world traffic (WEB), especially when real traffic is used

to train the system with the cookies intact. The artificial

payload use for training, along with the method of

ignor ing cookies for incoming packets yie lds

significantly better detection performance. It should be

noted that this does not suggest that artificial payload is

better than real traffic; rather, it shows that weeks of data

that was collected at the site was not suitable for testing

and that the artificial payload was a practical substitute in

the absence of good training data. Second, as expected,

ignoring cookies yields better performance in general.

Table 3. PAYL results

Data Set TP FP AUC

 DARPA W1 0.9932 0.0071 0.9974

 DARPA W3 0.9948 0.0130 0.9943

 WEB (Real WC) 0.9936 0.0746 0.9929

 WEB (Real WoC) 0.9932 0.0283 0.9976

 WEB (Art. WC) 0.9936 0.0209 0.9985

 WEB (Art. WoC) 0.9932 0.0180 0.9986

Table 4. PAYL* results

Data Set TP FP AUC

DARPA W1 0.9899 0.0001 0.9996

DARPA W3 0.9899 0.0019 0.9996

WEB (Real WC) 0.9907 0.0083 0.9991

WEB (Real WoC) 0.9907 0.0082 0.9991

WEB (Art. WC) 0.9899 0.0080 0.9979

WEB (Art. WoC) 0.9907 0.0019 0.9990

Table 5. PBD results

Data Set TP FP AUC

DARPA W1 0.99557 0.00063 0.9993

DARPA W3 0.99235 0.00232 0.9984

WEB (Real WC) 0.99315 0.01811 0.9903

WEB (Real WoC) 0.99356 0.01518 0.9919

WEB (Art. WC) 0.99235 0.01518 0.9916

WEB (Art. WoC) 0.99275 0.00811 0.9946

Table 6. PBD* results

Data Set TP FP AUC

 DARPA W1 0.9497 0.0006 0.9992

 DARPA W3 0.8970 0.0007 0.9992

 WEB (Real WC) 0.9907 0.006 0.9963

 WEB (Real WoC) 0.9907 0.0025 0.9952

 WEB (Art. WC) 0.9907 0.0048 0.9962

 WEB (Art. WoC) 0.9883 0.0028 0.9967

The use of cookies for training degrades the performance

because of the potential randomness in the cookies’ byte

values. During the detection stage, the use of cookies also

degrades performance (regardless of whether the system

was trained with or without cookies) because the cookies

that appear in individual packets may vary significantly

from the previous cookies. These findings are consistent

with our previous discussion. The numbers are consistent

with previous findings, where we expect to see false

positive rates below 1% and between 1 to 2% for

operating points that are not tuned well [18], [19]. Note

the high per-packet detection rate (>99%) reported for

nearly all data points. In practice, in order to lower false

positives, detection rates can be lowered without

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 9

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

significantly affecting practical security. (Fig. 15 and Fig.

16, which are presented in the Appendix, show the

Receiver Operating Characteristic (ROC) curves for the

different approaches, and illustrate the different potential

operating points. These figures illustrate that the

performance of training with artificial or real traffic while

also considering whether or not to ignore the cookie

portion.)

VI. PERFORMANCE EVALUATION AND TUNING

Given that ignoring cookies requires the knowledge of

where the cookie starts and ends, there is going to be

some cost in terms of latency (and subsequently impact of

throughput) associated with this choice. In this section,

we evaluate the latency and maximum throughput of the

different IDS schemes we covered both with and without

the cookie-related processing overhead. We also present a

novel performance optimization that should be utilized in

practice, and show our evaluation results for using the

optimization with normalization techniques.

Fig. 7 illustrates the different operations that take place

inside a network router if the IDS were to be

implemented alongside the router. The routing

functionality is not associated with the IDS and will occur

regardless of the presence of the IDS. Packet header

information is utilized, and as such the header processing

operation also is incurred regardless of the IDS placement.

Inside the IDS portion, there are two parts: Cookie

"stripping"
1
 (string search, which is optional) and the

detection algorithm. In a realistic implementation, these

two parts should be pipelined. In a pipelined scenario, the

average throughput will be determined by the dominant

operation (slowest of the two). We report the latency and

throughput figures for each of the operations, as

measured on a desktop machine with an AMD FX-8350

CPU, with each operation performed with a single thread.

Fig. 7. IDS on a Router.

1
 Note that, despite the name cookie "stripping," our approach does not

discard the cookie portion. We simply pass on the non-cookie portion to

the detection algorithm such that the cookie is ignored by the IDS.

A. Cookie Search Penalty

The search for cookie involves the use of a string

search algorithm over the packet payload, and consists of

two consecutive searches. First, the string "\r\nCookie:" is

searched, followed by a standard terminator "\r\n" for the

HTTP protocol that marks the end of the cookie.

Fig. 8. Lookup Table.

We show how three well-known algorithms perform—

Boyer-Moore-Horspool (BMH), Rabin-Karp (RK), and

Knuth-Morris-Pratt (KMP).

The test payload format assumes that some fields (for

example, GET) show up before the cookie portion. We

test max size payloads since they are the worst for string

searching, and the "\r\n" showing up at the very (also

worst case). The distance between "\r\nCookie:" and

"\r\n" is what determines the cost of the search, and the

further apart they are the worse it is. If the "\r\nCookie:"

portion shows up later, its distance is closer to "\r\n ", and

if the "\r\nCookie:" portion shows up earlier, the distance

increases. Because of how the more efficient substring

search algorithms work, the shorter substring length

("\r\n" is shorter than "\r\nCookie:") leads to worse

performance. In this case, the difference of seven

characters does not amount to much. We constructed our

tests to represent the worst case. Table 7 shows the

latency and throughput values for the different algorithms.

Table 7. Performance of Cookie searching

Algorithm Latency (ms) Throughput (Mbps)

BMH 0.0053 2202.5

RK 0.0180 648.5

KMP 0.0052 2226.5

B. Look-up Optimization

Table 8 shows the different latency values for each of

the algorithms used. The total time includes, in addition

to the detection algorithm time, both the header

processing and byte enumeration times. The header

processing and byte enumeration delays are same across

all at 0.00006 ms and 0.00359ms respectively. For byte

enumeration, the time we report is for the maximum size

10 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Table 8. Performance Measures

Algorithm Detection
Time (ms)

Total Time
(ms)

Maximum
Throughput

(Mbps)

PAYL 0.00185 0.00550 6293.1

PAYL* 0.00376 0.00741 3103.2

PBD 0.00111 0.00476 10494.7

PBD* 0.00187 0.00552 6228.5

lookup 0.00110 0.00475 10567.1

payload, which is the worst case (hence, on average, the

performance is expected to be better in practice

depending on the size of the packet). All of the values are

measured through a large number of sample runs

(between 8000 and 40000). All of the performance results

(which one would expect to fluctuate some depending on

the system state) are within 0.016% to 0.08% of their

reported values with 99% confidence. The latency values

assume that the packet is serviced immediately upon

arrival, and the consideration of queuing analysis is an

orthogonal issue and is outside the scope of the

discussion. The throughput shown is the maximum

possible throughput measured, considering the optimal

scenario where there are always enough packets to be

processed such that the different parts of the IDS related

computation can be pipelined.

In both PAYL and PBD, the anomaly score for an

incoming packet is computed in real-time to determine

whether or not the packet is anomalous. Instead, we

propose a table lookup method, where each byte value’s

contribution to the anomaly score is precomputed and

stored in a table based on their frequency count. Because

each byte value can occur a maximum of 1460 times (if

the entire payload consists of this single byte value), the

table must be 256×1461 (Fig. 8). This is equivalent to

approximately 1.4MB of storage overhead. At run-time,

this table can be used to perform 256 lookups followed

by simple addition operations to add the values rather

than performing the entire computation for determining

the anomaly score. For example, in the figure 256

indexed locations are highlighted corresponding to

packet’s byte value distribution. The byte values 0 and

254 have frequency counts of 1 and 1459, respectively,

and the rest do not occur, so they are all 0s. This is an

example of a 1460 Byte packet. Each of the highlighted

indexed location’s contains the precomputed per-bin

anomaly value, which can be simply added rather than

recomputing these values every time a new packet is

inspected. The resulting latency is 0.0011ms, which is an

improvement over the standard implementation. Where

the lookup shines, however, is in the size normalized

versions of the algorithms (again, denoted with a *).

Because of the added overhead, the normalized versions

are slower, and relative to that, the lookup method offers

roughly 40% to 70% faster performance, which in turn

equates to a significant throughput gain.

There is a critical issue that needs to be resolved

regarding the use of the lookup method for the

normalized versions of the IDS schemes. When

normalization is used, the byte value counts have no

meaning without the size of each individual packet. To

compensate for the size normalization, the table must be

built for every possible payload size (0~1460). This in

turn changes the lookup table to a 256×1461×1461 matrix,

and reduces the performance slightly. Unfortunately, this

requires over 2GB of storage, which is not practical.

Therefore, we propose the use of a quantization method

to keep the lookup table two-dimensional. Basically, the

rows of the table should represent the percentage of the

payload occupied by each byte value, rather than the

Fig. 9. Lookup table size variation for PAYL* using DARPA Week 3
traffic.

Fig. 10. Lookup table size variation for PAYL* using WEB traffic

without cookies.

Fig. 11. Lookup table size variation for PBD* using DARPA Week 3

traffic.

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 11

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Fig. 12. Lookup table size variation for PBD* using WEB traffic
without cookies.

actual count values. The fractional values can be

quantized into integers to fit the row indices of the table.

For example, if we allow for 1001 rows, each increment

of 0.1% value would map to each row. A percentage

value of 43.7, for instance, would then fit into row 437.

Because the quantization does not result in an exact

alignment, we tested different row sizes from 10 to 10000.

Figures 9 ~12 show our test results. In the figures, the Y-

axis represents false positive rates (all corresponding to

high detection rates).The line that represents the

performance without using the lookup table (W/O lookup)

is the reference performance. At row sizes of over 1000,

convergence of the results can be seen. The number of

rows can be set to 1461 just to match the size of the

original lookup table, but the size normalization can be

performed without any added penalty in storage.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we considered the possibility of tuning

payload anomaly based IDSs when the system lacks the

collected traffic (in either quantity or quality) to

effectively model the normal behavior. We evaluated the

use of artificially generated payloads for training the

system. We also investigated the effect of ignoring the

cookie portion of the HTTP/TCP/IP packet payloads on

the effectiveness of the IDS in characterizing the normal

traffic. Our results showed that the augmented training

method utilizing artificial traffic, while ignoring cookies

can effectively be used. We also quantified the worst case

latency introduced by the processing overhead of the

cookie stripping method, as well as the IDS algorithms

themselves. Maximum throughput values were also

reported.

The need for frequent updates to the IDS, whether it is

adding new signature to the database or re-characterizing

normal pattern/behavior, is becoming increasingly

important. This trend is driven by both the increasing rate

of attacks and the more dynamic nature of the system that

is being protected. In the case of web servers, the need to

retrain the system with new data can also arise due to the

change in the content hosted by the server. To this end, an

ontological model of the website, based on both

autonomous algorithms and guidance provided content

developers, may be utilized to guide the training. Such

technique can be especially useful when the training is

performed with a mix of real traffic along with the

artificial ones.

As protecting web servers involve security against

many different types of attacks, no single solution will

suffice. Rather, different approaches need to be utilized

simultaneously to ensure maximum protection. One of

many different types of tradeoffs across cost,

performance, overhead, etc., is that of training overhead.

To this end, we are currently investigating the use of low-

cost, dedicated subsystems to perform the task of constant

monitoring and updating to allow dynamic, near real-time

tuning of IDSs. The insights gained from this particular

study thus far have been beneficial for such systems.

Understanding the degree to which different security

paradigms can co-operate, and analyzing the

implementation costs are also going to be interesting in

going forward

APPENDIX A FIGURES

We provide additional figures from the various

discussions in the paper (shown in the following page).

Fig. 13 and Fig. 14 are artificially generated templates

from the discussion in Section IV.B.1. The highlighted

parts are unique to the particular platform combination,

with the rest being standard fields that will be found

across different platforms. This example assumes that the

web address is at www.someserver.uah.edu, and that an

attempt is being made to fetch a file named filex.html.

Fig. 15 and Fig. 16 are ROC curves from the

discussion in Section V. The Y-axis is the true positive

rate (detection) and the X-axis is the false positive rate.

The use of artificial and real traffic is compared while

also considering the cookie usage. The artificially

augmented method works well, and can be used to help

supplement training strategies. Note the lower end of the

Y-axis is at 0.988. The two next highest true positive

rates found across all cases were around the 0.7 and 0.5

marks, which are too low to be of use for any kind of

intrusion detection.

ACKNOWLEDGMENTS

The work presented in this paper was supported in part

by Northrup Grumman and 2014 UAH RIF. The authors

would like to thank Sara Graves, Ken Keiser, Michael

McEniry, and John Rushing from the Information

Technology and Systems Center at the University of

Alabama in Huntsville for their support. The views

expressed in this work are that of the authors only, and do

not necessarily reflect the position or the policy of the

above mentioned organizations.

12 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Fig. 13. Payload Template with Cookies - Mobile - IOS 7 - Chrome Crios Browser (V.36).

Fig. 14. Payload Template without Cookies - PC - Ubuntu OS - Chrome Browser (V.37).

Fig. 15. ROC curves for PAYL (left) and PAYL* (right).

GET /main/files/data/set1/public/filex.html HTTP/1.1

Host: www.someserver.uah.edu

Connection: keep-alive

Cache-Control: max-age=0

Accept:

Text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like

Gecko)

Ubuntu Chromium/37.0.2062.120 Chrome/37.0.2062.120 Safari/537.36

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

If-Modified-Since: Thu,16 Oct 2014 02:35:55 GMT

GET /main/files/data/set1/public/filex.html HTTP/1.1

Host: www.someserver.uah.edu

Connection: keep-alive

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8,image/

webp

User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_2 like Mac OS X)

AppleWebKit/537.51.2 (KHTML, like Gecko) CriOS/36.0.1985.49 Mobile/11D257

Safari/9537.53

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: _ga=GA1.2.1329186302.1409018745;

km_ai=Q7UccLTzSzsd0Gpr0lLn9I2Caf8%3D;

km_uq=1413226130%20%2Fe%3FURL%3Dhttp%253A%252F%252Fwww.uah.edu%252Fscience

%252Fdepartments%252Fcomputer-science%26Referrer%3DDirect%26_n%3DVisited%2520

Site%26_k%3Dfd8cd2be3714dc44020a13aaccb55cbc5389aadf%26_p%3DQ7UccLTzSzsd0Gpr0

lL

n9I2Caf8%253D%26_t%3D1413226130%7C1413226130%20%2Fs%3Freturning%3D1%26_k

%3Dfd8cd2be3714dc44020a13aaccb55cbc5389aadf%26_p%3DQ7UccLTzSzsd0Gpr0lLn9I2Caf

8%2

53D%26_t%3D1413226130; km_lv=x

http://www.keepers.uah.edu/

 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems 13

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Fig. 16. ROC curves for PBD (left) and PBD* (right).

REFERENCES

[1] Gartner says worldwide information security spending will

grow almost 8 percent in 2014 as organizations become

more threat-aware. August 22, 2014. [Online]. Available:

http://www.gartner.com/newsroom/id/2828722.

[2] S. Kim, W. Edmonds, and N. Nwanze, ―On gpu accelerated

tuning for a payload anomaly-based network intrusion

detection scheme,‖ in ACM Proceedings of the 9th Annual

Cyber and Information Security Research Conference, 2014.

[3] F. M. Cheema, A. Akram, and Z. Iqbal, ―Comparative

evaluation of header vs. payload based network anomaly

detectors,‖ in Proceedings of the World Congress on

Engineering, 2009.

[4] H. S. Javits and A. Valdes, ―The nides statistical

component: Description and justification,‖ Technical report,

SRI International, Computer Science Laboratory, 1993.

[5] P. K. C. M. Mahoney, ―Learning nonstationary models of

normal network traffic for detecting novel attacks,‖ Proc.

SIGKDD, pp. 376–385, 2002.

[6] C. Azad and V.K. Jha, ―Genetic Algorithm to Solve the

Problem of Small Disjunct In the Decision Tree Based

Intrusion Detection System,‖ International Journal of

Computer Network and Information Security (IJCNIS), vol.

7, no. 8, pp. 56–71, July 2015.

[7] F. Geramiraz, A. S. Memaripour, and M. Abbaspour,

―Adaptive anomaly-based intrusion detection system using

fuzzy controller.‖ I. J. Network Security, vol. 14, no. 6, pp.

352–361, 2012.

[8] P. Mafra, V. Moll, J. da Silva Fraga, and A. Santin,

―Octopus-iids: An anomaly based intelligent intrusion

detection system,‖ in IEEE Symposium on Computers and

Communications, June 2010, pp. 405–410.

[9] C. Krügel, T. Toth, and E. Kirda, ―Service specific anomaly

detection for network intrusion detection,‖ in Proceedings

of the 2002 ACM Symposium on Applied Computing.

[10] K. Tomar and S.S. Tyagi, ―HTTP Packet Inspection Policy

for Improvising Internal Network Security,‖ International

Journal of Computer Network and Information Security

(IJCNIS), vol. 6, no. 11, pp. 35–42, Oct. 2014.

[11] M. Almgren and U. Lindqvist, ―Application-integrated data

collection for security monitoring,‖ Recent Advances in

Intrusion Detection, 2001.

[12] M. Zolotukhin, T. Hamalainen, T. Kokkonen, and J.

Siltanen, ―Analysis of http requests for anomaly detection

of web attacks,‖ IEEE Dependable, Autonomic and Secure

Computing (DASC), Aug 2014, pp. 406–411.

[13] T. Threepak and A. Watcharapupong, ―Web attack

detection using entropy-based analysis,‖ in Information

Networking (ICOIN), 2014 International Conference on,

Feb 2014, pp. 244–247.

[14] C. Kruegel and G. Vigna, ―Anomaly detection of web-

based attacks,‖ in Proceedings of the 10th ACM

Conference on Computer and Communications Security,

2003.

[15] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna,

―Protecting a moving target: Addressing web application

concept drift,‖ International Symposium on Recent

Advances in Intrusion Detection, 2009.

[16] M. Tavallaee, N. Stakhanova, and A. Ghorbani, ―Toward

credible evaluation of anomaly-based intrusion-detection

methods,‖ Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, vol. 40,

no. 5, pp. 516–524, Sept 2010.

[17] M. Bhuyan, D. Bhattacharyya, and J. Kalita, ―Network

anomaly detection: Methods, systems and tools,‖ IEEE

Communications Surveys Tutorials, vol. 16, no. 1, pp. 303–

336, 2014.

[18] K. Wang and S. J. Stolfo, ―Anomalous payload-based

network intrusion detection,‖ International Symposium on

Recent Advances in Intrusion Detection, 2004.

[19] S. Kim and N. Nwanze, ―Noise-resistant payload anomaly

detection for network intrusion detection systems,‖ in IEEE

International Performance, Computing and

Communications Conference, 2008.

[20] Browser statistics. [Online]. Available:

http://www.w3schools.com/browsers/browsers_stats.asp.

[21] Usage share of web browsers. [Online]. Available:

http://en.wikipedia.org/wiki/Usage_share_of_web_browses

[22] Net market share. [Online]. Available:

http://www.netmarketshare.com/ .

[23] Search engine spider. June. 12, 2014. [Online]. Available:

http://www.webconfs.com/search-engine-spider-

simulator.php.

[24] Search engine webmaster. June. 12, 2014. [Online].

Available:http://freetools.webmasterworld.com/tools/crawl

er-google-sitemap-generator/ .

14 Artificially Augmented Training for Anomaly-based Network Intrusion Detection Systems

Copyright © 2015 MECS I.J. Computer Network and Information Security, 2015, 10, 1-14

Authors’ Profiles

Chockalingam Karuppanchetty has a M.S.

(2015) in Computer Science from the

University of Alabama in Huntsville, USA.

He also received his B.E. (2007) in

Electronics and Communication

Engineering from the Sree Sastha Institute

of Technology, Tamilnadu, India.

Previously, he was a Software Engineer for

Hindustan Computers Limited Technologies for two years. His

current research interests are Networking and Security.

William C. Edmonds, Jr. received his B.S.

(2013) degree in Computer Systems

Engineering at the University of Alaska

Anchorage in Anchorage, Alaska, USA. He

is currently a graduate research assistant at

the University of Alabama in Huntsville.

Previously, he worked in the financial

industry as an internal auditor for both bank-

related and I.T. departments. Past and current research interests

include network intrusion detection systems, leveraging GPUs to

expedite intrusion detection training algorithms, and embedded

and mobile device security.

Sun-il Kim is an Assistant Professor of

Computer Science at the University of

Alabama in Huntsville. He received his Ph.D

(2008) and M.S. (2001) in Computer Science

from the University of Illinois at Urbana-

Champaign, and his B.S. (2000) from

Binghamton University, State University of

New York. Prior to joining the University of

Alabama in Huntsville, he was with the University of Alaska

Anchorage and the University of St. Thomas. His research

interests center on reliability and security in networked systems.

Nnamdi Nwanze received his Ph.D. (2009),

M.S. (2004), and B.S. (2001) all in Electrical

and Computer Engineering from Binghamton

University, State University of New York.

He is currently the Technology &

Ecosystems advisor at iDEA Hub, Nigeria.

He was a postdoctoral fellow in the Empower

the Teachers program in 2013 at the Massachusetts Institute of

Technology (MIT). During the fellowship he liaised with MIT

faculty to perform research into computer network security, and

new teaching methods and techniques for better teaching

practices across tertiary institutions in the US and Nigeria. Prior

to joining iDEA, he was a faculty member at the Bells University

of Technology. He also worked as a Project Manager for Vigilos,

Inc. in Seattle, USA, developing security solutions for the

enterprise physical security market. His research interests center

on computer and network security, and pervasive computing.

How to cite this paper: Chockalingam Karuppanchetty, William Edmonds, Sun-il Kim, Nnamdi Nwanze,"Artificially

Augmented Training for Anomaly-based Network Intrusion Detection Systems", IJCNIS, vol.7, no.10, pp.1-14,

2015.DOI: 10.5815/ijcnis.2015.10.01

